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ABSTRACT

A nonlinear observer for automotive vehicle velocity esti-

mation in presence of varying friction and road bank an-
gles is presented, and validated and compared to an Ex-

tended Kalman Filter (EKF) implemented for the same

purpose. The performance of the nonlinear observer is
as good as the EKF, while having significantly lower com-

putational complexity.

INTRODUCTION

Many active safety systems in automotive vehicles, for in-

stance yaw stability systems such as ESC/ESP, depend

on information about vehicle velocity, in particular lateral
velocity or side-slip angle, to be able to function properly.

However, the vehicle velocity is rarely measured directly
due to issues of cost and reliability, and must therefore

in general be inferred from other measurements, such as

wheel speed, steering angle, yaw rate, and acceleration
measurements.

Systems that use measurements and dynamic models to
infer dynamic state variables are often called state estima-

tors, or observers. Nonlinear dynamic models and mea-
surement equations call for nonlinear techniques. The

predominant nonlinear state estimation technique is the

use of the Extended Kalman Filter (EKF). Although the
EKF has proved its performance in countless applications,

it has some potential drawbacks with respect to especially

computational complexity, but also tuning and in some
cases, lack of analytical stability guarantee.

This paper reports on the development of a nonlinear ob-

server for vehicle velocity estimation, based on nonlinear

analysis techniques. This is an overall velocity observer
with adaptation of the maximum friction coefficient and the

road bank angle. The detailed development of the differ-

ent parts of the observer is described in [12, 11, 7, 6, 10],

∗Also affiliated with NTNU, Department of Engineering Cybernetics,
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and will be briefly summarized herein. Furthermore, we
want to assess, to a certain degree, its performance in

terms of accuracy and robustness, tuning, and compu-

tational complexity, in comparison with the EKF [19] ap-
plied to the same problem. The sensor suite assumed

provides us with the fairly standard measurements men-

tioned above, but in addition both the nonlinear observer
and the EKF use longitudinal and vertical acceleration

sensors.

Earlier work on observers for estimation of lateral velocity

is mainly based on linear or quasi-linear techniques, for
example [4, 22, 20, 3]. A nonlinear observer linearizing

the observer error dynamics is proposed in [13, 14]. The

same type of observer, in addition to an observer based
on forcing the dynamics of the nonlinear estimation error

to the dynamics of a linear reference system, are investi-

gated in [9]. The problem formulation there assumes that
the longitudinal wheel forces are known, similarly to the

observer implemented in ESP [21]. In our work, we do
not make this assumption, as such information is not al-

ways available.

An EKF is used for estimating vehicle velocity and tire

forces in [17, 18], thus without the explicit use of friction

models. A similar, but simpler, approach is suggested
in [3]. An EKF based on a tire-road friction model which

also includes estimation of the adhesion coefficient and
road inclination angle is suggested in [19]. In [1], the use

of an EKF based on a nonlinear tire-road friction model

is considered, which also includes estimation of corner-
ing stiffness. The strategy proposed in [15] combines dy-

namic and kinematic models of the vehicle with numerical

band-limited integration of the equations to provide a side-
slip estimate. In [8] the side-slip angle is estimated along

with yaw rate in an approach which is similar to the one
considered herein, but without yaw rate measurements.

The approach is validated using experimental data, but

no stability proofs are presented.
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VEHICLE MODELING

For a more complete description of the vehicle model, we

refer to [12, 11, 14]. Here, we briefly sum up the vehicle
model in the horizontal plane as

v̇x = vyr + ax, (1a)

v̇y = −vxr + ay − g sin φR, (1b)

ṙ =
1

Jz

4
∑

i=1

gT

i R(δi)Fi(vx, vy, r, δi, ωi; µH), (1c)

where vx and vy are longitudinal and lateral velocity of the

vehicle given in a body-fixed coordinate system with the

origin at the center of gravity (CG). The angular velocity
about the vertical axis of this coordinate system (the body-

fixed coordinate system) is r, often referred to as the yaw

rate. Furthermore, ax and ay are (measured) longitudinal
and lateral acceleration (in an inertial frame), respectively,

g is the acceleration of gravity, and φR is the road bank
angle. The vectors gi give the placement of wheel i in the

body-fixed coordinate system. The rotation matrix R(δi),
given by the wheel steering angle δi, rotates the forces Fi

acting on wheel i, from the wheel coordinate system to

the body-fixed one.

The friction forces at each wheel are typically modeled

as functions of the individual wheel tire slips, Fi =
Fi(λi,x, λi,y), where the tire slips λi,x and λi,y are mea-

sures of the relative difference in vehicle and tire longi-

tudinal and lateral velocity for wheel i. See [12, 11, 16].
Since these tire slips are functions of the dynamic states

and wheel steering angles and wheel speeds, we will

often write Fi = Fi(vx, vy, r, δi, ωi; µH), where we have
added µH to denote dependence on the road conditions

through the maximum tire-road friction coefficient. We
will sometimes, for notational convenience, use fy =
∑

4

i=1
(0 1)R(δi)Fi for the overall tire forces acting on the

vehicle in the lateral direction in the body-fixed coordinate

system, and fr =
∑4

i=1
gT

i R(δi)Fi for the torque about

the vertical axis generated by the friction forces.

LATERAL VELOCITY ESTIMATION: PROBLEM DE-
SCRIPTION AND OUTLINE OF APPROACH

The main challenge is to construct an estimate of the lat-
eral velocity vy, which dynamics can be described by (1b).

If we assume we have a good estimate of vx, we can ob-
tain an estimate of vy by integrating this equation since r
and ay are measured. However, measurement and esti-

mation errors will soon lead to divergence of this estimate,
and we thus need some feedback (an injection term) to

make the estimate converge. The only measurement that

depends on vy algebraically is ay, through the tire friction
model via Newton’s law. We write

may = fy(t, vy), (2)

where m is the vehicle mass. We have the fortunate situa-

tion that typically (for many tires and/or driving situations)

the partial derivative of fy with respect to vy is sign defi-

nite,

∂fy(t, vy)

∂vy

< 0, (3)

which, assuming we know the friction model and that the

road is flat, allows us to specify an observer by copying
the system dynamics (1b) (with φR = 0) and adding an

injection term,

˙̂vy = −vxr + ay − Kvy
(may − fy(t, v̂y)). (4)

Convergence follows if Kvy
> 0 (see [12, 11] for details).

Having good estimates of vy and vx, the vehicle body side-

slip angle β can be calculated as tanβ = −
vy

vx

.

However, the situation above is idealized since we have

assumed that the friction model is known perfectly, and

that the road is flat.

UNKNOWN FRICTION MODEL The road-tire friction

will vary significantly on different types of road surfaces.

Fortunately, most of the uncertainty in the friction model
can be lumped into one parameter denoted µH (the max-

imum tire-road friction coefficient), which can be said to

characterize the road surface; from µH ≈ 0.1 on wet ice
to µH ≈ 1.0 on dry asphalt. Based on a friction model pa-

rameterized in µH , the above observer can be extended
with adaptation of µH , using the techniques in [7, 6].

SLANTED ROADS On slanted roads, gravity affects the

horizontal acceleration measurements. Disregarding road

inclination, we will consider only road bank angle. A non-
zero road bank angle influences the dynamics through the

term g sin φR in (1b). It should be noted that for the sake of
notational simplicity, ay denotes the reading of the accel-

eration sensor, which (theoretically) is equal to the “real”

ay when there is no road bank angle.

Since a road bank angle also introduces a gravity compo-

nent in the wheel force balance, the effect of the road bank
angle will cancel out in (2) and thus the road bank angle

will not affect the injection term in (4). For this reason,
one approach could be to use a large gain (a large Kvy

)

in (4). However, this will amplify noise and friction model

uncertainty, and is therefore not a satisfactory approach
in practice.

One could imagine adapting φR similarly as for friction.
However, as g sinφR could be regarded an unknown input

in (1b), we have chosen to use techniques from “unknown
input observer”-theory, and combine this with an adapta-

tion law. The theory behind this can be found in [10].

As we have relatively good measurements of longitudinal

velocity through the wheel speeds, it turns out the effect of
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non-zero road inclination angle is not as crucial for the vx

estimate (except, perhaps, for very small vx) as non-zero
road bank angle is for the vy estimate. Hence we choose

not to estimate the road inclination angle.

OVERVIEW OF THE NONLINEAR OBSERVER

The implemented observer can be described by a num-

ber of ordinary differential equations derived using nonlin-

ear observer theory [12, 11, 7, 6] based on the dynamic
model of the vehicle and the friction model. The sensors

used are three-axis accelerometers (ax, ay and az) in ad-
dition to yaw rate r (angular rate about vertical axis). The

steering wheel angle (used to calculate individual wheel

angles, lumped into vector δ) and wheel speeds (ω) are
also measured.

LONGITUDINAL VELOCITY OBSERVER The ob-

server equation for longitudinal velocity is

˙̂vx = v̂yr + ax +

4
∑

i=1

Ki(t)(vx,i − v̂x). (5)

The functions (the time-varying gains) Ki(t) weights the

difference between the wheel speed measurement trans-
lated to longitudinal velocity of the CG, vx,i, and the esti-

mate v̂x. The gains vary with time to let the influence of
this difference vary, for example large longitudinal accel-

erations usually imply large slips, when vx,i is not a good

measurement of vx. See [12] for further details.

LATERAL VELOCITY OBSERVER The lateral velocity
observer makes use of the friction model:

˙̂vy = −rv̂x + ay − ŵ + Kvy
Λξ
(

may − f̂y

)

+
Γ2

Γ1

ζ (r − r̂) ,

˙̂r =
1

Jz

f̂r + Kr (r − r̂) ,

where Kvy
, Kr, Γ1 and Γ2 are positive gains, Λ is a (possi-

bly time-varying, state-dependent) positive scaling factor,

and ξ and ζ can be interpreted as partial derivatives of fy

and fr with respect to vy (evaluated using the estimated

states, see [6] for details). The friction forces on wheel
i (in the wheel coordinate system) are calculated via a

friction model, F̂i = Fi(v̂x, v̂y, r̂, δ, ω; µ̂H), based on the

estimated state variables and the measurements, and an
estimate of the maximum friction coefficient, µH (see be-

low and [7, 6]). Based on this, f̂y =
∑4

i=1
(0 1)R(δi)F̂i

is the estimated force in lateral direction in the body-fixed
coordinate system, and f̂r =

∑4

i=1
gT

i R(δi)F̂i is the es-

timated torque about the vertical axis generated by the
friction forces.

The estimate ŵ in the equation for v̂y is an estimate of
w = g sin φR, the influence of the road bank angle φR (see

below and [10]).

For low velocities, issues like decreasing signal-to-noise

ratios and accuracy of the friction model deteriorate the
lateral velocity observer performance. Thus, for longitudi-

nal velocities below 5 m/s, we make a smooth transition of

the observer estimates to a static estimate based on the
average front wheel steering angle δ,

tan β̂ = κδ, (6)

where κ is a constant given by the placement of the CG

relative to the front and rear axle.

FRICTION COEFFICIENT ADAPTATION LAW The fric-
tion coefficient adaptation law is

˙̂µH = Γ1Kvy
Λξµ

(

may − f̂y

)

+ Γ2ζµ (r − r̂) , (7)

where ξµ and ζµ are partial derivatives of fy and fr with
respect to µH (evaluated using the estimated states).

See [6]. The exact formulation of the adaptation law (that

is, ξµ and ζµ) depends on the chosen parameterization of
the friction model; either using a Taylor expansion [7] or a

linear parameterization [6].

The friction coefficient (and thereby vy) is only observ-

able under driving maneuvers that are persistently excit-
ing (PE). Supported by theory [6], it is possible to monitor

an excitation condition, and only adapt when this condi-

tion is fulfilled. Loosely speaking, driving maneuvers with
varying lateral velocity are PE. During periods of low ex-

citation, the friction coefficient is attracted to 1 for robust-

ness and safety reasons (a large friction coefficient gen-
erally gives lower lateral velocity estimates). Thus, friction

adaptation only occurs in periods with significant changes
in vy, and one could argue that these are exactly the peri-

ods when it is needed, since the purpose of adapting the

friction coefficient is to improve the vy estimate. Moreover,
it can be shown that when driving with vy = 0 (straight

ahead), the lateral velocity estimate will converge even

though the friction coefficient estimate will not. Thus, the-
oretically, only indefinitely long maneuvers with constant

non-zero vy (that is, driving in circles) are problematic, but
prolonged maneuvers of this kind are rare.

Another practical modification to the adaptation algorithm
is the implementation of an upper and (possibly time-

varying) lower bound on the friction coefficient. These as-

pects are covered together with stability and robustness
analysis in [7, 6].

ESTIMATION OF ROAD BANK ANGLE The road bank

angle can be viewed as an unknown input in the differ-
ential equation describing vy, hence we borrow from Un-

known Input Observer-theory [10]. The observer equa-
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tions for ŵ are

ż = −Kvy

(

may − f̂y

)

, (8a)

vm
y =

(

∂f̂y

∂vy

)

−1(

may − f̂y +
∂f̂y

∂vy

v̂y

)

, (8b)

ŵ = Kw(v̂y − z − vm
y ). (8c)

Here, we note that (8b) can be interpreted as an approx-

imate inversion of the friction model, (2). The notation
∂f̂y

∂vy

denotes the partial derivative of the friction model

with the estimated states inserted, thus this is essentially

the same as ξ above. When this partial derivative in (8b)

becomes small (in absolute value), which happens when
wheel side-slips are high, the friction model is not practi-

cally invertible. To avoid numerical problems at high side-
slips, we saturate the partial derivative such that it does

not become too small. This practical modification seem to

provide reasonably good road bank angle estimates also
in cases with high side-slips.

It has proven difficult to estimate the friction coefficient
and road bank angle at the same time, since, at least dur-

ing transients, a road bank angle is easily detected as
low friction (see e.g. [21]). Our approach to this problem

is to try to detect whether there is a non-zero road bank

angle. For this, we also use a measurement of vertical ac-
celeration, az. By default, the maximum road-tire friction

coefficient is adapted, but if a (significant) non-zero road

bank angle is detected, we estimate the bank angle in-
stead, and the estimate of the maximum road-tire friction

coefficient tends to 1 exponentially to ensure safer lateral
velocity estimates (it is easy to argue that in most appli-

cations, too small estimates, in absolute value, are safer

than too large). The drawback of this approach is that we
cannot expect good estimates if we have both low friction

and significant road bank angles. On low friction, inverting

the friction model will in this case not produce correct re-
sults since the friction coefficient is wrong. It should also

be pointed out that, in accordance with this approach, the
developed theory only covers either friction or road bank

angle adaptation, not changes in both simultaneously.

DISCRETIZATION For implementation in digital hard-

ware, the ODEs are discretized. Due to the short sam-
pling time, the use of moderate gains in the observer, and

the scaling factor Λ which scales the partial derivatives of
the friction model, we get good performance with simple

forward Euler discretization.

EXTENDED KALMAN FILTER (EKF)

Since we will compare observer performance with an EKF

(see e.g. [5] for a general introduction), we include a brief

description of the discrete-time EKF used. This EKF is
developed over many years, and is similar to the EKF

described in [19]. The dynamic model used is a linear

time-varying (LTV) one, obtained using the model (1) for

vx and vy (using r as a known time-varying quantity), and
first-order Markov models for the friction coefficient, road

inclination angle, and road bank angle.

The measurement equations are given by force and

torque balances via the nonlinear friction model for ax,
ay and ṙ (calculated from r using numerical differentia-

tion). In addition, vref , a “reference velocity” calculated

from wheel speeds (and using other information such as
longitudinal acceleration and brake flags, ABS flags, etc),

somewhat similar to (5), is used. The EKF also uses az,

by letting non-zero az influence the process noise covari-
ance matrix.

The fact that the model is LTV makes the implementation

more efficient. Furthermore, the Bierman algorithm [2] is

used for efficient, stable numerical implementation of the
measurement update process.

VALIDATION AND COMPARISON WITH THE EKF

IMPLEMENTATION Both the observer and the EKF are
implemented in Simulink as S-functions coded in C, ready

to be downloaded to in-vehicle target hardware using

the Real Time Workshop in Simulink1. The target hard-
ware in this case is a dSPACE MicroAutoBox2 running at

800 MHz. This hardware has floating point arithmetics.
The sampling rate of 100 Hz is no problem for the nonlin-

ear observer, nor the EKF, on this hardware.

COMPUTATIONAL COMPLEXITY The main properties

of interest of an implementation of an observer, are the ex-
ecution time and the memory usage. The execution times

are tested on the hardware mentioned above, while some
general comments are made about memory usage.

Execution times The execution times were obtained by

marking the Simulink subsystem containing the nonlinear

observer (and the one containing the EKF, respectively)
as an atomic subsystem. Custom code is added to mea-

sure the execution time from the beginning to the end of

the update part of the Simulink code for that subsystem.
As the output part of the Simulink code both for the non-

linear observer and the EKF consist of delivering the es-
timated states to the parent Simulink block, these are not

included in the measurement of the execution times.

Table 1 shows the average and maximum execution time

for both approaches, for a 20 s test run. The ratio between

the maximum execution times is close to three.

In interpretation of these numbers, it should be taken into

1Simulink, Matlab and Real Time Workshop are registered trade-
marks of The Mathworks, Inc., http://www.mathworks.com/.

2dSPACE GmbH, http://www.dspace.com/.
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Figure 1: Results for measurement set 1. The estimates from the nonlinear observer are plotted with a dashed line, while
the estimates from the EKF are plotted with a dotted line. Velocity measurements are plotted with a whole line in (a) and (b).

Nonlinear observer EKF

Mean 84.8 µs 253.5 µs

Maximum 86.6 µs 258.1 µs

Table 1: Execution times for the nonlinear observer and
the EKF

consideration that the EKF has been tested more exten-

sively than the nonlinear observer, and contains more

heuristics to tackle special cases. Nevertheless, the dif-
ference in execution times is significant, and considerably

larger than can be explained by these heuristics alone.

It is interesting to note that the friction model, including its

partial derivatives, dominates computations in the nonlin-
ear observer. The same friction model is used for both the

nonlinear observer and the EKF.

Memory usage We found no obvious way of measuring

memory usage of the nonlinear observer and the EKF on

the real time operating system.

However, some general comments about the differences

can be made. The number of estimated states are the
same in both applications, and both have the friction

model implemented in the same way (the EKF needs one
more partial derivative of the friction model than the non-

linear observer). The main difference is that the EKF must

store the 15 dynamic states related to the solution of the
Riccati equation. Therefore, we may expect that the mem-

ory requirements of the EKF are larger than for the nonlin-

ear observer. The extra logics and heuristics of the EKF
add to the memory requirements.

The code for the nonlinear observer is an order of magni-

tude smaller than the code for the EKF, in terms of lines
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Figure 2: Results for measurement set 2. The estimates from the nonlinear observer are plotted with a dashed line, while

the estimates from the EKF are plotted with a dotted line. Velocity measurements are plotted with a whole line in (a) and (b).

of code.

As a last remark on computational complexity, we note
that the differences found above are likely to be more sig-

nificant for production hardware — typically fixed-point mi-

croprocessors — since most of the computation consist of
floating-point operations.

OBSERVER TUNING The gains in the nonlinear ob-

server are the following:

• Kvy
: A typical value is Kvy

= 1/m, where m is the

vehicle mass. For this particular value, the vy-part
of the observer actually becomes independent of ay,

and therefore not directly influenced by errors in this

measurement.

• Kr: A typical value is 40. This is a rather high value,

which means that the estimate r̂ will follow the mea-
sured r closely. To further reduce computational com-

plexity, one may consider removing the estimation of
r. Choices regarding the value of Kr and whether

estimation of r should be included should be based

on the quality of the torque estimate computed by the
friction model, and issues related to graceful degra-

dation.

• Γ1: Used for friction adaptation. A typical value is 4.

• Γ2: Used for friction adaptation. This is typically

rather small, meaning that the yaw rate error has lim-

ited direct influence on the vy and µH estimates.

• Kw: Used for road bank angle estimation. A typical
value is 1.

The typical values mentioned above are the ones used

in the implementation (that is, all the plots) shown in this
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Figure 3: Results for measurement set 3. The estimates from the nonlinear observer are plotted with a dashed line, while

the estimates from the EKF are plotted with a dotted line. Velocity measurements are plotted with a whole line in (a) and (b).

paper. Moreover, a scaling factor Λ is used, as explained
in [6].

The tuning of the gains in the vx-part of the observer is
discussed in [12, 11]. We do not go into detail on this

issue here, since the longitudinal velocity-part of the ob-
server does not have a direct counterpart in the EKF. The

EKF calculates a reference speed based on the wheel

speed measurements externally (note that this calcula-
tion is included in the measurement of the EKF execution

time). This can be compared to the logic behind the gains

Ki(t) in (5), and we thus keep this out of the tuning com-
parison.

The EKF estimates 5 states (including road inclination an-

gle, but not r) and uses 4 measurements (ay, ax, r and

the reference speed vref ) in the update equations. The
number of tuning-parameters for the observer is consid-

erably smaller than for an EKF with the same number of
estimated states, which needs a 5×5 process noise mea-

surement matrix and a 4 × 4 measurement matrix. If di-

agonal measurement and process noise covariances are
assumed (as is the case in the EKF implementation con-

sidered here), then the number of tuning parameters for
the EKF is 9, while the observer has 5.

In addition, the EKF uses considerable logic to change
these covariance matrices based on the driving condition

and (other) measurements such as az, which results in

more tuning parameters. The nonlinear observer (exclud-
ing the vx-part) includes logical functions for choosing be-

tween adaptation of µH and φR, and monitoring of the PE
condition for friction adaptation.

Both the EKF and the nonlinear observer include some
linear filtering (mostly low-pass) for signal conditioning.
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Figure 4: Results for measurement set 4. The estimates from the nonlinear observer are plotted with a dashed line, while

the estimates from the EKF are plotted with a dotted line. Velocity measurements are plotted with a whole line in (a) and (b).

EXPERIMENTAL PERFORMANCE Plots comparing

the estimates from the nonlinear observer and the EKF
are shown in Figures 1- 5. The test data used covers:

• straight driving and slalom on a high-friction surface

with road bank angle (Figures 1 and 2);

• circle/slalom on a low-friction surface (Figure 3);

• sudden steering maneuvers on low-friction surface

(Figure 4);

• slalom on a low-friction surface (Figure 5).

The data sets cover driving both on low friction surfaces

and on banked roads (although, not at the same time).
The data set in Figure 3 covers start-up from zero speed,

and coming to a full stop. The general impression is that

the performance of the nonlinear observer is as good as,

or better, than the EKF.

Slalom maneuvers are generally easiest to estimate, and
the observer handles this type of situation well. Driving in

a circle is more of a challenge, because circle maneuvers

with different radii and velocities can result in the same
lateral acceleration. In terms of friction adaptation, PE

becomes an issue in this type of situation, as explained

earlier. However, the observer also handles most of these
situations well, and actually considerably better on real

data than in simulations. The main reason for this is that
in reality it is hard to drive in perfect circles. Hence, in

practical situations there will always be some excitation.

From Figure 4, it is clear that the strategy of letting the

friction coefficient estimate go back to one in periods of

low excitation differs for the two approaches. The EKF
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Figure 5: Results for measurement set 5. The estimates from the nonlinear observer are plotted with a dashed line, while

the estimates from the EKF are plotted with a dotted line. Velocity measurements are plotted with a whole line in (a) and (b).

rapidly increases the friction coefficient estimate, while in

the nonlinear observer it is increased more slowly, based
on the excitation criteria. This could be looked upon as

a performance vs. robustness issue. It should be men-
tioned that the EKF uses information from the ESP sys-

tem for friction estimation, by increasing the gain in the

friction adaptation when the ESP flag is set. The variation
in the friction coefficient is largely explained from this. The

nonlinear observer does not utilize ESP information.

ROBUSTNESS With adaptation of the friction coeffi-
cient and road bank angle, the observer becomes robust

to changes in these, as can be seen in the plots in the

previous section.

Although it seems the observer works fine for the data

sets presented here, it should be noted that there is still

room for improvement in certain regards. In particular, this

is true when it comes to distinguishing between changes
in friction and changes in road bank angle. If a road bank

angle is not detected quickly enough, the adaptation of
the friction coefficient may lead to significant errors in vy.

We can see an indication of this in Figure 1; before the

road bank angle is detected, the observer estimates a low
friction coefficient. If this continued for a longer period

of time, the error in vy would become large. Using az

for detection of road bank angle seems to work fine in
many cases, but further validation under a wider range of

conditions is needed.

To test for robustness with respect to parameters such as

mass and position of the CG, we the mass (in the ob-
server) is increased by 200 kg, the yaw moment of inertia

is increased by 20%, and the position of the CG is shifted

backward by 20% of the length from the front axle. This

9



has little effect on performance. Figure 6 shows vy and µH

for a data set with increasing vx and circle/slalom maneu-
ver on low friction. The performance is good, only slightly

worse than the results obtained using the correct param-

eters (not plotted). The only notable difference is that the
friction adaptation becomes somewhat slower. The EKF

is tested with the same parameter errors, and it is hard to
see any influence (the error around 57 s is present also

for nominal parameters).

Similar observations are made when parameters in the

friction model are altered. The observer seems quite ro-

bust with respect to limited perturbations in the friction
model, but the speed of the friction adaptation can be in-

fluenced.

FAULT TOLERANCE AND GRACEFUL DEGRADATION
The tests of fault tolerance and grateful degradation are

limited to setting the steering wheel angle measurement

to zero (Figure 7), and setting the lateral acceleration
measurement to zero (Figure 8) for the same data set as

above. We consider this data set to be fairly representa-
tive.

Although the nonlinear observer misses the first lateral
motion (at around 10 s) when the steering wheel angle

is set to zero, its performance must be said to be good,

and much better than the EKF. The somewhat surprisingly
good performance can be attributed to the adaptation of

the low friction coefficient. On higher friction surfaces we
get larger errors, but other data sets confirm that the non-

linear observer handles this better than the EKF.

When the lateral acceleration measurement is missing,

the EKF handles this in a safer manner, in the sense that

the velocity estimates become smaller (in absolute value)
than the real ones. The EKF also seems to extract more

information about the friction coefficient than the nonlinear
observer in this case. The reason for this may be higher

feedback from the yaw rate measurement to the lateral

velocity and friction coefficient estimates.

FREQUENCY DOMAIN COMPARISON It is interesting
to compare the performance of the nonlinear observer

and the EKF in the frequency domain. To do this, we
identify linear models, using measurements of lateral ac-

celeration and yaw rate as inputs, and estimates of the

lateral velocity as output. The identification is done using
the prediction error method implemented in Matlab’s Sys-

tem Identification Toolbox (the pem function). All models

identified are of order 12, based on the same data set (a
slalom maneuver on a low friction surface).

The identified transfer functions are plotted in Figures 9

and 10. Note that all phases start from -180◦, since there

is a negative gain from ay and r to vy. The need for this

negative gain can be deduced from (3) for ay, and similarly

for r.

From the transfer function from ay to vy (Figure 9), it

appears that the EKF has a significantly higher steady-
state/low-frequency gain. However, since the only low-

frequency maneuver in practice (and in this data set) is
driving along a straight path which means near-zero ay

and vy, one should probably not attach much significance

to this. It is more interesting to note that the gain of the
nonlinear observer falls more quickly at high frequencies,

indicating a more low-pass nature. Another indication

of this, is that the phase of the nonlinear observer falls
by 180◦, while the phase of the EKF falls only by 90◦.

Looking closely at the earlier plots, it appears that the
vy estimates from the nonlinear observer are somewhat

smoother than the corresponding ones from the EKF.

Since the vy part of the nonlinear observer has a first-

order nature from ay to vy, the second-order like transfer

function demands some explanation. The likely cause is
that for low slips, the term Kvy

Λξ in the equation for ˙̂vy

with the present tuning is approximately equal to 1, mean-
ing that ay is canceled out of the expression. Thus, the

lateral acceleration affects vy mainly through the friction

estimate, that is, through two differentiations.

Another interesting observation is that the bandwidths of

the nonlinear observer and the EKF are very close, may
be slightly higher for the nonlinear observer.

The transfer functions from r to vy (Figure 10) seem to

be rather similar for the EKF and the nonlinear observer.

Also here the nonlinear observer and the EKF have similar
bandwidths. It is interesting to note that both approaches

utilize more high-frequency information from the lateral

acceleration measurement than from the yaw rate mea-
surement.

CONCLUSION

A nonlinear observer for vehicle velocity, robust with re-
spect to changes in the road-tire friction and road bank

angle, is presented, and validated and compared to an

EKF designed for the same purpose.

The nonlinear observer performs well, as well as the EKF
and sometimes better, when applied to a fairly wide range

of test data sets, some of which are presented here. How-

ever, it should be mentioned that the EKF has been more
extensively tested, and contains some logic and heuristics

to handle special situations robustly, which the nonlinear

observer may not have been tested for.

The main advantage of the nonlinear observer lies in its
simplicity. This manifests itself in little code and easy-

to-understand implementation, and in low computational

complexity. In the implementation considered here, the
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(b) Estimated friction parameter µH

Figure 6: Results for measurement set 6 with parameter errors in the observer and the EKF. The measurements are plotted
with a solid line, the nonlinear observer with a dashed line and the EKF with a dotted line.
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Figure 7: Results for measurement set 6 with steering angle measurement set to zero in the observer and the EKF. The
measurements are plotted with a solid line, the nonlinear observer with a dashed line and the EKF with a dotted line.
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Figure 8: Results for measurement set 6 with lateral acceleration measurement set to zero in the observer and the EKF. The

measurements are plotted with a solid line, the nonlinear observer with a dashed line and the EKF with a dotted line.
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Figure 9: Transfer function from ay to vy for the nonlinear observer and the EKF.
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Figure 10: Transfer function from r to vy for the nonlinear observer and the EKF.

execution time of the nonlinear observer is about one-third

of the execution time of the EKF. These advantages can
be crucial when it comes to implementation on production

hardware — typically cheap, fixed-point microprocessors.

A further advantage is simplicity of tuning, and in some

cases, the analytical stability analysis will be considered
an advantage.
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