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ABSTRACT This paper examines the structural response of reinforced concrete flat slabs, provided with fully-

embedded shear-heads, through detailed three-dimensional nonlinear numerical simulations and parametric assessments

using concrete damage plasticity models. Validations of the adopted nonlinear finite element procedures are carried out

against experimental results from three test series. After gaining confidence in the ability of the numerical models to

predict closely the full inelastic response and failure modes, numerical investigations are carried out in order to examine

the influence of key material and geometric parameters. The results of these numerical assessments enable the

identification of three modes of failure as a function of the interaction between the shear-head and surrounding concrete.

Based on the findings, coupled with results from previous studies, analytical models are proposed for predicting the

rotational response as well as the ultimate strength of such slab systems. Practical recommendations are also provided for

the design of shear-heads in RC slabs, including the embedment length and section size. The analytical expressions

proposed in this paper, based on a wide-ranging parametric assessment, are shown to offer a more reliable design

approach in comparison with existing methods for all types of shear-heads, and are suitable for direct practical

application.
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1 Introduction

Brittle failures, which can occur at the slab-column

connection, may typically be prevented through drop

panels or by reinforcing the critical region with transverse

bars [1–3] or structural steel inserts [4–11]. The perfor-

mance of a flat slab with transverse reinforcement is

however strongly dependent on the arrangement, type and

size as well as bond characteristics of the rebars. On the

other hand, shear-head systems typically translate the weak

section, both in bending and shear, outside of the shear-

head region [4,12]. Early interest in shear-head configura-

tions was shown with the development of high-rise

structures in the United States [13,14]. Early tests on

such systems showed that they can offer reliable structural

response at the connection [15]. The first tests on fully

embedded shear-heads against punching shear were carried

out tests on flat slabs with cruciform shear-head systems

consisting of perpendicular Channel or I-sections

(Figs. 1(a)–1(c)), placed between the longitudinal reinfor-

cement layers. These showed an increase in punching

shear strength by up to 75% in comparison to reference

cases without shear-heads [6].

In Europe, tests on 140 mm flat slabs provided with fully

embedded cruciform I-section shear-heads with varying

embedment lengths subjected to axial load and unbalanced

moment with eccentricities around 0.25 showed an

increase in ultimate capacity between 40% and 70% as a

function of the shear-head embedment length [16].

Development tests on shear-head systems made of inverted

wide tee steel beams positioned in a cruciform arrangement

also showed enhancement of punching shear strength of

240 and 300 mm slabs in the range of 65% in comparison

their non-reinforced counterparts. As for other cruciform

shear-head systems, rupture occurred at the tip of the shear-

head, showing an effective force flow as the load was

transferred to the column by shear in the web and tension

action in the connection plates of the shear-heads [17].Article history: Received Feb 6, 2019; Accepted Mar 11, 2019
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Other tests made use of fully and partially embedded

closed-box shear-heads which led to an increase in

punching shear strength by about four times and a twofold

reduction in the supporting moments [4,18].

The crack patterns from tests on large-scale flat slabs

provided with closed-box shear-heads and practical slab

thicknesses, showed responses governed by tangential

cracks around the shear-head, as well as straight radial

cracks [19]. This indicated that the curvatures in the radial

direction are concentrated around the relatively rigid shear-

head acting as an enlarged column support, similar to a

conventional column support (Fig. 1(d)). Moreover, tests

on 16 mm � 120 mm thick model slabs and 4 large-scale

3 m � 3 m and 250 mm thick specimens investigated the

optimal shear-head configuration and their effect on

punching shear capacity [20]. Other intricate shear-head

systems exist, including for example composite cruciform

systems consisting of vertical steel plates acting as shear-

legs to which headed studs are welded for composite action

combined with special steel-endplates for strut support

[21].

Nonlinear finite element simulations can offer insights

into the structural behavior of RC and composite steel-

concrete elements [22–24]. For a reliable computational

representation of the characteristics of concrete materials

under loading, a significant number of studies were carried

out. Concrete is a relatively weak material in tension and

relatively strong in compression with compressive-to-

tensile strength ratio of about ten, and has a distinct post-

peak behavior in compression and tension [25]. It is widely

accepted that in tension a crack is initiated when the tensile

stress exceeds the tensile strength (i.e., Rankine criterion)

and the crack is perpendicular to the principal tensile strain.

Constitutive models employed in engineering practice are

typically based on a continuum approach. The cracks in

concrete were represented by strain softening in the stress-

strain curve leading to mesh-dependent results [26],

particularly since with a finer mesh size, the fracture

energy decreases.

Further fictitious and smeared crack models, in which

the stress is represented in terms of relative displacement

instead of strains, which account for cracks being located

within and integration cell, were developed [27,28]. The

latter, referred to as weak discontinuity approaches allow

for the initiation of several cracks to initiate in a single

element/cell. The introduction of a crack band model with

constant fracture energy, in which the strain is function of a

crack width and a characteristic element length, eliminated

partially the mesh-dependency [26]. Moreover, by

accounting for an extremely fine mesh size in the fracture

process zone, mesh independency can be achieved [29].

Such methods were successfully employed for modeling

prestressed concrete beams with different cross sections

and different failure mechanisms (i.e., bending, shear, and

anchorage failure), particularly since both pull-out and

splitting failure characteristics were considered through an

explicit modeling of the bond-slip behavior [29].

To overcome limitations of conventional modeling

approaches in tension, computational fracture techniques

were developed. These can be classified as either discrete

or continuum-based such as remeshing procedures with

extraneous crack path determination [30], local displace-

ment [31] and strain enrichments [32], edges repositioning

[33,34], fixed-mesh element erosion [35], smeared band

algorithms [36], among others. Non-discrete approaches

such as element deletion methods are also capable of

predicting arbitrary crack paths [37]. An alternative is

adaptive remeshing, yet this may be computationally

expensive when multiple cracks exist, and the accuracy

decreases with highly nonlinear issues [38]. For additional

Fig. 1 Schematic of failure surfaces for specimens with and without cruciform shear-heads [6]: (a) AN-1, (b) AC-1, (c) AH-1; (d) crack

distribution for closed box shear-heads [19]; (e) crack patterns for hybrid RC flat slabs with cruciform shear-heads [12].
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inter-element-separation methods [39] crack growth devel-

ops at element edges and implicitly results are sensitive to

mesh size. Discrete crack modeling in finite elements with

remeshing was also investigated [40]. Based on an

enrichment at the element level, embedded elements

(EFEM) can predict arbitrary cracks without remeshing

and are considered relatively inexpensive computationally,

having an opportunity as being incorporated in commercial

programs [41]. Also, novel approaches the extended finite

element methods (XFEM) may be a viable option for

practical implementation as the crack kinematics is

captured by overlapping elements rather than by the

addition of supplementary degrees of freedom [42].

On the other hand, more attractive methods to predict

fracture of materials are meshfree methods, which are an

alternative to finite elements for crack propagation [43,44].

In addition to the advantage of being more flexible because

of the lack of a mesh, they have the non-local interpolation

character which provides higher smoothness and con-

tinuity [45]. The method is applicable to nonlinear

problems, problems with moderate to severe cracking

and deformable interfaces [46]. It has been successfully

applied for predicting the static response of reinforced and

prestressed concrete beams as well as for assessing the

response of concrete slabs under dynamic loading, in

which the concrete is discretised in particles, while the

reinforcement with elements [47,48]. In these methods,

crack can be arbitrarily oriented, but its growth is

represented discretely by activation of crack surfaces at

individual particles, hence no representation of the crack

topology is needed [43]. More advanced meshfree

techniques for two and tri-dimensional modeling involve

splitting particles located on opposite sides of the

associated crack segments to describe the crack kinematics

[48,49].

As an extension of the classical smeared approach to

fracture, somewhat between purely cohesive formulations

and the smeared modeling, injection of continuum soft-

ening elements in the fracture process region were

considered [50]. Through this technique, edge rotation

around crack front nodes in surface discretisation is

produced, while each rotated edge is duplicated to

represent the crack path. To guarantee enough resolution

in the definition of the crack paths, a local remeshing

algorithm based on the phase field values at the lower and

upper shell faces is introduced. In this two-stage local

remeshing algorithm, edge-based element subdivision and

node repositioning are performed [51]. Novel crack

propagation algorithms, independent of particular consti-

tutive laws and specific element technology, based on a

localization limiter in the form of the screened Poisson

equation with local remeshing, allow to capture strain

localization in plain and reinforced concrete elements with

good resolution in both two and three-dimensional

problems [52,53].

Models to represent the post-peak response of materials

in tension and compression such as coupled damage-

plasticity models, are regularly employed in practical

modeling. In such models, the physical interpretation of

damage is introduced as the specific damage surface area

[54]. Depending of the main characteristics of the material,

the damage can be isotropic (scalar) or anisotropic (tensor)

[55]. Anisotropic damage models for brittle materials, such

as concrete, are often complex and a combination with

plasticity and application to structural analysis can be

tedious [56]. Conversely, isotropic damage models are

more attractive due to relatively simple combination with

stress-based plasticity models formulated in the effective

(undamaged) space [57], where the effective stress is

defined as the average micro-scale stress acting on the

undamaged material between micro-defects [55]. Although

relatively simplified, this representation captures the main

characteristics of the concrete response.

To avoid previously mentioned mesh-dependency

problems the crack band model with constant facture

energy in which the tensile response is a function of the

characteristic element length, may be considered. Models

employing such approaches were able to predict the

ultimate strength and deformational response of plain and

reinforced concrete members (e.g., localized behavior

under direct shear and tension [58,59], assessment of a

long-term behavior [60], RC flat slabs with and without

shear reinforcement under static loading [61–63], RC

hybrid beams in shear and flexure [64–67]). However,

detailed numerical studies on flat slabs with shear-heads

are relatively limited and have typically focused on hybrid

connections between steel columns and RC floors.

Previous assessments on hybrid and RC elements have

highlighted the influence of key parameters which govern

the performance of shear-heads in hybrid flat slabs similar

to the member depicted in Fig. 1(e) [68–70]. However,

previous studies were limited in terms of scope and

parameter ranges, and hence did not permit the develop-

ment of analytical models and guidance suitable for

practical application.

Although shear-heads are widely considered as reinfor-

cing systems against punching shear in practice [71],

research studies on RC and hybrid configurations are

constantly carried out [8,9,11,12,30,68–70,72–76] and

such systems are typically recommended for practical

application [77], codified guidance is comparatively

limited. For example, no specific provisions are stipulated

in Eurocode 2 [78], while the Model Code 2010 [79] offers

some guidance for the design of flat slabs with closed-box

shear-heads. In contrast, ACI318-14 [80] offers detailed

guidance for cruciform shear-heads, largely based on the

limited tests data reported by Corley and Hawkins [6],

while closed-box shear-heads are not addressed. Current

guidelines are therefore limited to specific shear-head

types, thus hindering a wider application. Observations

from previous studies indicate that the punching shear

resistance of flat slabs with shear-heads depends not only

Dan V. BOMPA & Ahmed Y. ELGHAZOULI. Nonlinear simulation of punching shear in RC flat slabs with shear-heads 333



on the typical shear-design parameters such as shear depth,

concrete strength and support size but also on the

geometry, deformation response and strength of the

individual elements of the shear-head.

This paper deals with the ultimate behavior of cruciform

as well as closed-box shear-head systems fully embedded

in RC flat slabs at interior RC columns through three-

dimensional nonlinear finite element assessments. After

validating the numerical procedures against three series

[6,20,81] (Figs. 2(a)–2(f)) which contained RC flat slabs

with and without shear-heads, the results of detailed

parametric investigations are presented and discussed. The

parameters examined include the type, shape, embedment

length, section size and layout of the shear-head system as

well as flat slab dependent parameters such as thickness,

concrete strength, reinforcement ratio, and support size.

The shear-head configurations investigated in this paper

are depicted in Figs. 2(g)–2(i): cruciform shear-heads

made of welded back-to-back channel or I section (CRH),

cruciform shear heads made of two pairs of channels at the

support region (CTP) and closed-box shear-heads (CBX).

The numerical results obtained enable a direct assessment

of the ultimate behavior in terms of both strength and

deformation characteristics, and also enable an assessment

of the failure surface as a function of the shear-head

configuration. Based on the findings, coupled with results

from previous studies, analytical models are proposed for

predicting the rotational response as well as the ultimate

Fig. 2 Schematic representation of (a) full scale specimens PG1, PG2b, PG5, PG10, PG11; (b) half scale specimens PG6, PG7, PG8,

PG9; (c) double scale specimen PG3 from Guandalini [81]; (d) FSSH series; (e) SH series from Chana and Birjandi [20]; (f) A and B series

(Corley and Hawkins [6]); cruciform shear-heads made of (g) welded back-to-back channel or I section (CRH); (h) two pairs of channels at

the support region (CTP) shear-heads; (i) closed-box shear-heads (CBX).
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strength of such slab systems. The proposed models are

shown to offer a reliable and practical approach for a wide

range of shear-head types and configurations.

2 Numerical simulations

The numerical simulations described in this section were

carried out using the nonlinear finite element (FE) program

ABAQUS [82] in order to obtain detailed insights into the

structural response of RC flat slabs provided with cruci-

form and closed-box shear-heads at connections to interior

RC columns. After discussing the modeling procedures

and constitutive parameters for the concrete, reinforcement

and structural steel, validations are carried out against 36

flat slab specimens extracted from three experimental

programmes.

2.1 Modeling procedures

Three-dimensional (3D) models were constructed using

double-symmetry to represent a quarter of an RC flat-slab

specimens (Figs. 3(a)–3(b)). Eight node brick elements

with reduced integration (C3D8R) were employed for the

concrete slab, steel shear-heads and reaction plates, while

3D truss elements (T3D2) were used for the longitudinal

reinforcement. The contact between the shear-head arms

and the concrete body was represented using an exponen-

tial decay friction law described later. In all models, the

reinforcement was embedded in the concrete body and

assigned with full bond conditions. The reaction plates

were connected to the concrete body by considering full

interaction. These were assigned with elastic steel material

properties, as they were overdesigned to remain in elastic

regime. Pinned boundary conditions were assigned to

reference points connected through link multi-point

constraints to the reaction plates, while member displace-

ments were applied in the same manner through tie multi-

point constraints. The Newton-Raphson approach was

adopted for the numerical integration procedure.

The ‘concrete damaged plasticity’ model (CDP) was

used to represent the tri-axial behavior of concrete. For

this, the potential yield function is controlled by the

effective stress values, the bi-axial behavior of concrete

(fb0/fc = 1.16) and Kc = 2/3 that governs the shape of the

deviatoric plane. The CDP model accounts for a non-

associated potential plastic flow, in which the plastic

volume expansion is not proportional to the increase in

stresses. This is represented in the plastic potential flow

function by the dilation angle φ measured in the p-q plane

at high confining pressure and surface eccentricity (ε =

0.1). The constitutive model requires uniaxial stress (σ)-

strain (ε)-damage (di) relationships for the compression

and tension behavior. In this study, a plastic stiffness

degradation scheme, typical for coupled damage-plastic

concrete constitutive models was adopted.

Before crushing in compression or cracking in tension,

no degradation occurs and the plastic strains are equal to

the inelastic strains. Beyond these points, the stiffness

reduction enables the development of irreversible plastic

strains that are directly proportional to the stress decrease

[83]. The damage in compression dc and damage in tension

dt parameters are also part of the variable field output of the

FE environment. They allow direct interpretation of the

stress state within different regions of the members,

illustrated by compression and tension damage patterns,

and member stiffness degradation. Established on a

continuum approach, in which no physical separation is

created in the model mesh, tension damage mesh regions

provide an effective way to illustrate the kinematic aspects

of crack development.

The compressive stress-strain σ-ε relationship illustrated

in Fig. 3(c) was defined using the Eurocode 2 [78]

recommendation for nonlinear structural analysis, while

the compressive constitutive properties (elastic modulus

Ec, strain at crushing εc1 and concrete tensile strength fct)

were assessed from the reported concrete strength fc. A

factor of 0.8 was used to convert cube fc,cube to cylinder fc
compressive strength where necessary, as typically con-

sidered in Eurocode 2 for mean concrete cylinder strengths

below 68 MPa [78]. In tension, linear-elastic behavior was

considered up to cracking, followed by a bi-linear tension

softening law extracted from a nonlinear model [84]. The

numerical input was converted into inelastic cracking

strain εct,i using the concept of equivalent crack length in

which the crack displacement wi up to wmax = 160 mm, is

divided by the characteristic length of the element lch. The

characteristic length of a 3D element is the cubic root of the

volume of the mesh element Ve. In the uniaxial post-peak

tension regime, the damage is assumed to grow linearly

from 0 to 0.9. Such ranges were also employed in other

studies from Ref. [23]. The maximum tension damage

scalar (0.9) corresponds to a maximum crack displacement

of wmax = 160 mm, which is divided by the characteristic

length of the element lch, as mentioned before. Beyond this

value, the damage scalar is subsequently held constant to

preserve a residual stiffness and strength [23]. Both

structural and reinforcement steels were modeled using

bi-linear elasto-plastic material properties with hardening

(Fig. 3(d)).

A numerical investigation carried out previously by the

authors on hybrid RC flat slabs connected to steel columns

was used as a reference for the definition of the governing

constitutive and geometrical parameters [69]. These

parameters were first calibrated with the models of

Specimens PG1 without shear-heads [81], Specimens

SH-1 and SH-2 [20], and Specimens AN-1 and AC-1

[6], and then applied to all other validation cases as

discussed in the following section. The parameters varied

in the sensitivity analysis were the dilation angle φ, mesh

size, and the uniaxial tension material post-peak represen-

tation. Detailed results of the sensitivity analysis are only
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presented in Fig. 4 for Specimen PG1, while the complete

load-displacement curves are given for all models of the

three test series.

In terms of mesh sensitivity, the results were largely

independent of the size lm for the model of PG1 (Fig. 4(a)),

when lm varies from h/5 to h/10 (h: flat slab thickness). The

use of a fracture dependent post-peak tension behavior for

concrete allowed tension damage localization as a function

of the chosen mesh size. The mesh sensitivity for models

with low rl, provided with coarser mesh (lm = h/5), showed

unrealistic rigid behavior in the post-cracking regime,

primarily due to the delayed cracking as a result of poor

propagation of tension damage in the continuum. A value

of lm = h/7 was found to be satisfactory in the models

described here for RC slabs without shear-heads while lm =

h/10 was suitable for slabs with shear-heads. In addition to

this, the influence of the accounted stress transfer through

cracked interfaces was investigated by accounting for three

post-cracking strain distributions (Fig. 4(b)). Nonlinear

representation of the post-peak tension behavior was

chosen as opposed to linear and bi-linear laws, since the

latter two produced stiffer numerical response, particularly

for members with low rl.

In CDP, the material dilation angle φ is used to represent

the stress increase at high confining pressures in the

normal-shear stress p-q plane. In RC flat slabs, concrete in

the column region is under bi-axial or tri-axial confine-

ment. Hence, for these cases, parameters such as φ control

the numerical predictions. Figure 4(c) illustrate the

numerical response with φ varying from 10° to 55°. As

already noted in other studies on RC flat slabs [23,69,85–

87], the most effective response is given for values around

φ = 40°–50°, with an optimal value of φ = 48° employed

for the validations described below.

As mentioned above, to model the steel-concrete

interface behavior, the contact between the steel profile

and the concrete body is modeled using an exponential

decay law. In a sensitivity analysis on hybrid RC members

provided with shear-heads carried out by authors [690], m
was varied from low fiction (0.2) to relatively high friction

(0.6). For m = 0.2, the load-strain response showed softer

behavior in comparison to experimental results, activated

by an earlier slip, while m = 0.4–0.6 these were in good

agreement with test strain recordings. Hence a friction

coefficent m = 0.4 was used in all the analysis described in

this paper. It is worth noting that μ values within the above

Fig. 3 Numerical models: (a) typical axisymmetric 3D representation; (b) side view and mesh; (c) uniaxial concrete model; (d) steel

model; (e) basic friction model; (f) decay law.
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ranges were typically obtained in tests to represent

interaction properties between steel profiles and concrete

[88,89]. The exponential decay function is an extension of

the basic Coulomb friction model in which the friction

coefficient can be defined as a function of the equivalent

slip rate and contact pressure or by specifying the friction

coefficient directly (Fig. 3(d)). Additionally, it requires a

coefficient for the decay that describes slip response

(Fig. 3(f)). In this paper available average test data [89] in

terms of shear stress-slip was converted in a friction-slip

rate curve as required by the finite element environment, in

which m1 = 0.4 and m1 = 0.31.

2.2 Validation studies

2.2.1 Guandalini et al. [81]

The main aim of the tests was to assess the influence of rl
(0.25%–1.5%) and specimen size on the punching shear

strength of RC flat slabs without shear reinforcement or

shear heads [83]. Double size and half scale members to

the Reference Specimen (PG1) were reported (Figs. 2(a)–

2(c)). The plan dimensions of PG1 were 3 m � 3 m,

whereas its thickness was h = 250 mm. The double size

specimen (PG3) was 6 m� 6 m in plan and 500 mm thick.

Half scale specimens (PG6-PG9) were only 1.5 m � 1.5 m

in plan with thickness h = 150 mm. The specimen details

and material parameters of the specimens considered

herein are summarized in Table 1. For specimens with high

rl (PG1, PG6, PG7, PG11), failure occurred in punching

due to the dislocation of a conical body out of the slab. In

two cases, some reinforcement yielded over the column.

None of these specimens reached their plastic regime [81].

On the other hand, specimens with low rl (PG2b, PG4,
PG5, PG8, PG9, PG10) showed clear ductile behavior with

a visible plastic plateau. Despite the low rl, the double

scale specimen PG3, failed in punching shear at a lower

load than its flexural strength [81]. Identical failure modes

were obtained through the numerical models adopting the

procedures described above. In most cases both the elastic

and cracked stiffness were accurately predicted, and the

ultimate strength was well captured (Table 1 and Fig. 5).

The predicted strength of several members with low rl =
0.25% (e.g., PG2b, PG4) was slightly overestimated by

about 6% on average primarily due to the late cracking in

the numerical model in comparison with the tests. On the

other hand, the ultimate strength of member PG5, also

provided with low rl = 0.33%, was underestimated with an

average Vtest/Vu,num = 1.04. Additionally, the cracking load

of the double-size Specimen PG3 was underestimated by

about 30% leading to a premature development of

inelasticity compared to the test. However, there is close

agreement in the numerical and test results in terms of the

cracked stiffness and the ultimate strength. Specimens with

high rl (e.g., PG1 and PG6) showed faithful strength

predictions with a discrepancy within 3% from the test

values.

2.2.2 Chana and Birjandi [20] test series

In this test series, two sets of tests were carried out for the

development of a range of structural shear-heads capable

of carrying large loads [20]. The first phase involved 16

scaled specimens with or without shear-heads to assess the

influence of the shear-head configuration on the ultimate

slab behavior. Circular flat slabs (SH series) of 1.55 m

diameter, depicted in Fig. 2(e), were loaded around their

perimeter through eight floor ties and supported by 140

mm square columns, and had a thickness of 120 mm and

two levels of flexural reinforcement (rl= 0.79% and rl =
1.51%). The shear-heads were made of structural channel

sections welded in a cruciform or closed-box arrangement.

The cruciform shear-heads were made of welded back-to-

back channel section (CRH) or two pairs of channels

around the support region (CTP). On the other hand,

closed-box shear-heads (CBX) were made from two pairs

of channels which had end beams welded at their outer

ends.

The results from the first set of tests enabled the choice

of an optimal shear-head configuration, employed further

Fig. 4 Identification of constitutive and numerical parameters for PG1 [81]: (a) mesh size; (b) tension stiffening reponse; (c) dilation angle φ.
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in the second phase which involved tests on 3.0 m square

slabs (FSSH series) of 250 mm depth supported by 300

mm wide columns. As illustrated in Fig. 2(f), these were

loaded in a similar manner through equally spaced points

at 1.2 m radius from the center of the specimen. All

specimens were made of normal concrete with fc,cube =

38.1–46.6 MPa. The shear-head dimensions (as indicated

in Table 1), were C76�38�7 mm for the SH slabs,

C127�64�15 mm for the large-scale slabs with cruciform

shear-heads (FSSH2 and FSSH3) and C102�51�10 mm

for the FSSH4 with closed-box shear-head. The shear-head

yield strength was fv = 355 MPa and the reinforcement

yield strength fy = 500 MPa were considered for modeling,

as suggested in the test report [20].

From a total of 20 tests, 13 were reported to develop

punching shear failures. The scaled tests with CBX shear-

heads (SH5 and SH11) showed the highest punching shear

capacity characterized by failures outside the shear-head

area, followed by the CTP shear-heads (SH2 and SH8).

Specimens with shear-head arms placed further than a

distance of column size plus half the slab effective depth

had columns punching through the slab through the center

of the shear-head at lower strengths. The test results

showed that shear-heads that produce a larger punching

shear perimeter exhibit a larger punching shear capacity

with failure surfaces outside or near the edges of the shear-

heads.

Figure 6 and Table 1 depict the predicted response

against the test results as obtained from the test report. The

test-to-predicted strength ratio obtained is Vtest/Vnum = 1.05

and the coefficient of variation is 6.9% for the model SH

slabs, and Vtest/Vnum = 1.02 and COVof 7.7% for the large

scale FSSH slabs. Both the stiffness and ultimate capacity

of the specimens with shear-heads are well predicted (r =

0.79% for SH2, SH3, SH5; r = 1.51% for SH8, SH9,

SH11; r = 1.00% for FSSH2, FSSH3 and FSSH4),

offering confidence in the numerical procedures employed.

For members without shear-heads (SH1, SH7, and

FSSH1), although the cracked stiffness is stiffer compared

to the tests, Vtest/Vnum = 1.01 and the failure mode is

correctly predicted.

The tension damage scalar maps are depicted in

Figs. 7(a)–7(d) for model tests with shear-heads and r =

0.79% (SH2, SH3, SH5) and for the corresponding slab

without shear-heads (SH1) that failed in punching. These

show that the top crack patterns are governed by flexural

cracking with cracks extending to the slab edge while,

regardless the shear-head type, the punching shear crack

initiates from the bottom tip of the shear-head arm and

extends through the flexural reinforcement to the tension

face of the slab. This suggests a force transfer through the

shear-head bottom-flange supported struts, similar to the

case of Specimen SH1 without shear-head in Fig. 7(d) in

which the strut is supported at the column-slab connection.

In terms of shear-head behavior, Fig. 7 shows that the

cruciform shear-heads (SH2 and SH3) developed some

yielding at the top flange, while the closed-box shear-head

(SH5) was well below the yield stress. These stress levels

are combined with stronger tension damage for SH5 as

evident in the 3D representations around the shear-head

region. This indicates higher reinforcement stresses above

the shear-head that are correlated to a shift in the weak

bending section at the shear-head tip. Similarly, for slabs

with cruciform shear-heads (SH2 and SH3), the highest

Fig. 5 Numerical validation: Guandalini et al. test series [47]. (a) PG2b; (b) PG4; (c) PG5; (d) PG10; (e) PG3; (f) PG1; (g) PG6; (h) PG

11 (continuous curves: V-d from numerical simulations, while dashed black curves depict V-d from tests).
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flexural damage is outside of the shear-heads indicating an

influence from the shear-head on moment distribution,

while for SH1 it occurs at the symmetry line following the

weak bending axis. These observations indicate that the

weak section, both in terms of flexure and punching shear,

is translated away from the column face, outside of the

shear-head region.

2.2.3 Hawkins and Corley [7] test series

In this test series, 20-one 2.1 m � 2.1 m square 146 mm

thick flat slab specimens with reinforcement ratios between

1.8 and 3.3% and 45° cut cruciform shear-heads, supported

on square columns with sides of 254 mm or 204 mm, were

loaded symmetrically at the edges of the slab [6].

Cruciform shear-heads made either from Standard Amer-

ican I-sections (I 3”� 7.5 or I 3”� 5.7 equivalent of I 76.2

mm � 11.2 kg/m or I 76.2 mm � 8.48 kg/m, respectively)

or two pairs of channels (2 � C 3” 7.1 or 2 � C 3” 4.1

equivalent of 2� C 76.2 mm 10.6 kg/m or 2� C 76.2 mm

6.10 kg/m, respectively) running above the columns, were

fully embedded in normal or lightweight concrete flat slab.

The reported concrete strength of the slabs varied between

fc = 18.1–22.8 MPa, while the flexural reinforcement had

fys = 403–444 MPa (Table 1). The shear-head yield

strength was assumed as fv = 300 MPa based on an average

obtained from tests employing similar configurations as

reported by the same authors in a companion study on edge

connections [7].

Reference specimens (AN-1 and BN-1) without shear-

heads failed in punching with the failure surface extending

from the column-slab compression face intersection to the

tension face of the slab at inclinations between q = 20°–

30°. For slabs with relatively stiff shear-heads, the failure

surface generally followed the perimeter of the shear-head

with q = 20°–45°, while for members with relatively

flexible shear-heads, the failure surface developed inside

the shear-head with inclinations of about q = 30°. The

results indicated two distinct responses, depending on the

stress state of the shear-head. For elastic shear-head

behavior, the failure surface initiated from its tip. For

Fig. 6 Numerical validations: Chana and Birjandi test series [20]. (a) SH1; (b) SH2; (c) SH3; (d) SH5; (e) SH7; (f) SH8; (g) SH0;

(h) SH11; (i) FSSH1; (j) FSSH2; (k) FSSH3; (l) FSSH4 (continuous black curves represent the V-d from numerical simulations, while

dashed black curves depict V-d from tests).
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cases where yielding occurred, a more flexible response

was observed with the failure surface crossing the shear-

head within 25% of its length from the edge.

The V-d response obtained from the numerical simula-

tions for the specimens with or without shear-heads are

illustrated in Fig. 8, while the main parameters are given in

Table 1. Good agreement was obtained between the

predictions and test strengths with a Vtest/Vnum = 1.05

and coefficient of variation COV of 6.3%. Although a

coarser mesh (lm = h/7) was used for these models to

reduce the computational time in comparison to SH and

FSSH specimens (with lm = h/10), both the predicted

strengths and tension damage patterns offer a clear insight

into the governing ultimate behavior. The V-d plots show

mostly sudden drops in capacity after reaching ultimate,

while the crack patterns at the quarter slab symmetry line in

Fig. 9 clearly depicts inclined damage tension fields,

outside of the shear-head tip, suggesting punching shear

failures. Along its section size, the embedment length of

the shear-head plays a significant role in the ultimate slab

response as it determines the location of the failure surface.

Overall, the deformational response and failure modes

obtained from the numerical simulations were in good

agreement with reported tests results. The top face and

cross-section damage patterns obtained from the analysis

resemble the top crack patterns and punching shear failures

obtained from tests. Having gained confidence in the

numerical procedures employed in this investigation

through the validations of the test results from 36

specimens of which 20 were provided with a wide range

of shear-heads, the following section describes parametric

assessments which were carried out in order to provide

more detailed insights into the behavior of RC slabs with

shear-heads.

3 Parametric assessments

The tests modeled in Section 2.2 focused on the response

of relatively thin flat slabs with shear-heads, having an

effective depth varying in the range d = 98–111 mm (h =

120–146 mm). From the 20 specimens with shear-heads

simulated, only 3 had practical slab effective depths with d

= 205 mm (h = 250 mm). Also, these slabs were provided

with shear-head length-to-depth ratios of lv/hv = 1.33–6.33,

reinforcement ratios of rl = 0.5%–1.5% and concrete

strengths fc = 16.7–36.2 MPa. Although these experi-

mental studies may appear to cover a wide range of lv/hv,

Fig. 7 Tension damage patterns for slabs with and without shear-heads, and stresses in shear-heads for Specimens: (a) SH2; (b) SH3;

(c) SH5; (d) SH1.
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rl, fc, slab spans and depths, only FSSH specimens (e.g.,

d = 205 mm) can be considered within practical ranges.

Existing assessment models are similarly based on a

limited number of test ranges, and their reliability is

therefore limited to these ranges. Parametric investigations

covering parameters outside of the available test ranges are

therefore required to provide improved assessment models

with wider applicability.

A total of 122 three-dimensional models, including 44

CTP, 44 CRH, and 34 CBX shear-heads, were constructed

using the numerical procedures described in Section 2.1, in

which RC flat slabs were connected to RC columns by

means of full-embedded shear-heads. The parametric

investigations were undertaken to provide detailed insights

into the behavior of a wide range of configurations outside

of the existing test database, hence enabling a direct

assessment in terms of strength and deformation char-

acteristics, and to provide offer a wider data set for

developing practical analytical models. The nonlinear

parametric assessments may be grouped into five main

studies in which the following key parameters were

investigated:

1) Shear-head embedment length-to-depth ratio (lv/hv =

0.5–5.0): in each case, the reinforcement ratio rl was

varied from 0.31% to 1.54%. All other parameters were

kept constant including the effective depth d, slab radius rs,

concrete strength fc and shear-head section size (hv � bv �
tw � tf = 100 mm � 100 mm � 6 mm � 10 mm, for CRH

shear-heads; total hv � bv = 100 mm � 100 mm from two

parallel flange channel sections (C) 100 mm � 50 mm �
10 mm for CTP; total hv � bv = 100 mm � 200 mm from

four C 100 mm � 50 mm � 10 mm for CBX)

2) Slab radius (rs/d = 5.4–11.8): in conjunction with rl =
0.65%–1.05%, and a constant lv, d, fc, rs/d, and hv � bv.
3) Slab bending effective depth (d = 170–370 mm): in

conjunction with rl = 0.42%–1.18% with constant lv/hv, fc,

rs, and hv � bv.
4) Shear-head section size with varying hv � bv for lv/hv

= 1.0 and 3.0, and constant fc, rs, d.

hv � bv � tw � tf = 100 mm � 100 mm � 6 mm �
10 mm, 160 mm� 160 mm� 8 mm� 13 mm, 200 mm�
200 mm � 9 mm � 15 mm, referred to as CRH100,

CRH160, CRH200, respectively;

hv � bv = 100 mm � 100 mm, 150 mm � 150 mm,

Fig. 8 Numerical validations for Corley and Hawkins test series [6]: (a) AN-1; (b) AC-1; (c) AC-2; (d) AC-3; (e) AH-1; (f) AH-2;

(g) AH-3; (h) BN-1; (i) BC-1; (j) BH-1; (k) BH-2; (l) BH-3 (continuous black curves represent the V-d from numerical simulations, while

dashed black curves depict V-d from tests).
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200 mm � 150 mm from two C 100 mm � 50 mm �
10 mm, C 150 mm � 75 mm � 18 mm, PFC 200 mm �
75 mm � 23 mm, respectively, for CTP;

hv � bv = 100 mm � 200 mm, 150 mm � 350 mm,

200 mm � 350 mm from four C 100 mm � 50 mm �
10 mm, C 150 mm � 75 mm � 18 mm, PFC 200 mm �
75 mm � 23 mm, respectively, for CBX.

5) Concrete strength fc = 30 and 50 MPa and rl =
0.63%–0.98%, with constant lv/hv, d, rs and shear-head

section size.

Selected results from the parametric assessments are

plotted in Figs. 10–13 in terms of rotational response (V-y)
or characteristics values at ultimate, in which the load V is

normalized against the control perimeter b0 and concrete

strength fc, as described in Eqs. (1) and (2) and illustrated

in Fig. 14. For CRH, b0 is defined for each shear-head by

an arc-length with a radius equal to the in-plane half strut

projection d0/2 plus connecting lines (Fig. 14(b)). As

illustrated in Fig. 14(c), the shape of the critical perimeter

for CTP shear-heads follows the same configuration,

considering the distance between the steel profiles. It is

worth noting, that Eqs. (1a)–(1c) are limited to shear-head

lengths for which the control perimeter does not lie within

d0/2 from the column face. Hence, for short shear-heads, b0
should be constructed by accounting for the column,

noting that b0 can be evaluated using Eqs. (1a)–(1b) for

straight-cut CRH and CTP shear-heads, respectively.

For CBX shear-heads, the critical perimeter is located at

d0/2 from the edge of the bottom flange, throughout the

length of all shear-head sides considering rounded corners

(Fig. 14(d)). The length of a CBX critical perimeter can be

assessed using Eq. (1c). It is worth noting that the cut type

of the shear-head influences the location of the geometry of

the force transfer mechanism. Hence, for shear-heads that

have a 45° cut [6] (Fig. 9), the critical perimeter reduces

with due account for the location of the force transferring

strut that tends to form closer to the root of the shear-head,

in comparison to the case of straight-cut shear-heads. In a

simplified manner, lv should be reduced with hv/2 in

Eqs. (1a)–(1b).

Besides the obtained V-y, Figs. 10 to 12 indicate the

failure criteria (FC) for punching shear in RC flat slabs

(Eq. (3) [90]) that accounts for a shear-head dependent

support of the governing strut, and provide key observa-

tions on the member behavior. These include envelopes of

the loads corresponding to yielding in the steel reinforcing

materials, namely: longitudinal reinforcement (RY), flange

of shear-head (FY), web of shear-head (WY), and the

ultimate envelope (U). In the case of RY, the points on the

graph correspond to the initiation of yielding in one truss

element in the analysis. For FY and WY, they correspond

to the case in which yielding spreads in a band (i.e., at least

two mesh elements for FY, typically at the edges of the

flanges; or a band of mesh elements in which WY occurs

from the top to bottom flange).

b0,CTP ¼ 4 lvþ
d0

ffiffiffi

2
p

2
sin

π

8

� �

ffiffiffi

2
p

þð2bvþaÞþπd0

8

� �

for CTP,

(1a)

b0,CRH ¼ 4
bc

2
þ lvþ

d0
ffiffiffi

2
p

2
sin

π

8

� �

ffiffiffi

2
p

þ πd0

8

� �

for CRH,

(1b)

b0,CBX ¼ 4 2lv þ ð2bv þ aÞ þ πd0

4

� �

for CBX, (1c)

d0 ¼ d – dvfb – tf =2, (2)

kψ ¼ 0:75=½1þ 15⋅ψ⋅d0=ðdg0 þ dgÞ�: (3)

3.1 Shear-head embedment length

Figures 10(a)–10(e) illustrate the rotational response V-y
from selected CTP, CRH, and CBX numerical models in

which the embedment length lv was varied against the

flexural reinforcement ratio rl. For low to intermediate

reinforcement ratios (rl = 0.3%–0.9%), regardless of the

embedment length and shear-head type, yielding of the

longitudinal reinforcement bars (RY) triggers the failure,

with a more pronounced effect for low rl combined with

low lv/hv. For shear-head length ratios lv/hv£2.0

Fig. 9 Influence of the embedment length on the tension damage

and compression fields.
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(lv/rs£0.15) the shear-head remains largely elastic. As lv
increases, inelastic strains develop at the shear-head flange

edges (FY). For lv/hv≥3.0 (lv/rs≥0.22) and rl = 0.9%,

(FY) is triggered immediately after (RY). For intermediate

CRH shear-head lengths (lv/hv = 2.0–3.0; lv/rs = 0.15–

0.22) some yielding at the bottom flange due to strut

support was observed. As depicted in Figs. 10(f)–10(i), for

relatively long CRH and CBX shear-heads (lv/hv = 5.0;

lv/rs = 0.36) and relatively high rl = 0.9%–1.5%), flange

yielding (FY) is accompanied by web yielding (WY),

resulting in full yielding of the shear-head cross-section.

As illustrated in Fig. 11 compared to Fig. 12, an increase

in slab radius from rs/d = 8.18 (rs = 1390 mm) to rs/d =

11.76 (rs = 2000 mm), for constant lv/hv = 1.0 and 3.0 mm

Fig. 10 Influence of the embedment length and reinforcement ratio on the slab capacity and rotation: (a) CTP, d = 170 mm, hv = 100 mm,

lv/hv = 1.0, fc = 30MPa; (b) CTP, d = 170 mm, hv = 100 mm, lv/hv = 3.0, fc = 30MPa; (c) CTP, d = 170 mm, hv = 100 mm, lv/hv = 5.0, fc =

30 MPa; (d) CRH, d = 170 mm, hv = 100 mm, lv/hv = 1.0, fc = 30 MPa; (e) CRH, d = 170 mm, hv = 100 mm, lv/hv = 3.0, fc = 30 MPa;

(f) CRH, d = 170 mm, hv = 100 mm, lv/hv = 5.0, fc = 30 MPa; (g) CBX, d = 170 mm, hv = 100 mm, lv/hv = 1.0, fc = 30 MPa; (h) CBX, d =

170 mm, hv = 100 mm, lv/hv = 2.0, fc = 30 MPa; (i) CBX, d = 170 mm, hv = 100 mm, lv/hv = 5.0, fc = 30 MPa.
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(lv/rs = 0.72 and 0.22, and lv/rs = 0.05 and 0.15,

respectively), leads to an increase in rotations y at

ultimate, which indicates a more flexible slab behavior.

In the latter case, even if relatively high rl> 1.1% is used,

for CTP shear-heads with lv/hv = 3.0, full yielding of the

steel profiles occurred, due to the higher bending moment

carried by the slab strips containing the shear-heads.

A direct comparison between the three shear-head types

investigated indicate that when the same lv/hv is con-

sidered, the flat slab behavior in terms of kinematics and

yielding sequence is virtually identical. The geometry of

CBX shear-heads involves an increased number of steel

profiles in comparison to CTP and CRH, hence implicitly

increasing the local stiffness of the slab. The above

observations indicate that for relatively short lv/hv, the

behavior of a flat slab with shear-heads tends toward

conventional RC behavior, while for relatively long shear-

heads this tends toward steel-concrete composite response.

A relatively long shear-head benefits from an increased

steel-concrete contact area, leading to an enhanced

composite behavior in comparison to cases of relatively

short shear-heads. In addition to the numerical damage

maps indicating inclined failure surfaces, the ultimate

envelopes (U) in proximity to the punching shear failure

criterion (FC) show that punching occurred at ultimate for

cases with intermediate to high rl although shear-head

flange yielding (FY) was also recorded.

3.2 Shear-head cross-section and slab thickness

The influence of the ratio between the shear-head cross-

section, shear-head type (CTP, CRH, CBX) and slab

thickness was examined in three parametric studies.

Initially, the slab effective depth d was varied from 170

to 370 mm for two embedment length ratios lv/hv = 1.0 and

lv/hv = 3.0. Each of the two ratios was also used in

conjunction with three reinforcement ratios rl between 0.4

and 1.1%. In addition, the shear-head cross-section was

varied from C 100 mm � 50 mm � 10 mm to 200 mm �
75 mm � 23 mm for CTP and CBX and 100 mm �
100 mm� 6 mm� 10 mm to 200 mm� 200 mm� 9 mm

� 15 mm for CRH shear-heads. For compactness,

Fig. 11 Influence of the slab radius on the slab capacity and rotations: (a) CTP, d = 270 mm, hv = 150 mm, rl = 0.7%, fc = 30 MPa;

(b) CTP, d = 370 mm, hv = 200 mm, rl = 0.5%, fc = 30 MPa; (c) CRH, d = 290 mm, hv = 160 mm, rl = 0.7%, fc = 30 MPa; (d) CRH, d =

370 mm, hv = 200 mm, rl = 0.5%, fc = 30 MPa; (e) CBX, d = 270 mm, hv = 150 mm, rl = 0.9%, fc = 30 MPa; (f) CBX, d = 370 mm, hv =

200 mm, rl = 0.7%, fc = 30 MPa.
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only selected results of these variations are depicted in

Figs. 12(a)–12(f) which need to be considered in

conjunction with the results given in Fig. 10.

Similar to other observations made before, members

with low rl = 0.4%–0.5% developed inelastic strains in the

longitudinal bars (RY). Members with short shear-heads

(lv/hv = 1.0; lv/rs = 0.08) exhibited elastic shear-head

behavior with failure triggered by crushing at the shear-

head tip. For longer CTP and CRH shear-heads (lv/hv =

3.0; lv/rs = 0.22) and relatively thin slabs (d = 170 mm), the

behavior was governed by punching at ultimate with

inelastic strains occurring in the flexural reinforcement

(RY) or shear-head flanges (FY), depending on the slab

configuration (Figs. 10(b) and 10(e)).

Fig. 12 Influence of the slab depth on the slab capacity and rotation: (a) CTP, d = 270 mm, lv/hv = 3.0, hv = 150 mm, fc = 30 MPa;

(b) CTP, d = 370 mm, lv/hv = 3.0, hv = 200 mm, fc = 30 MPa; (c) CRH, d = 290 mm, lv/hv = 3.0, hv = 160 mm, fc = 30 MPa; (d) CRH, d =

370 mm, lv/hv = 3.0, hv = 200 mm, fc = 30MPa; (e) CBX, d = 270 mm, lv/hv = 3.0, hv = 150 mm, fc = 30MPa; (f) CBX, d = 370 mm, lv/hv
= 3.0, hv = 200 mm, fc = 30 MPa.

Fig. 13 Relationship between (a) capacity ratio and lv/d, (b) rotation ratio and lv/d; for concrete strength of 30 and 50 MPa.
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As the slab thickness increases (d = 270–370 mm) some

differences occur in the response of CBX shear-heads in

comparison to cases with d = 170 mm (Figs. 12(e), 12(f),

and 10(h)). For these cases, the ultimate envelopes (U)

show trends below (FC), which identify failure mechan-

isms different than those described above. For these cases

with rl up to 1.4%, the failure was triggered by a more

rapid propagation of yield in the steel profiles than in the

steel rebars, leading to a flexurally-governed behavior by

the shear-head. Similarly, CTP members with (d = 270–

370 mm), having shear-heads made of parallel flange

channels as CBX, indicated a response governed by

complete yielding of the steel profiles in which the yielding

propagated rapidly from the flange to the web. However,

for these specimens, the failure envelope (U) was in the

vicinity or above the failure criterion (FC) indicating a

flexurally-governed punching shear failure triggered by the

shear-head flange and web yielding (Figs. 10(b) and 12). It

was previously shown that for relatively short shear-heads

with relatively thin webs, in hybrid flat slabs connected to

steel columns, failure may be triggered by web yielding

(WY). Such web yielding was produced by a sudden slip

of the shear-head from the embedding concrete which led

to a premature punching shear failure [70]. Although, for

the cases illustrated in Fig. 12, web yielding occurred, this

was a consequence of progressive yielding of the steel

profile from the top flange through the web and into the

bottom flange.

3.3 Concrete strength

The influence of the concrete properties on the response of

flat slabs with shear-heads was examined by modifying the

compressive strength from fc = 30 to 50 MPa for all CTP,

CRH, and CBX models with lv/hv = 1.0–3.0; rl = 0.6%–

0.9%, d = 170–370 mm, while the slab geometry was kept

constant. For compactness, only brief discussions are

presented here, but the Vu andYu obtained for all the cases

considered are used for the subsequent analytical assess-

ments.

Close inspection on the results indicated that for CTP

shear-heads, an increase of fc from 30 to 50 MPa led to an

increase in Vu in the range of 2%–11% (Fig. 13(a)). The

slab rotationYuwas between 4% and 26% larger for shear-

heads with lv/hv = 1.0, while this decreased by up to 8% for

slabs with lv/hv = 3.0 (Fig. 13(b)). On the other hand, for

the models with CRH shear-heads and fc = 50 MPa, Vu was

5%–15% higher than the case with lower fc, while Yu was

mostly the same with an Yu,C50/Yu,C30 = 1.00. For CBX

cases, an increase of 3.3% in Vu combined with a reduction

in Yu of up to 20% was obtained, particularly for cases

with lv/hv = 3.0 for which the complete shear-head cross-

section yielded.

The results of the parametric studies identified three

modes of failure as a function of the interaction between

the shear-head and surrounding concrete: steel reinforce-

ment flexural failure due to yielding of the rebars (A);

flexural failure governed by the complete shear-head

yielding (B), and punching shear due to crushing with or

without yielding of the reinforcement or top flange of the

shear-head referred to here as a controlled failure (C).

These observations, with the complementary key findings

from the numerical investigations described in Sections 2

and 3, enable the validation of analytical models for a wide

range of RC slab systems with shear-heads as described

below.

4 Analytical models and design considera-
tions

4.1 Punching shear strength

An axisymmetric rotational model, which considers that

relatively stiff shear-heads in conjunction with reinforce-

ment transfer the load from steel columns to the RC flat

slab through cruciform shear-heads, was proposed pre-

viously for hybrid systems by authors [12]. The model can

be directly employed for assessing the complete V-y
response for the configurations investigated in this paper.

Since the slab flexibility is the governing factor for the

assessment of flat slab punching shear strength [53], the V-

Fig. 14 (a) Strut transfer scheme for slabs with shear-heads; control perimeter for: (b) slabs with cruciform H/I shear-heads (CRH), (c)

cruciform with two parallel channels (CTP), (d) closed box shear-heads (CBX).
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y prediction must have a significant degree of reliability.

Hence, a focal point in the parametric investigations

described in Section 3 was the prediction of V-y for a wide

range of configurations. Based on the numerical results, a

bilinear model, derived from the axisymmetric model

described above, and compliant with current design

procedures [79], is proposed herein.

A factor lψ in Eq. (4) that accounts for slab flexibility

through the reinforcement ratio rl and shear-head embed-

ment length lv was derived from regression to numerical

results and is validated against the results from the

parametric assessments presented in Section 3. It is

worth noting that for connections between steel columns

and hybrid RC flat slabs by means of shear-heads, the

contribution of rs/lv to the slab flexibility parameter lψ is

significantly higher in the case of RC columns to RC flat

slabs in the form investigated in this paper, as the force is

carried through shear-heads and flexural reinforcement

only, without the contribution of the column support. The

rotation y of the RC member with shear-heads, estimated

using Eq. (4), depends on the section utilization factor

Vi/Vflex, in which Vflex is the flexural strength (Eq. (5)) of

the slab and Vi is the shear action. Other parameters include

the slab radius rs, yield strength fys and elastic modulus Es

of the longitudinal reinforcement, the slab effective depth

d, and the slab flexibility factor lψ,. The flexural strength

Vflex is a function of h which accounts for the in-plane

distribution of the shear-heads within the slab, the plastic

moments of the composite sectors mRk that include the

shear-heads (Eqs. (6a)–(6b) and the concrete sectors mRc

(Eq. (6c)), as well as the slab configuration (lv, rs, re, rc).

The plastic moments per unit width in Eq. (6) may be

determined from assumptions of linear strain compatibility

in the cross-section, in which yielding occurs first in the

tension reinforcement.

ψ ¼ lψ

rs

d

fys

Es

Vi

Vflex

� �3=2

, where lψ ¼ 2

3
ð100�lÞ

1
3

rs

lv

� �
1
20
,

(4)

Vflex ¼ π η
lv

rs
mRk þ 2 – η

lv

rs

� �

mRc

� �

re

rs – rc
,

where η ¼ 8sin – 1ð0:5bv=rcÞ, (5)

mRk ¼ fys As d –
ck

2

� �

þ Σ½Avijhðdvij – ckÞðdvij – ck=2Þi�=ðd – ckÞ
n o

, (6a)

ck ¼
fys As þ Avfth

dvft – ck,0

d – ck,0
i þ Avwh

dvw – ck,0

d – ck,0
i þ Avfbh

dvfb – ck,0

d – ck,0
i

� �

lfcbc
, (6b)

mRc ¼ fysAs d –
cc

2

� �

, where cc ¼
fysAs

lfcbc

and hxi : ð< 0 ¼ 0;³0 ¼ xÞ: (6c)

Figures 10–12 illustrate the V-y predictions using

Eqs. (4)–(6) for the selected numerical models plotted

against the results from the simulations. Considering the

limitations of a bilinear approach, the predicted results are

in good agreement with the stiffness of RC flat slabs

obtained from simulations, particularly for the CTP and

CRH cases. In the case of CBX flat slabs, the results show

slight flexibility compared to that obtained from numerical

simulations, mostly due to the more robust form of CBX

shear-heads. However, a lower predicted stiffness in

conjunction with the failure criterion (Eq. (3) [90]) results

in a conservative prediction of the punching shear strength

Vu. The predicted Vflex, attained in members with relatively

low reinforcement ratios rl = 0.3%–0.6%, is in good

agreement with all numerical results. The analytical results

show consistency with the numerical results since the full

flexural capacity is reached only for models with very low

levels of rl.
In terms of code provisions, the North American

guidelines ACI318-14 [80] are largely based on the design

procedure proposed by Corley and Hawkins [6], following

the test results on members with cruciform shear-heads

(Figs. 8 and 9). In this model, Vu, estimated with Eq. (7), is

a function of fc, d, a limiting factor (0.33) and a control

perimeter b0, which considers that the critical slab sections

for punching shear intersect each shear-head at three-

quarters the distance 0.75lv from the column face, but not

closer than d/2 from the column face (in this investigation,

lv is the distance from the column face).

Vc ¼ 0:33
ffiffiffi

fc
p

b0d: (7)

No specific provisions are given in Eurocode 2 (EC2)

[78] to assess the punching shear strength of members with

shear-heads. The value of Vu for conventional RC flat slabs

without shear reinforcement and without pre-stressing is

dependent on the size effect [1+ (200/d)1/2< 2.0], rl, fc, d
and b0 situated at 2d from the column face. As observed in

Fig. 9 and in previous tests [12,76], a relatively stiff shear-

head shifts the critical zone outside the shear-head region.
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Hence, the strength assessment of flat slabs with shear-

heads can be comparable to the verification for failure

outside of the shear-reinforced region for members

provided with transverse bars. The control perimeter

accounts for a rounded control section situated at k � d

from the shear-head tip (k = 1.5) extended in both sides of

the shear-head by a distance of 1.0d.

Vc ¼ 0:18ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

200=d
p

Þð100�lfcÞ1=3b0d: (8)

On the other hand, the Model Code 2010 [45] offers

recommendations for the design of flat slabs with CBX

shear-heads by considering it as a rigid support region. It

also accounts for the shear-head penetration to the shear

effective depth d0 considered in the Vu assessments

(Eq. (9)). The parameters involved in strength assessments

are the kψ factor (Eq. (10a)), representing a conservative

function of the failure criterion in Eq. (3) [90]. This is

dependent on y, d, and a kdg parameter as a function of the

maximum aggregate size dg. For Level II Approximation

(LoA II), the rotation of a RC slab at a specific shear force

is given by Eq. (10b) (where mS is the design bending

moment, mR is the plastic moment of a RC cross-section

and rs = 0.22L is a function of the member moment span

L). The critical section is at d0/2 from the strut support and

considers rounded corners.

Vc ¼ kψ
ffiffiffi

fc
p

b0d0, (9)

kψ ¼ 1=ð1:5þ 0:9⋅ψ⋅d⋅kdgÞ£0:6,

where

kdg ¼ 32=ð16þ dgÞ > 0:75, (10a)

ψ ¼ 1:5
rs

d

fys

Es

ms

mR

� �1:5

: (10b)

Figure 15 summarizes the ratio between the test or

numerical strength and predicted strength (Vnum/test /Vcalc)

versus the ratio between the test or numerical result and the

flexural strength, from the application of the existing

codified guidelines (Eqs. (7)–(10)) and Eqs. (1)–(6)

proposed in this paper. Values of Vnum/test/Vcalc above

unity depict conservative predictions, whereas those below

unity represent unconservative estimates. As indicated in

Fig. 15(a), the ACI318 strength assessments give an

average of 1.12 (with a COV of 21%) between the

punching shear strength obtained from numerical models

or tests and Vu predicted. The influence of the slab

flexibility is captured reasonably well, with a slight

tendency of under-estimation of the capacity for flexible

slabs with relatively low reinforcement ratio and Vnum/test/

Vflex ≈1.0. The modified assumptions regarding the

definition of b0, as described previously for EC2, show

conservative predictions with an average of 1.52 and a

COV of 0.25, with a tendency for offering conservative

estimates for most configurations (Fig. 15(b)). It is worth

noting that for the assessments using the MC2010

guidelines, y and mR were assessed without considering

the influence of the shear-head to slab rotation and plastic

moment, as prescribed by the code. Consequently, as

depicted in Fig. 15(c), LoA II of MC 2010 shows large

scatter primarily because a key parameter is a more flexible

y, hence leading implicitly to overly-conservative esti-

mates with an average of 1.30 and a COVof 0.28.

In contrast, the assessment models proposed in this

paper, in which the punching shear strength is the result of

the intersection between the V-y response, from a bi-linear

representation (Eq. (4)) and the failure criterion (Eq. (3))

[94] and accounts for a shear-head dependent control

perimeter, offer generally improved and consistent strength

estimates. The ratios between the predicted strengths and

the test or numerical strengths indicate an average of 1.06

and a COV of 0.13 (Fig. 15(d)). This indicates that the

suggested assessment approach can predict accurately the

ultimate strength, for both low and high reinforcement

ratios represented by the wide range of Vnum/test/Vflex.

Additionally, an appraisal of the MC2010 design approach

by considering the influence of the shear-head on y andmR

(Eqs. (4) and (11)), while the slab radius is a function of the

position of the supports, shows improved predictions in

comparison to the unmodified conventional approach with

an average of 1.23 and COVof 0.21 (Fig. 15(e)).

mR,avg ¼ ð1�η=2ÞmR,c þ ηðmR,c þ mR,kÞ=4: (11)

For these assessments, the section utilization factor

mS/mR can be estimated using an average plastic moment

(Eq. (11)) for the case when no eccentricity is acting on the

member, by replacing the (Vi/Vflex) in Eq. (4). The results

above indicate that the proposed model offers a simple and

practical method for design purposes, while considering a

more realistic approach compared to existing code

procedures.

4.2 Shear-head properties

The embedment length lv of a shear-head may be

determined using Eqs. (12) based on the assumption that

the critical section is situated at d0/2 from the shear-head

tip. This results from the length of the control perimeter

b0,req as a function of the shear action Vi in which kψ is

assessed using Eq. (3). Equation (10a) may also be used for

assessing kψ, yet this results in a longer embedment length,

due to the more conservative nature of the expression.

Figure 16(a) illustrates the relationship between the ratio of

b0,req, resulting from Eq. (12a), and b0 using the layout

indicated in Fig. 14(b)–14(d), against the lv/rs ratio, for all

numerical models and tests failing in punching shear. As

the average b0,req/b0 is 1.06, this indicates that the

assumption regarding the shape of b0, along with the
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suggested approach for assessing b0,req, is reliable and may

be used to determine the required embedment length lv,req.

b0,req³Vi=ðkψ
ffiffiffi

fc
p

d0Þ, (12a)

lv,CTP,req ¼ b0,CTP,req – 4 d0sin
π

8
þ ð2bv þ aÞþπd0

8

� �� �

=4
ffiffiffi

2
p

for CTP, (12b)

lv,CRH,req ¼ b0,CRH,req – 4
bc

ffiffiffi

2
p

2
þ d0sin

π

8
þ πd0

8

� �� �

=4
ffiffiffi

2
p

for CRH, (12c)

lv,CBX,req ¼ b0,CBX – 4 2bvþaþ πd0

4

� �� �

=8 for CBX:

(12d)

The results of the numerical simulations also showed

that short shear-heads, in the range of lv/hv£1.0, are

unlikely to be able to support the force-transferring struts,

which may lead to compression yielding of the bottom

flange and potential slip. As observed in Fig. 10, as the

shear-head length increases composite action may develop

and yielding of the shear-head may occur (e.g.,

lv/hv> 3.0). Depending on rl, one of the steel tension

members may yield with punching shear eventually

governing. For relatively long shear-heads (lv/hv = 5.0),

the yielding of the flange shear-head (FY) is close to the

ultimate envelopes (U), yet relatively distant from the

failure criterion, indicating a failure governed by the shear-

head behavior.

Based on these observations, the shear-head section size

should be determined from Eq. (13a), considering that only

half of the force may be transferred by the shear-head while

the remaining half is transferred directly to the columns

(e.g., Fig. 10(a)). A conservative of hv/d≥0.5 limit should

also be applied to avoid possible shear-head web triggered

failures [12,69,70]. Since the force is transferred from the

slab to the column through struts supported on the bottom

flange, to ensure a smooth transfer, the bottom flange

should be relatively stiff in order to avoid failure in

compression in the steel insert. The minimum shear-head

width bv may be determined using Eq. (13b), based on the

assumption that the transferring struts are supported

Fig. 15 Strength predictions for existing models: (a) ACI318, (b) Eurocode 2, (c) Model Code 2010; proposed models: (d) bilinear,

(e) modified Model Code 2010.
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through the entire lv, in which σc,max is the strut crushing

strength [79].

Figure 16(b) on the other hand shows the relationship

between the moment demand to capacity Mv,i/Mv,i,Rd for

each shear-head for numerical models in which the flange

yielding (FY) was recorded, against the lv/rs ratio. The

moment demand Mv,i was assessed considering the force

distribution illustrated in Fig. 17 resulting from integration

of bending stresses for CRH shear-heads along the cracked

cross-section. This indicated that the shear-head flexibility

influences the position of the reaction force with longer

shear-heads pushing the force toward the column. In

contrast, shorter shear-heads translate the reaction force

toward the shear-head tip. To accommodate the influence

of the shear-head flexibility on the moment demand in the

shear-head, a lm parameter is introduced (Eq. (13c). In

design, the moment capacity of a shear-head, estimated

using Eq. (13d) has to be higher than the demand

(Eq. (13c)). As indicated in Fig. 16(b), for the majority

of cases in which (FY) was observed, Mv,i/Mv,i,Rd is above

1.0, indicating that the above assumptions may be

employed for practical assessment.

Avv³
1

2

Vi

nv

ffiffiffi

3
p

fy
, (13a)

bv³
Vi

nv

1

�c,maxlv
, where �c,max ¼ 0:55ð30=fcÞ1=3fc, (13b)

Mv,i ¼ lmlv
Vi

nv
, where lm ¼ 0:75ð1�lv=rsÞ, (13c)

Mv,i£Wv,plfyv: (13d)

The results from the numerical assessments presented in

Sections 2 and 3 enabled the definition of the above

expressions for the design of shear-heads in RC flat slabs.

As a general guide, after the assessment of the shear-head

section size using Eqs. (13), hv should be at least d/2, while

the maximum shear-head depth would be limited by

practical aspects including slab thickness, amount of

longitudinal reinforcement and concrete cover. For a

reliable strut support, it is recommended that the bottom

flange of the shear-head is located within the compression

zone of the slab. Members provided with low to

intermediate reinforcement (e.g., rl = 0.75%) generally

reach their flexural strength when small shear-head section

sizes are employed (some cases were identified in Figs.

10–12). Typically, irrespective of lv, high rl (> 1.4%)

produce elastic reinforcement behavior. The numerical

results showed that for short shear-heads (lv/rs< 0.1), a

reliable force transfer may not be realized due to yielding

initiation at the bottom flange. In contrast, cases with

0.1< lv/rs< 0.36 showed effective behavior and seem

generally practical. These observations point to an

effective use in design of shear-heads with embedment

length-to-slab radius ratios within the range of lv/rs = 0.2–

0.4 or above, mainly due to their practicality and stable

structural behavior.

In terms of shear-head type, CTP and CRH can provide

equally reliable performance in terms of bending and

punching shear, as long as the distance between the two

parallel profiles in CTP is lower than the column side, to

avoid possible penetration of the column through the

shear-head. CTP shear-heads may also interfere with the

longitudinal column reinforcement and may require a more

intricate layout. On the other hand, CBX shear-heads

benefit from a more robust configuration, particularly for

relatively stiff steel inserts, offering a continuous strut

support along the shear-head edges. In terms of bending

performance, CBX resemble CTP as the maximum

bending action is taken by the central profiles of the

CBX. Generally, shear-heads act as an equal-sized rigid

Fig. 16 Comparative assessment: (a) required control perimeter and shear-head length; (b) moment response.
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support, with a concentration of deformation around its

circumference, translating the weak section in terms of

bending and punching shear outside of the shear-head

edges. The slab rotation combined with a relatively flexible

shear-head, may progressively translate the failure surface

within the length of the shear-head.

5 Concluding remarks

This paper investigated the ultimate behavior of cruciform

and closed-box shear-head systems fully embedded in RC

flat slabs at interior RC columns by means of nonlinear

finite numerical simulations employing concrete damage

plasticity models. After carrying out sensitivity studies on

relevant constitutive and geometrical parameters, simula-

tions were carried out and validated against three available

test series consisting of 36 flat slab specimens with and

without shear-heads. The numerical results showed good

agreement with both sets of test results, indicating the

reliability of the employed modeling procedures. Subse-

quently, a total of 122 parametric assessments were carried

out by directly varying the shear-head type, shape,

embedment length and section size as well as the flat

slab thickness, concrete strength, reinforcement ratio, and

support size. The results of the parametric investigation

enabled a direct assessment of the ultimate behavior in

terms of strength and deformation characteristics, as well

as a qualitative assessment of the shape of the failure

surface.

Based on the findings of the parametric studies, three

modes of failure were identified, depending on the

interaction between the shear-head and surrounding

concrete: flexural failure due to yielding of the rebars,

flexural failure governed by complete shear-head yielding,

and punching shear due to crushing with or without

yielding of the rebars or top flange of the shear-head. It was

observed that comparatively stiff shear-heads act as a

relatively rigid support, with a concentration of deforma-

tion around their tips, translating the weak section in terms

of bending and punching shear outside of the shear-head

edges. More flexible shear-heads allow increased slab

rotations that influence the inclination of the governing

strut, eventually leading to failure surfaces developing at

lower angles, with their root moving inside the shear-head.

Closed-box shear-heads tend to be more robust as these

offer continuous strut support along the shear-head bottom

flanges, with the shear-head encased concrete being in a

multi-axial state of stress. Cruciform shear-heads are

lighter and equally reliable, offering a force transfer

through their length in conjunction with the column

support. In terms of bending, all types contribute to the

flexural capacity and bending stiffness within the shear-

head region.

The rotational responses and ultimate strengths obtained

from the numerical assessments were used for the

Fig. 17 Assumed force distribution for shear-heads as a function of embedment length: (a) lv/hv = 5.0, lv/rs = 0.36; (b) lv/hv = 3.00, lv/rs =

0.29; (c) lv/hv = 2.00, lv/rs = 0.14; (d) lv/hv = 1.00; lv/rs = 0.07.
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modification and improvement of a bilinear rotational

model for conventional slabs which, in conjunction with an

established failure criterion, may be adopted for reliable

assessment of punching shear strength. Importantly, the

observations from the numerical studies permitted the

definition of the shear-head dependent parameters required

for design, with focus on the shear-head embedment length

and section size, as well as to assess the bending moment at

which yielding occurs in the shear-head. Considering the

wide range of relevant parameters accounted for in the

parametric assessments, the expressions proposed in this

paper offer a more reliable design method in comparison

with existing approaches, for all shear-head types. The

proposed models are also suitable for direct practical

application and implementation in codified procedures.
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