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Abstract— For applications with limited computational ca-
pacity, observers designed based on nonlinear stability theory
offer an alternative to computationally demanding extended
Kalman filters. In this paper, we present a semiglobally stable
nonlinear observer for estimating position, velocity, attitude,
and gyro bias by combining a GNSS receiver with an inertial
measurement unit including a magnetometer. Previous work by
the authors on this topic was based on local navigation equa-
tions that ignored the Earth’s rotation and curvature. Moreover,
the attitude was represented by an over-parameterized 9-
degrees-of-freedom matrix. The current paper improves on
these aspects by using navigation equations that take the Earth’s
rotation and curvature into account, and by representing
the attitude estimate as a unit quaternion. Furthermore, the
observer is tested experimentally on data from a light fixed-
wing aircraft.

I. INTRODUCTION

Strapdown inertial navigation is a method of estimating
position, velocity, and attitude (PVA) by integrating ac-
celerometer and rate gyro measurements in a dead-reckoning
fashion. Inertial navigation systems (INS) can be highly
accurate in the short term, but errors accumulate over time,
leading to poor long-term accuracy. For this reason, inertial
navigation systems are often aided by absolute reference
information, obtained regularly or intermittently from other
sources, to help correct the INS estimates and determine
sources of error, such as sensor bias (see, e.g., [1], [2]).

Aided INS has traditionally been limited to high-cost
applications, due in part to the need for accurate inertial
sensors capable of coasting through long periods of time
without reference information. With the advent of MEMS
technology, however, cheap inertial sensors are appearing
in an increasingly wide range of products, such as cars,
mobile phones, and game controllers. Although the accuracy
of these sensors is limited, they often appear in combination
with GNSS receivers, such as GPS, which provide frequent
reference information in the form of position fixes and (in
many cases) Doppler-based velocity. This development holds
the promise of making GNSS-aided inertial navigation widely
available at low cost.
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The topic of GNSS/INS integration has been studied for
decades, and it is typically accomplished using an extended
Kalman filter (EKF) (see, e.g., [3]–[5]). The EKF may not
be the best choice for low-cost applications, however, due
to its relatively large computational footprint. An alternative
approach is to construct lower-order observers based on
nonlinear stability theory.

A. Nonlinear Observers for GNSS/INS Integration

A challenging part of the GNSS/INS integration task is
the estimation of attitude. Nonlinear attitude estimation has
received significant attention as a stand-alone problem [6]–
[13], producing a number of different designs that rely on ei-
ther an attitude measurement or a set of vector measurements
in the body-fixed frame that can be compared with reference
vectors in the navigation frame. An extensive survey of
attitude estimation methods is given by Crassidis, Markley,
and Cheng [14].

Vik and Fossen [15] expanded the attitude observer of
Salcudean [6] to include gyro bias estimation, and used this
observer as part of a complete GNSS/INS integration observer.
However, their approach assumes the availability of an
external attitude measurement, allowing the attitude observer
to be implemented as a stand-alone module independent
from the position and velocity estimation. In most cases,
an attitude measurement is not available, and the attitude
estimation must be combined with position and velocity in
a more complicated way.

Hua [16] used the vector-based attitude observer of Hamel
and Mahony [17] and Mahony, Hamel, and Pflimlin [8] as
the basis for an attitude and velocity observer that depends
only on inertial measurements, GNSS velocity measurements,
and magnetometer measurements. Hua’s observer exploits
the fact that the vehicle’s acceleration vector in the navigation
frame is implicitly available in the derivative of the GNSS
velocity. This vector can be compared to the accelerometer
measurement in order to determine the attitude.

In a similar vein, GNSS/INS integration was used as an
application example in the authors’ study of observer design
for general cascades of nonlinear and linear time-invariant
systems [18], [19]. In this case, the attitude estimate was
allowed to develop in 9 degrees of freedom (DOF), similar
to the work of Batista et al. [10], [11], resulting in a global
exponential stability result. This approach has recently been
developed into a more complete integration scheme including
estimation of gyro bias [20].

The current paper offers three main contributions relative
to the authors’ previous work:



Quaternion-based attitude estimation with bias compen-
sation: The attitude observer of Hamel and Mahony [17]
and Mahony, Hamel, and Pflimlin [8] includes estimation of
gyro bias for the case of stationary reference vectors. The
authors recently extended the analysis of this observer by
developing a strong Lyapunov function showing semiglobal
stability for the case of non-stationary reference vectors as
well [12], [13]. We take advantage of this analysis to create
a GNSS/INS integration scheme with gyro bias estimation,
where the attitude is represented as a unit quaternion instead
of a 9-DOF estimate of the rotation matrix.

Earth rotation and curvature: Our previous work was
based on local navigation equations that ignored the rotation
and curvature of the Earth, as well as the gravity vector’s
dependence on the vehicle’s position. This simplification
resulted in a dynamical system that could be viewed as the
cascade of a nonlinear and a linear time-invariant system,
for which the authors have developed a general H∞-based
theory [18], [19]. Here, we dispense with this simplification
and use proper equations that take these factors into account.
As a consequence, we need to modify our methodology for
ensuring stability of the overall error dynamics.

Experimental testing: Rather than relying on simula-
tions, we test our observer using data from a light fixed-
wing aircraft. Specifically, we implement the observer based
on measurements from a lower-quality inertial measurement
unit (IMU) and a GNSS receiver without velocity information,
and compare the results to a higher-quality reference.

B. Notation and Preliminaries

For a vector or matrix X , X ′ denotes its transpose. The
operator ‖·‖ denotes the Euclidean norm for vectors and the
induced Euclidean norm for matrices. For a vector x ∈ R3,
S(x) denotes the skew-symmetric matrix

S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 .
For a symmetric positive-definite matrix P, λmin(P) and
λmax(P) denote the minimum and maximum eigenvalue,
respectively. For a vector x, we denote by satL(x) an element-
wise saturation of x with limits ±L. We denote by [z1; . . . ;zn]
the vector obtained by stacking the vectors z1, . . . ,zn. All
dynamical systems are assumed to be initialized at time t = 0.
For notational simplicity, we shall omit function arguments
whenever possible.

A quaternion q = [sq;rq] consists of a real part sq ∈R and
a vector part rq ∈R3. The quaternion product between q and
p is given by

q⊗ p =

[
sqsp− r′qrp

sqrp + sprq + rq× rp

]
.

The conjugate of q, given by [sq;−rq], is denoted by q∗. For
a vector x∈R3, we denote by x̄ the quaternion with real part
zero and vector part x (i.e., x̄ = [0;x]).

Throughout the paper, we will operate with several dif-
ferent coordinate systems. Unless clear from the context, we

use a superscript index to indicate the coordinate system in
which a given vector is decomposed; thus, xa and xb refer
to the same vector decomposed in the coordinate systems
indexed by a and b, respectively. The rotation between these
coordinate systems can be represented by a unit quaternion
qb

a = [sqb
a
;rqb

a
], such that x̄b = qb

a⊗ x̄a⊗qb∗
a . The corresponding

rotation matrix R(qb
a)∈ SO(3) such that R(qb

a)x
a = xb is given

as R(qb
a) = I + 2sqb

a
S(rqb

a
) + 2S(rqb

a
)2. The rate of rotation

of the coordinate system indexed by b with respect to a,
decomposed in c, is denoted by ωc

ab.
We shall refer to four coordinate systems in particular,

namely, the Earth-Centered Inertial (ECI), Earth-Centered
Earth-Fixed (ECEF), North-East-Down (NED), and Body-
Fixed (BODY) coordinate systems, with corresponding in-
dices i, e, n, and b. For details we refer to Fossen [1].

II. PROBLEM FORMULATION

We are interested in estimating PVA by integrating mea-
surements from a GNSS receiver and an IMU including a
magnetometer. Because the estimation of attitude is sensitive
to bias in the gyro measurements, we shall also estimate the
gyro bias bb, which is presumed to be constant. There are
several different options for how to represent PVA. Here, we
shall represent the position and velocity as vectors pe and
ve in the ECEF coordinate system.1 This representation is
convenient because pe and ve are quantities typically output
by a GNSS receiver. The attitude will be represented as a unit
quaternion qe

b representing the rotation from BODY to ECEF.
These representations give rise to the following dynamic
equations (see, e.g., [2]):

ṗe = ve, (1)
v̇e =−2S(ωe

ie)v
e + f e +ge(pe), (2)

q̇e
b =

1
2

qe
b⊗ ω̄

b
ib−

1
2

ω̄
e
ie⊗qe

b, (3)

ḃb = 0, (4)

where f e denotes the specific force acting on the vehicle
and ge(pe) denotes the plumb bob gravity vector, which is
a function of the vehicle’s position. The known vector ωe

ie
represents the Earth’s rate of rotation around the ECEF z-axis.

Remark 1: Our chosen representation of PVA is not neces-
sarily the most practical when it comes to using the estimates
for control or for displaying them to a user. However, it
is straightforward to transform these quantities to a more
practical format, as discussed in Section V.

Remark 2: It may be reasonably argued that the Earth’s
rate of rotation ωb

ie is irrelevant when targeting low-cost
applications without highly accurate sensors. Nevertheless,
some MEMS-based inertial sensors are already capable of
measuring the Earth’s rate of rotation and may one day offer
a cheap alternative even for highly accurate navigation.

1As is common, the velocity ve is here taken to represent the rate of
change of the position pe (that is, ve := ṗe).



A. Sensor Configuration

We assume that the following information is available:
• a measurement pe

GNSS = pe of the position (from the
GNSS receiver)

• a full or partial measurement ve
GNSS = Cvve of the ve-

locity (from the GNSS receiver), where the measurement
matrix Cv may be an empty matrix, the identity matrix,
or some other matrix of appropriate dimensions

• a measurement f b
IMU = f b of the specific force acting

on the vehicle (from the IMU’s accelerometers)
• a biased measurement ωb

ib,IMU =ωb
ib+bb of the vehicle’s

angular velocity (from the IMU’s gyros)
• a measurement mb

IMU = mb of the Earth’s magnetic field
(from the IMU’s magnetometers)

B. Assumptions

We assume knowledge of a bound M f on the magnitude of
the specific force f b and a bound Mb on the magnitude of the
gyro bias. Furthermore, we assume that the angular velocity
ωb

ib and the time derivative ḟ b of the specific force are
uniformly bounded. In order to ensure uniform observability,
we also assume that there exists a constant cobs > 0 such
that ‖ f b×mb‖ ≥ cobs for all t ≥ 0.2 Finally, we assume that
the gravity ge(pe) is a Lipschitz continuous function of the
position pe.

III. ATTITUDE ESTIMATION

As a step toward the complete design, we focus first on the
subproblem of estimating the attitude qe

b and gyro bias bb.
Throughout this section we shall assume, hypothetically, that
we have access to a pair of vector measurements vb

1 and vb
2 in

BODY and a corresponding pair of reference vectors ve
1 and

ve
2 in ECEF, with the property that ‖vb

1×vb
2‖≥ cobs > 0. Based

on this type of vector information, Hamel and Mahony [17]
and Mahony, Hamel, and Pflimlin [8] presented an elegant
solution that guarantees almost-global asymptotic stability
for the case of constant reference vectors. The stability
analysis was recently extended by the authors to prove
semiglobal stability in the case of time-varying reference
vectors [12], [13]. Modified to account for the rotation of
the Earth, the observer equations can be written as follows:

˙̂qe
b =

1
2

q̂e
b⊗ (ω̄b

ib,IMU− ¯̂bb + σ̄)− 1
2

ω̄
e
ie⊗ q̂e

b,

˙̂bb = Proj(b̂b,−kIσ),

where kI > 0 is a gain, σ is an injection term, and Proj(·, ·)
denotes a parameter projection that restricts the parameter
estimate b̂b to the compact set defined by ‖b̂b‖ ≤Mb̂, where
Mb̂ > Mb (see [13], [20] for details).3 The injection term is
defined as

σ := k1vb
1×R(q̂e

b)
′ve

1 + k2vb
2×R(q̂e

b)
′ve

2,

2Although this assumption is needed in the analysis, the observer equa-
tions are well-defined even when it does not hold, and brief violations are
of little practical consequence.

3Recall that, according to the notation introduced in Section I-B, σ̄ =

[0;σ ] and ¯̂bb = [0; b̂b].

where k1 and k2 are gains satisfying k1 ≥ kP and k2 ≥ kP for
some kP > 0.

To state a stability result for this observer, define the
estimation errors q̃ := qe

b⊗ q̂e∗
b and b̃ := bb− b̂b, and let s̃ and

r̃ denote the real part and the vector part of q̃, respectively.
Note that r̃ = 0 (equivalently |s̃| = 1) corresponds to zero
attitude error, whereas s̃ = 0 corresponds to the maximum
attitude error of 180◦ around some axis. We shall show that
a combined error variable χ̃ := [r̃; b̃] converges exponentially
to zero from a set of initial conditions that can be made
arbitrarily large.

Let Q̃(ε) = {q̃ | |s̃|> ε} represent a set of attitude errors
bounded away from 180◦ by a margin determined by ε ∈
(0, 1

2 ). Then we have the following semiglobal exponential
stability result:

Lemma 1: For each ε ∈ (0, 1
2 ), there exists a k∗P > 0 such

that, if kP > k∗P, then for all initial conditions such that q̃(0)∈
Q̃(ε) and ‖b̂b(0)‖ ≤Mb̂,

‖χ̃(t)‖ ≤ Ke−λ t‖χ̃(0)‖,

for some constants K > 0 and λ > 0.
Proof: The proof is only a slight extension of the

authors’ previous work [13, Theorem 1], and we only outline
the necessary changes here. It is straightforward to confirm
that

˙̃s =
1
2

r̃′R(qe
b)(b̃+σ), (5a)

˙̃r =−1
2
(Is̃−S(r̃))R(qe

b)(b̃+σ)+S(r̃)ωe
ie, (5b)

˙̃b =−Proj(b̂b,−kIσ), (5c)

which differs from [13] only in the term S(r̃)ωe
ie. The param-

eter projection ensures that ‖b̃‖ ≤M, where M > 0 is from
[13]. Considering the function V (s̃) = 1− s̃2 = ‖r̃‖2 from
[13], we therefore have V̇ ≤M−kPc2

obsα(s̃), where α(s̃) :=
s̃2(1− s̃2). Hence, for sufficiently large kP, |s̃| = ε =⇒
V̇ ≤M− kPc2

obsα(ε)< 0, which implies that the trajectories
cannot escape the region defined by |s̃| ≥ ε . Considering next
the function W (t, r̃, s̃, b̃) = V (s̃)+2`s̃r̃′R(qe

b)b̃+
`

2kI
b̃′b̃ from

[13], we get

Ẇ = fW (t, s̃, r̃, b̃)−2`s̃ω
e
ie
′S(r̃)R(qe

b)b̃,

where fW (t, s̃, r̃, b̃) is the derivative from [13] with ω = ωb
eb.

Noting that 2`s̃ωe
ie
′S(r̃)R(qe

b)b̃ ≤ 2`‖ωe
ie‖‖r̃‖‖b̃‖ and using

the results from [13], we can therefore write

Ẇ ≤−
[
‖r̃‖ ‖b̃‖

][ kPa− `M2 ?
− 1

2 (1+2`(Mω +‖ωe
ie‖)) −`ε2

][
‖r̃‖
‖b̃‖

]
,

where a > 0 is from [13] and Mω ≥ ‖ωb
eb‖, and where ? is

used to indicate matrix symmetry. Using the same techniques
as in [13], we can now prove that for sufficiently large kP,
Ẇ ≤ −κ‖χ̃‖2 for some κ > 0, and the result follows from
the comparison lemma [21, Lemma 3.4].



IV. NONLINEAR INTEGRATION OBSERVER

In this section we shall employ the attitude and gyro bias
observer as part of a GNSS/INS integration observer based
on the available measurements. To this end, we need a pair
of vector measurements vb

1 and vb
2 in the BODY frame and

a corresponding pair of reference vectors ve
1 and ve

2 in the
ECEF frame, as indicated in the last section.

We use the accelerometer measurement f b and the mag-
netometer measurement mb to generate two vectors in the
BODY frame. There are several ways to do this, as discussed
in Section V; for ease of presentation, however, we shall
simply use vb

1 := mb and vb
2 := f b in this section, and note

that ‖vb
1 × vb

2‖ ≥ cobs is then satisfied by assumption. We
can assume that the reference vector ve

1 = me (that is, the
Earth’s magnetic field vector decomposed in ECEF) is known.
However, the reference vector ve

2 = f e (that is, the specific
force decomposed in ECEF) is not measured. To deal with
this problem, we shall substitute ve

2 in the observer with
v̂e

2 := satM f ( f̂ e), where f̂ e is an estimate of f e. Consequently,
the attitude and gyro bias observer is now given by

˙̂qe
b =

1
2

q̂e
b⊗ (ω̄b

ib,IMU− ¯̂bb + ¯̂σ)− 1
2

ω̄
e
ie⊗ q̂e

b,

˙̂bb = Proj(b̂b,−kIσ̂),

where

σ̂ := k1mb
IMU×R(q̂e

b)
′me + k2 f b

IMU×R(q̂e
b)
′ satM f ( f̂ e).

Compared to the observer in Section III, the injection term
σ has been replaced by σ̂ .

The estimate f̂ e is generated together with the position
estimate p̂e and the velocity estimate v̂e by the following
observer:

˙̂pe = v̂e +θKpp(pe
GNSS− p̂e)+Kpv(ve

GNSS−Cvv̂e),

˙̂ve =−2S(ωe
ie)v̂

e + f̂ e +ge(p̂e)

+θ
2Kvp(pe

GNSS− p̂e)+θKvv(ve
GNSS−Cvv̂e),

ξ̇ =−R(q̂e
b)S(σ̂) f b

IMU

+θ
3Kξ p(pe

GNSS− p̂e)+θ
2Kξ v(v

e
GNSS−Cvv̂e),

f̂ e = R(q̂e
b) f b

IMU +ξ ,

where Kpp, Kpv, Kvp, Kvv, Kξ p, and Kξ v are gain matrices.
These gain matrices are chosen freely to ensure that the
matrix A−KC is Hurwitz, where

A =

0 I3 0
0 0 I3
0 0 0

 , C =

[
I3 0 0
0 Cv 0

]
, K =

Kpp Kpv
Kvp Kvv
Kξ p Kξ c

 .
The parameter θ ≥ 1 will be used as a tuning parameter to
guarantee stability.

To state our main result, define the estimation errors p̃ :=
pe− p̂e, ṽ := ve− v̂e, and f̃ := f e− f̂ e, and the combined error
vector x̃ := [p̃; ṽ; f̃ ]. Our main semiglobal stability result can
now be stated as follows.

Theorem 1: Let K ∈ R9 be an arbitrary compact set
containing the origin, and let ε̄ ∈ (0, 1

2 ) be an arbitrary
constant. Let kP be chosen to ensure stability according to

Lemma 1 with respect to some ε < ε̄ . There exists a θ ∗ ≥ 1
such that, if θ ≥ θ ∗, then for all initial conditions such that
(p̃(0)× ṽ(0)× ξ̃ (0)) ∈K , q̃(0) ∈ Q̃(ε̄), and ‖b̂b(0)‖ ≤Mb̂,√

‖x̃(t)‖2 +‖χ̃(t)‖2 ≤ Ke−λ t
√
‖x̃(0)‖2 +‖χ̃(0)‖2,

for some K > 0 and λ > 0.
Proof: The dynamics of p̃ and ṽ is given by

˙̃p = ṽ−θKpp p̃−KpvCvṽ,
˙̃v =−2S(ωe

ie)ṽ+ f̃ +ge(pe)−ge(p̂e)−θ
2Kvp p̃−θKvvCvṽ.

Noting that Ṙ(qe
b) = R(qe

b)S(ω
b
ib)−S(ωe

ie)R(q
e
b) and Ṙ(q̂e

b) =
R(q̂e

b)S(ω
b
ib + b̃ + σ̂) − S(ωe

ie)R(q̂
e
b), and defining R̃ :=

R(qe
b)R(q̂

e∗
b ) = R(q̃), the dynamics of f̃ = f e − f̂ e =

R(qe
b) f b−R(q̂e

b) f b−ξ can be calculated as

˙̃f = Ṙ(qe
b) f b +R(qe

b) ḟ b− Ṙ(q̂e
b) f b−R(q̂e

b) ḟ b− ξ̇

= R(qe
b)S(ω

b
ib) f b−S(ωe

ie)R(q
e
b) f b +R(qe

b) ḟ b

−R(q̂e
b)S(ω

b
ib + b̃+ σ̂) f b +S(ωe

ie)R(q̂
e
b) f b−R(q̂e

b) ḟ b

+R(q̂e
b)S(σ̂) f b−θ

3Kξ p p̃−θ
2Kξ vCvṽ

= d̃−θ
3Kξ p p̃−θ

2Kξ vCvṽ,

where

d̃ = (I− R̃′)R(qe
b)(S(ω

b
ib) f b + ḟ b)

−S(ωe
ie)(I− R̃′)R(qe

b) f b− R̃′R(qe
b)S(b̃) f b.

Next, let η1 := p̃, η2 := ṽ/θ , η3 := f̃/θ 2, and η :=
[η1;η2;η3]. Then it is easy to confirm that

1
θ

η̇ = (A−KC)η +ρ1(t,η)+ρ2(t, χ̃),

where

ρ1(t,η) =

 0
− 1

θ
2S(ωe

ie)η2 +
1

θ 2 (ge(pe)−ge(pe−η1))

0


and ρ2(t, χ̃) = [0;0; 1

θ 3 d̃]. Using the Lipschitz property of
ge, it is easy to see that ‖ρ1(t,η)‖ ≤ 1

θ
γ1‖η‖ for some

γ1 > 0 independent of θ . Furthermore, noting that ‖I− R̃′‖=
‖s̃S(r̃)−S(r̃)2‖≤ 2‖r̃‖, it is easy to confirm that ‖ρ2(t, χ̃)‖≤
1

θ 3 γ2‖χ̃‖ for some γ2 > 0 independent of θ .
Let P = P′ > 0 be the solution of the Lyapunov equation

P(A−KC)+(A−KC)′P =−I and define U = 1
θ

η ′Pη . Then

U̇ =−‖η‖2 +2η
′P(ρ1(t,η)+ρ2(t, χ̃))

≤−
(

1− 2‖P‖γ1

θ

)
‖η‖2 +

2‖P‖γ2

θ 3 ‖η‖‖χ̃‖.

Using this function, we can state the following lemma.
Lemma 2: For any δ > 0 and T > 0, there exists a θ ∗1 ≥ 1

such that, if θ ≥ θ ∗1 , then for all initial conditions as specified
in Theorem 1, we have that for all t ≥ T , ‖x̃‖ ≤ δ .

Proof: Because the parameter projection ensures ‖b̃‖≤
M and because ‖r̃‖ ≤ 1, we have ‖χ̃‖ ≤

√
M2 +1. Define

the level set Ωθ = {η | U ≤ δ 2

θ 5 λmin(P)}, and note that



η ∈Ωθ =⇒ ‖η‖ ≤ δ

θ 2 =⇒ ‖x̃‖ ≤ δ . Outside Ωθ , we have
‖η‖ ≥ δ

θ 2

√
λmin(P)/λmax(P), which implies

U̇ =−
(

1
2
− 2‖P‖γ1

θ

)
‖η‖2

−
(

δ
√

λmin(P)

2θ 2
√

λmax(P)
− 2‖P‖γ2

θ 3

√
M2 +1

)
‖η‖.

For all sufficiently large θ , the first term can be made
smaller than − 1

4‖η‖2 and the second term can be
made negative, thus yielding U̇ ≤ − 1

4‖η‖2 ≤ − θ

4λmax(P)
U .

By the comparison lemma, we therefore have U(t) ≤
U(0)exp(−θ t/(4λmax(P))). Let L > δ be a bound on ‖x̃(0)‖
for any initial condition as specified in Theorem 1. Then L
is also a bound on ‖η(0)‖, and we therefore have U(t) ≤
1
θ

λmax(P)L2exp(−θ t/(4λmax(P))) outside Ωθ . This implies
that η must enter Ωθ before the time

t∗ =−4λmax(P)
θ

ln
(

δ 2λmin(P)
θ 4λmax(P)L2

)
=

4λmax(P)
θ

(
4ln(θ)− ln

(
δ 2λmin(P)
λmax(P)L2

))
.

Noting that ln(θ)/θ → 0 as θ → ∞, we see that for all
sufficiently large θ ≥ 1, t∗ ≤ T .

Next, consider the dynamics of s̃, given by

˙̃s =
1
2

r̃′R(qe
b)(b̃+ σ̂) =

1
2

r̃′R(qe
b)(b̃+σ)+µ1,

where µ1 = 1
2 r̃′R(qe

b)(σ̂ − σ) has the property |µ1| ≤
1
2 k2‖ f b‖‖r̃‖‖ f̃‖ ≤ γ3‖r̃‖‖ f̃‖ for an appropriate γ3 > 0 in-
dependent of θ . We also have | ˙̃s| ≤ 1

2 (‖b̃‖+ ‖σ̂‖). Since
‖b̃‖ ≤M and σ̂ is made up only of bounded signals, we can
conclude that | ˙̃s| ≤Ms for some Ms > 0 independent of θ .

With reference to Lemma 2, define δ = kPc2
obs(α(ε +

ε̃/2)−α(ε))/(2γ3)> 0 and T = ε̃/(2Ms), where ε̃ := ε̄−ε ,
and let θ be large enough that for all t ≥ T , ‖x̃‖ ≤ δ . Then

|s̃(T )| ≥ |s̃(0)|−
∫ T

0
| ˙̃s(t)|dt ≥ ε̄−Msε̃/(2Ms) = ε + ε̃/2,

and for all t ≥ T , |µ1| ≤ γ3‖r̃‖‖ f̃‖ ≤ γ3δ ≤ kPc2
obs(α(ε +

ε̃/2)−α(ε))/2. Consider now the derivative of the function
V (s̃) from the proof of Lemma 1 for t ≥ T :

V̇ ≤M− kPc2
obsα(s̃)+2|s̃µ1|

≤M− kPc2
obs (α(s̃)−α(ε + ε̃/2)+α(ε)) .

With reference to the proof of Lemma 1, it follows that for
|s̃|= ε+ ε̃/2, V̇ ≤M−kPc2

obsα(ε)< 0. Thus, q̃ cannot escape
the set Q̃(ε + ε̃/2) ⊂ Q̃(ε), and we can assume |s̃| ≥ ε in
the remainder of the analysis.

The dynamics of s̃ differ from (5) only by the term µ1,
which can also be given the bound |µ1| ≤ θ 2γ3‖r̃‖‖η‖. The
dynamics of r̃ and b̃ is given by

˙̃r =−1
2
(Is̃−S(r̃))R(qe

b)(b̃+σ)+S(r̃)ωe
ie +µ2,

˙̃b =−Proj(b̂b,−kIσ)+µ3,

where µ2 = 1
2 (Is̃ − S(r̃))R(qe

b)(σ − σ̂) and µ3 =

Proj(b̂b,−kIσ) − Proj(b̂b,−kIσ̂), which differs from
(5) only by the terms µ2 and µ3. We have that
‖µ2‖ ≤ γ4‖ f̃‖ ≤ θ 2γ4‖η‖ for some γ4 > 0 independent of
θ . It can also be shown by the properties of the parameter
projection that µ3 ≤ γ5‖ f̃‖ ≤ θ 2γ5‖η‖ for some γ5 > 0
independent of θ . Considering again the function W from
the proof of Lemma 1, we get

Ẇ = gW (t, s̃, r̃, b̃)−2s̃µ1 +2`µ1r̃′R(qe
b)b̃+2`s̃µ

′
2R(qe

b)b̃

+2`s̃r̃′R(qe
b)µ3 +

`

kI
b̃′µ3,

where gW (t, s̃, r̃, b̃) ≤ −κ‖χ̃‖2 is the derivative of W from
the proof of Lemma 1. Using the bounds on µ1, µ2, and µ3,
we therefore have

Ẇ ≤−κ‖χ̃‖2 +2θ
2
γ3‖r̃‖‖η‖+2`θ 2

γ3‖b̃‖‖η‖

+2`θ 2
γ4‖b̃‖‖η‖+2`θ 2

γ5‖r̃‖‖η‖+
`

kI
θ

2
γ5‖b̃‖‖η‖

≤ −κ‖χ̃‖2 + γ6θ
2‖χ̃‖‖η‖,

for an appropriate constant γ6, independent of θ .
We now construct a Lyapunov function Y = U + 1

θ 5 W ,
which has the property β1(‖η‖2 + ‖χ̃‖2) ≤ Y ≤ β2(‖η‖2 +
‖χ̃‖2) for some β1 > 0 and β2 > 0. The derivative satisfies

Ẏ ≤−
(

1− 2‖P‖γ1

θ

)
‖η‖2 +

2‖P‖γ2

θ 3 ‖η‖‖χ̃‖

− 1
θ 5 κ‖χ̃‖2 +

γ6

θ 3 ‖χ̃‖‖η‖.

Assuming θ is chosen large enough that 1−2‖P‖γ1/θ ≥ 1/2,
we can write

Ẏ ≤−
[
‖η‖ ‖χ̃‖

][ 1
2 − 2‖P‖γ2+γ6

2θ 3

− 2‖P‖γ2+γ6
2θ 3

κ

θ 5

][
‖η‖
‖χ̃‖

]
.

The first-order principal minor of the above matrix is 1
2 > 0.

The second-order principal minor is

κ

2θ 5 −
(2‖P‖γ2 + γ6)

2

4θ 6 ,

which is positive if θ > (2‖P‖γ2 + γ6)
2/(2κ). Hence, Ẏ ≤

−β3(‖η‖2 + ‖χ̃‖2) for some β3 > 0, and the result of the
theorem now follows from application of the comparison
lemma [21, Lemma 3.4].

Remark 3: Our stability results require the tuning parame-
ters kP and θ to be chosen sufficiently high. By inspecting the
details of the proof, it is even possible to construct explicit
lower bounds on these parameters. However, these bounds
are likely to be conservative and not suitable for practical
gain selection. Instead, careful tuning based on trial and error
is normally needed for practical implementation.

V. EXTENSIONS AND MODIFICATIONS

There are alternative ways to construct the vectors vb
1 and

vb
2 on the basis of f b and mb, with corresponding reference

vectors based on satM f ( f̂ e) and me. For the experiments pre-
sented in Section VI, we choose to define vb

1 as a normalized



version of f b, and v2 as a normalized version of f b×mb.
Corresponding reference vectors v̂e

1 and v̂e
2 are defined as

normalized versions of satM f ( f̂ e) and satM f ( f̂ e)×me. It can
be confirmed from the above proof that the theoretical results
still hold, as long as σ̂ is uniformly bounded and Lipschitz
continuous with respect to satM f ( f̂ e).

As mentioned in Section II, our representation of PVA
is not necessarily the best when it comes to using the
estimates for control or for displaying them to a user.
However, the estimates can easily be translated to a more
practical format. In the observer presented in Section VI,
we translate the position estimate p̂e into estimates µ̂ , l̂,
and ĥ of latitude, longitude, and height with respect to
the WGS-84 reference ellipsoid. Such a transformation is
typically performed using an iterative procedure, such as
that of Hofmann-Wellenhof, Lichtenegger, and Collins [22].
To avoid significant computational overhead, we perform
only one iteration of this algorithm at each time step of the
discretized algorithm, while carrying the computed latitude
over to the next step as an initial condition. Based on the
computed latitude and longitude, we compute a quaternion
q̂n

e = q̂µ⊗ q̂l , where q̂l = [cos(l̂/2);0;0;−sin(l̂/2)] and q̂µ =
[cos((µ̂ + π/2)/2);0; sin((µ̂ + π/2)/2);0], representing the
rotation between the ECEF and NED coordinate systems. This
quaternion is used to transform v̂e into a more convenient
estimate v̂n =R(q̂n

e)v̂
e in NED, and to compute a more natural

attitude estimate q̂n
b = q̂n

e ⊗ q̂e
b, representing the rotation

between BODY and NED.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results based on
data gathered with a Piper Cherokee 140 light fixed-wing
aircraft, shown in Fig. 1.

Fig. 1. Aircraft used for data collection

A. Setup and Implementation

The aircraft is equipped with an Xsens MTi inertial mea-
surement unit, mounted on a bulkhead within the tail, as
well as a Mediatek-3329 GPS module with a built-in patch
antenna, mounted on top of the instrument panel. The Xsens
MTi contains moderately accurate accelerometers, gyros, and
magnetometers, with an in-run gyro bias stability of 20 deg/h
(1σ ). The measurements are provided at a rate of 100 Hz.

The Mediatek GPS receiver reports position estimates, as
well as low-quality speed and heading estimates, at a rate
of 10 Hz. All the sensor readings are filtered using third-
order low-pass filters with a cutoff frequency of 5 Hz, and
the GPS readings are converted to 100 Hz before being
provided to the observer. The magnetometer measurements
are also filtered with a fourth-order notch filter to remove the
predominant component of a square disturbance with period
1.2 s, imposed by the aircraft’s anti-collision light.

The observer equations are implemented at 100 Hz using
a forward-Euler discretization. A correction is applied to the
attitude estimate to prevent the magnitude of the quaternion
from drifting away from unity. Only the position information
from the GPS is used in the observer; the speed and heading
are discarded. Thus, the matrix Cv in the above analysis is
empty. The gravity vector ge(p̂e) is modeled by the J2 gravity
model (see [23]). The chosen tuning parameters are k1 = 1,
k2 = 1.5, kI = 0.008, Kpp = 0.6I, Kvp = 0.11I, Kξ p = 0.006I,
and θ = 2, except for the first 60 s after initialization,
where we use k1 = 20, k2 = 30, and kI = 0.01 in order to
ensure faster convergence. A parameter projection ensures
that ‖b̂b‖ ≤ 0.51 deg/s.

A reference for the estimates is provided by an EKF that
takes its measurements from a set of higher-quality sensors,
specifically, an ADIS16488 “tactical grade” IMU, mounted
within the cockpit behind the pilot’s seat, and a uBlox
LEA-6H GNSS receiver with an active antenna mounted on
the instrument panel. The ADIS16488 contains relatively
accurate accelerometers, gyros, and magnetometers, with an
in-run gyro bias stability of 6.25 deg/hr (1σ ). Measurements
are gathered at a rate of 410 Hz. The uBlox GNSS receiver
provides position and Doppler-based velocity estimates at
a rate of 5 Hz. Accelerometer, gyro, and GNSS position
and velocity readings are provided to the EKF after filtering
with a third-order, 5-Hz low-pass filter and conversion to
100 Hz. Magnetometer readings are provided by the Xsens
MTi instead of the ADIS16488, due to the difficulty of
accurately calibrating magnetometers installed in the cockpit.
The EKF is implemented as an indirect filter with resetting,
but with both prediction and update taking place at 100 Hz.
In addition to PVA and gyro bias, the EKF also estimates ac-
celerometer bias. The attitude is represented by a quaternion
in the navigation equations, whereas the attitude error in the
EKF is represented using a 3-DOF Gibbs vector. The attitude
quaternion is reset in the style of a multiplicative EKF (see,
e.g., [24]).

B. Results

We present results from a flight lasting approximately 40
minutes from takeoff to landing. We start by looking in detail
at the traffic pattern and landing at the end of the flight,
when all the estimates have had ample time to converge. Fig.
2 shows the estimates of the latitude, longitude, and height
above the WGS-84 ellipsoid, together with the EKF-generated
reference. The discrepancy between the estimated height
and the reference is attributable to a systematic difference
between the positions reported by the uBlox GNSS receiver
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Fig. 3. Velocity during traffic pattern and landing (blue: reference; red:
observer estimate)

and the Mediatek GPS module, which is most significant
in the vertical direction. Fig. 3 shows the velocity in NED
coordinates, and Fig. 4 shows the attitude represented as
Euler angles. Although the lower quality of the observer
estimates is evident in some places, the agreement with the
reference trajectory is generally good.

Next, we look at errors in the observer estimates, relative
to the reference, for the entire flight. Fig. 5 shows the
NED velocity errors. After an initial transient, the errors
mostly remain within a region of approximately ±1 m/s;
however, large spikes can be observed in two places. These
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Fig. 6. Attitude error (blue: roll; green: pitch; red: heading)

spikes are due to a significant deterioration in the posi-
tion reported by the Mediatek GPS module, which is also
reflected in spiking HDOP values. Clearly, the observer as
currently tuned exhibits an undesirable sensitivity to such
deterioration. Most likely, this situation can be improved by
detuning the observer during periods of poor GPS quality;
however, this is beyond the scope of the current paper.
Fig. 6 shows the attitude errors for the entire flight, which
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exhibit similar spikes. Except for these spikes, the roll and
pitch errors remain mostly in the region ±1 deg, but the
heading error tends to be somewhat larger. The reason for
the larger heading error is not precisely known; however, it
is likely related to uncalibrated magnetic disturbances. These
disturbances also affect the heading reference, thus making
it less reliable.

We end by showing a plot of the estimated gyro bias for
the entire flight, compared to a reference bias obtained at
standstill after the flight. Again, spikes due to deteriorating
GPS quality are evident; however, the close relationship
between the estimated bias and the standstill reference is
obvious.

VII. CONCLUDING REMARKS

In this paper we have presented a semiglobally stable
nonlinear observer for GNSS/INS integration, where the at-
titude is represented by a unit quaternion. Experimental
results, based on data gathered using a light fixed-wing
aircraft, show that the approach has promise, although it is
currently sensitive to deterioration in the quality in the GNSS
measurements. Increased robustness against this type of error
is an interesting topic for future work. Also of interest is the
estimation of accelerometer bias, which could be based on
previous work by the authors [12], [13].
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