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Nonlinear Observer Design to Synchronize
Hyperchaotic Systems via a Scalar Signal

Giuseppe Grassi and Saverio Mascolo

Abstract—In this brief control theory is used to formalize hyperchaos
synchronization as a nonlinear observer design issue. Following this
approach, a newsystematictool to synchronize a class of hyperchaotic
systems via a scalar transmitted signal is developed. The proposed
technique has been applied to synchronize two well-known hyperchaotic
systems.

Index Terms—Hyperchaotic circuits and systems, synchronization the-
ory.

I. INTRODUCTION

In recent years, synchronization of chaotic systems and its potential
application to secure communications have received ever increasing
attention [1]–[13]. The possibility of two or more chaotic systems
oscillating in a synchronized way is not an obvious one. In fact, as
chaos is characterized by a sensitive dependence on initial conditions,
one could conclude that synchronization is not obtainable, since even
infinitesimal change will eventually result in divergence of nearby
starting orbits [1]. To overcome this problem, different approaches
have been developed. In [2], [3] the suggested scheme consists in
taking a chaotic system, duplicating some subsystem and driving
the duplicate and the original subsystem with signals from the
unduplicated part. When all the Lyapunov exponents of the driven
subsystem (response system) are less then zero, the response system
synchronizes with the drive system, assuming that both systems
start in the same basin of attraction [2]. Instead of searching for
a stable subsystem, in [4]–[7] a linear feedback of the error signals
is used as control input into one of the chaotic systems. In these
cases, synchronization is achieved by computing proper elements
of a coupling matrix in order to get negative Lyapunov exponents,
provided that the initial conditions of both systems are very close to
each other [6].

It should be noted that the abovementioned methods mainly
concern the synchronization of low dimensional systems with only
one positive Lyapunov exponent. This feature limits the complexity of
the chaotic dynamics and suggests the adoption of higher dimensional
chaotic systems for applications to secure communications [14]–[16].
In fact, the presence of more than one positive Lyapunov exponent
clearly improves security by generating more complex dynamics.
However, this approach raises the question of whether synchro-
nization can still be achieved by transmitting a scalar signal. Until
now, only some attempts have been made to give an answer to this
question. In [17] the conjecture that the number of synchronizing
signals had to be equal to the number of positive Lyapunov exponents
led to the adoption of two scalar signals to synchronize R¨ossler’s
hyperchaotic system. Recently, some interesting results have been
reported in [14]–[16]. In particular, in [14] a scalar signal represented
by a linear combination of the original state variables is used to
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synchronize hyperchaos in Rössler’s systems. However, this approach
cannot be considered a systematic technique for synchronization,
because the coefficients of the linear combination are somewhat
arbitrary. Furthermore, the computation of the conditional Lyapunov
exponents is still required in order to verify the synchronization [14].

In this brief a new method is developed to synchronize hy-
perchaotic systems via a scalar transmitted signal. The proposed
technique is based on nonlinear control theory and has several
advantages over the existing methods. In particular

1) it enables synchronization be achieved in a systematic way;
2) it can be successfully applied to several well-known hyper-

chaotic systems;
3) it does not require the computation of any Lyapunov exponent;
4) it does not require initial conditions belonging to the same

basin of attraction.

The brief is organized as follows. In Section II, the synchronization
of chaotic systems is restated as a nonlinear observer design issue.
Following this approach, a linear and time-invariant synchronization
error system is obtained, for which a necessary and sufficient condi-
tion can be given in order to asymptotically stabilize its dynamics.
Finally, in Section III the proposed method is applied to synchronize
two well-known examples of hyperchaotic systems.

II. HYPERCHAOS SYNCHRONIZATION AS

A NONLINEAR OBSERVER DESIGN ISSUE

Definition 1: Given two chaotic systems, the dynamics of which
are described by the following two sets of differential equations:

_xxx =fff(xxx) (1)

_yyy =fff(yyy) (2)

wherexxx 2 <n; yyy 2 <n; andfff : <n ! <
n is a nonlinear vector field,

systems (1) and (2) are said to be synchronized if

eee(t) = (yyy(t)� xxx(t))! 0 as t!1 (3)

whereeee represents the synchronization error [1].
In order to obtain synchronization, system (2) has to receive a

proper synchronizing signal from system (1). From a control theory
point of view, this signal can be considered as an observed quantity
feeding a nonlinear observer for the statexxx of the system (1)
[18]–[21]. Informally, an observer is a dynamic system designed to
be driven by the output of another dynamic system (plant) and having
the property that the state of the observer converges to the state of
the plant. More precisely, the following definition is given.

Definition 2: Given dynamic system (1) with outputzzz = sss(xxx) 2

<
n; the dynamic system

_yyy = fff(yyy) + ggg(zzz � sss(yyy)) (4)

is said to be a nonlinear observer of system (1) ifyyy converges to
statexxx ast!1; whereggg: <n ! <

n is a suitably chosen nonlinear
function [18]. Moreover, system (4) is said to be a global observer of
system (1) ifyyy ! xxx as t ! 1 for any initial conditionyyy(0); xxx(0)
[20].

A block diagram of a nonlinear observer for the statexxx of system
(1) is reported in Fig. 1.

Remark 1: System (4) is a (global) observer of system (1) if the
error system

_eee =fff(yyy) + ggg(sss(xxx)� sss(yyy))� fff(xxx) = fff(xxx+ eee)

+ ggg(sss(xxx)� sss(xxx+ eee))� fff(xxx) = hhh(eee; t) (5)
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Fig. 1. Synchronization as a nonlinear observer issue. (a) System (1). (b) System (2). (c) Structure of the observer (4).

has a (globally) asymptotically stable equilibrium point foreee = 0

[18], [20].
It is known that control theory offers no general method to choose

a functionggg(zzz � sss(yyy)) such that the nonlinear and nonautonomous
system (5) has a (globally) asymptotically stable equilibrium point
for eee = 0: In the following, a proposition will be stated in order to
give a functionggg for synchronizing a class of hyperchaotic systems.
To this purpose, an assumption is made.

Assumption 1:The dynamic system (1) can be written as

_xxx = fff(xxx) = AAAxxx+ bbbf(xxx) + ccc (6)

whereAAA 2 <
n�n; bbb 2 <n�1; ccc 2 <n�1 andf : <n ! <:

Remark 2: Several well-known chaotic systems belong to the class
individualized by (6). For example, Chua’s circuit [1], Rössler’s
hyperchaotic system [23], the hyperchaotic circuits in [24], [25] and
then-dimensional Chua’s circuit in [26], [27] all satisfy Assumption
1.

Regarding the synchronizing signal, it is worth noting thatsss(xxx) is
an artificial output of the system (1) which can be properly designed
to feed the nonlinear observer (4). Since the adoption of a scalar
signal is a suitable feature for secure communications applications,
it is assumed thatz = s(xxx) 2 <:

Now, a proposition is given, so that the error system (5) becomes
linear and time-invariant whens(xxx) and ggg(z � s(yyy)) are properly
chosen.

Proposition 1: Given a dynamic system (1) satisfying Assumption
1, let

s(xxx) = f(xxx) + kkkxxx (7)

be the scalar synchronizing signal withkkk = [k1; k2; � � � kn] 2 <
1�n;

and let

ggg(s(xxx)� s(yyy)) = bbb(s(xxx)� s(yyy)) (8)

be the functionggg in (4). Then the error system (5) becomes linear
and time-invariant, and can be expressed as

_eee = AAAeee� bbbkkkeee = aaaeee+ bbbu (9)

whereu = �kkkeee plays the role of a state feedback.
Proof: By substituting (7) and (8) in (5), the error system

becomes:

_eee =fff(yyy) + ggg(s(xxx)� s(yyy))� fff(xxx) = AAAyyy + bbbf(yyy) + ccc

+ bbb(s(xxx)� s(yyy))� (AAAxxx+ bbbf(xxx) + ccc)

=AAAeee+ bbb(f(yyy)� f(xxx)) + bbb(f(xxx) + kkkxxx� f(yyy)� kkkyyy)

=AAAeee� bbbkkkeee = AAAeee+ bbbu

This completes the proof.
Now, by exploiting linear control theory [22], [28], the following

result can be stated:

Proposition 2: Given a dynamic system satisfying Assumption 1,
and the functionss(xxx) and ggg(z � s(yyy)) defined by (7) and (8),
respectively, a necessary and sufficient condition for the existence
of a feedback gain vectorkkk such that system (4) becomes a global
observer of system (1) is that all the uncontrollable eigenvalues of
the error system (9), if any, have negative real parts.

Proof: For linear system (9) a proper coordinate transformation
eee = [TTT 1 TTT 2]eee can be found, where the columns ofTTT 1 form a set of
basis vector for the controllable state subspace and the columns of
TTT 2 are orthogonal to these [22], [28]. Since the orthogonal basis set
givesTTT�1 = TTT T ; system (9) can be transformed to the following
Kalman controllable canonical form [28]:

_eeec
_eeenc

=
TTT T

1AAATTT 1 TTT T

1AAATTT 2

0 TTT T

2AAATTT 2

eeec
eeenc

+
TTT T

1 bbb

0
u

=
AAAc AAA12

0 AAAnnnccc

eeeccc
eeennnccc

+
bbbccc
0

u (10)

where the eigenvalues ofAAAc are controllable, i.e., they can be
placed anywhere by proper state feedbacku = �kkkeee; whereas the
eigenvalues ofAAAnc are uncontrollable, i.e., they are not affected by
the introduction of any state feedback. Therefore a necessary and
sufficient condition to globally asymptotically stabilize system (10)
is that the eigenvalues ofAAAnc lie in the left half plane [22], [28].
Sinceeee ! 0 implies eee ! 0; this completes the proof.

Remark 3: If system (4) becomes an observer of system (1), then
yyy ! xxx; s(yyy) ! s(xxx) and ggg ! 0 as t ! 1 (see (8)). As a
consequence, the dynamics of systems (1) and (2) are identical.

Remark 4: If system (9) is controllable, then all the modes can
be arbitrarily assigned and, consequently, synchronization can be
achieved according to any specified feature.

Remark 5: A technique similar to the one developed herein has
been proposed in [11]. Both the methods generate an error system
which is linear and time-invariant. However, since the error system
in [11] is _eee = AAAeee; its eigenvalues cannot be moved by any state
feedback and, consequently, synchronization can be achieved only
if the eigenvalues ofAAA have negative real part. In this brief less
restrictive conditions are given, because the controllable eigenvalues
of the error system_eee = AAAeee+ bbbu can be shifted via a state feedback
u = �kkkeee:

Remark 6: An interesting approach tochaos synchronization,
based on the concept of observer design, has been proposed in
[13]. In particular, synchronization is achieved by considering
a linear output for the drive system, whereas for the response
one a Luenberger observer is chosen. This leads to a nonlinear
and nonautonomous synchronization error system for which it is
not easy to obtain the stability properties of the origin. Thus,
the conclusion of the analysis developed in [13] is that local
synchronization is possible under relatively mild conditions, whereas
global synchronization can be achieved only if the system can be
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transformed to Brunowsky canonical form. Unlike the method just
mentioned, the technique developed herein chooses a nonlinear output
for the drive system and a nonlinear observer for the response one, so
that global synchronization can be easily achieved if the conditions
of Proposition 2 are satisfied.

III. EXAMPLES

In this section the proposed tool is applied to synchronize two
examples of nonlinear systems which exhibit hyperchaotic dynamics.

A. Synchronization of R¨ossler’s System

Rössler’s system [23] can be written in the form of Assumption
1 as

_x1
_x2
_x3
_x4

=

0 �1 �1 0

1 0:25 0 1

0 0 0 0

0 0 �0:5 0:05

x1
x2
x3
x4

+

0

0

1

0

x1x3 +

0

0

3

0

: (11)

This system exhibits a hyperchaotic behavior starting from proper
initial conditions [23]. Proposition 1 gives

s(xxx) =x1x3 +

4

j=1

kjxj

ggg(s(xxx)� s(yyy)) = [0 0 1 0]
T
[s(xxx)� s(yyy)]

whereas (4) becomes

_y1
_y2
_y3
_y4

=

0 �1 �1 0

1 0:25 0 1

0 0 0 0

0 0 �0:5 0:05

y1
y2
y3
y4

+

0

0

1

0

y1y3

+

0

0

3

0

+

0

0

1

0

(s(xxx)� s(yyy)) (12)

with the error system given by

_e1
_e2
_e3
_e4

=

0 �1 �1 0

1 0:25 0 1

0 0 0 0

0 0 �0:5 0:05

�

0

0

1

0

[k1 k2 k3 k4]

e1
e2
e3
e4

: (13)

Since the controllability matrix of system (13) is full rank, Proposition
2 assures that there exists a gain vectorkkk such that system (12)
becomes a global observer of system (11), i.e.,yyy ! xxx ast!1 for
any initial state. For example, all eigenvalues of (13) can be placed
in �1 for kkk = [�3.3712�0.9561 4.3000�5.8126].

B. Synchronization of a Fourth-Order Circuit

In 1986 hyperchaos has been observed, for the first time, from a
real physical system: a fourth-order electrical circuit [24]. This simple
circuit is autonomous and contains only one nonlinear element, a
three-segment piecewise-linear resistor. All other elements are linear
and passive, except an active resistor, which has negative resistance.

By considering the circuit parameters reported in [24], the dynamics
can be written as

_x1
_x2
_x3
_x4

=

0 0 �2 0

0 0 0 �20

1 0 1 0

0 1:5 0 0

x1
x2
x3
x4

+

2

�20

0

0

g(x2 � x1)

(14)

whereg(�) is the piecewise-linear function given by

g(x2 � x1) = 3(x2 � x1)� 1:6(jx2 � x1 � 1j � jx2 � x1 + 1j):

From Proposition 1, it follows:

s(xxx) = g(x2 � x1) +

n

i=1

kixi

ggg(s(xxx)� s(yyy)) = [2 �20 0 0]
T
(s(xxx)� s(yyy))

whereas (4) becomes

_y1
_y2
_y3
_y4

=

0 0 �2 0

0 0 0 �20

1 0 1 0

0 1:5 0 0

y1
y2
y3
y4

+

2

�20

0

0

g(y2 � y1) +

2

�20

0

0

(s(xxx)� s(yyy)):

(15)

Since the controllability matrix of the error system is full rank, its
eigenvalues can be moved anywhere. By placing them in�2, it results
kkk = [0.8022�0.3698 0.0381�0.0308] and system (15) becomes a
global observer of system (14).

Remark 7: In [11] the attention is focused on synchronization of
chaotic systems. When dealing with hyperchaos, the hypothesis in
[11] (that is, eigenvalues ofAAA in the open left half plane) seems hard
to be satisfied. In fact, by examining the systems considered herein,
it can be pointed out that the matrixAAA of Rössler’s system has three
eigenvalues with positive real part whereas the one of Example B
has two eigenvalues with positive real part. The same consideration
can be made for other examples of hyperchaotic systems [25].

IV. CONCLUSION

In this brief a new technique to synchronize a class of hyperchaotic
systems via a scalar transmitted signal has been developed. The
proposed approach exploits the concept of nonlinear observer and
represents asystematictool which can be successfully applied to
obtain global synchronization of nonlinear systems in the form (6) if
structural properties onAAA and bbb hold.
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Applications of Symbolic Dynamics
in Chaos Synchronization

Toni Stojanovski, Ljup̌co Kocarev, and Richard Harris

Abstract— We give the relationship between symbolic dynamics
and chaos synchronization. If the capacity of the channel which one-
directionally connects two chaotic systems with the aim of synchronizing
them is larger than Kolmogorov–Sinai entropy of the driving system,
then the synchronization error can be made arbitrarily small.

Index Terms—Chaos, channel capacity, symbolic dynamics, synchro-
nization.

I. INTRODUCTION

In this brief, we analyze nonlinear discrete-time dynamical systems
whose chaotic evolution is governed bydeterministicequations [1].
Despite of the absence of stochastic terms in the governing equations
it is usually said that the long-term behavior of chaotic systems is
unpredictable. Such an unpredictability is due to a unique property
of chaotic systems, namely—exponential sensitivity to changes in
initial states. Any uncertainty in the knowledge of the initial state
gets amplified by the chaotic nature of the dynamical system, and
eventually reaches the chaotic attractor’s size thus preventing the
long-term prediction.

Still, two or more chaotic systems when suitably coupled can
successfully synchronize [2]–[4], that is, their trajectories tend to
each other. As early as in one of the pioneering works on chaos
synchronization [4] it was pointed out that the reproducibility of
chaotic trajectories through synchronized chaotic motion in addition
to the unpredictability and random-like appearance of chaotic trajec-
tories might be interesting for secure communications applications.
Indeed, numerous papers have been published on the subject since
then. Making a complete reference is almost impossible and we only
point to several papers with extensive references [5]–[9].

The issue of influence of the capacity of a communication channel
on the synchronization between two chaotic systems connected by
the channel has not been addressed yet. Channel capacity is equal
to the maximal amount of information that can be conveyed through
a channel per unit time where the maximization is done over all
possible channel input signals. In simple terms, both analog and
digital communication channels havefinite capacity, while chaos
synchronization methods require that the driving signal is transmitted
to the response circuit without any distortions including noise addition
or amplitude quantization. Having in mind that chaotic signals
take values from a continuous set, this is virtually a requirement
for a channel with infinite capacity which is impossible to be
satisfied.

When a coarse-graining of the state space is introduced, for
example, by a measurement process, then the deterministic behavior
of a chaotic system on a microscopic (continuous) scale is turned into
a stochastic behavior on a macroscopic (coarse-grained) scale [1],
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