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Nonlinear Observer with Time-Varying Gains for Inertial Navigation

Aided by Satellite Reference Systems in Dynamic Positioning

Torleiv Håland Bryne, Thor I. Fossen and Tor A. Johansen

Abstract— The measurement quality of Global Navigation
Satellites Systems (GNSS) during marine operations will vary
over time. Inherently, GNSS quality changes should be handled
when GNSS is utilized as aid in inertial navigation systems.
In this paper we present an observer for estimating posi-
tion, velocity and attitude with time-varying gains for high-
performance sensor fusion based on GNSS quality and other
quality indicators. The origin of the error dynamics is proven
to be uniformly semiglobal exponentially stable. The concept
is illustrated by simulating a vessel operating in dynamic
positioning with GNSS and inertial sensors.

I. INTRODUCTION

A strapdown inertial navigation system (INS) is mounted

on a navigating object or vehicle and therefore moves to-

gether with the respective body in question. The estimated

position, velocity and attitude (PVA) provided by the strap-

down INS is based on double and single integration of

accelerometer and gyroscope measurements, respectively.

Standalone INS estimates can be accurate over shorter

time horizons, however inertial sensor errors such as biases,

scale factors and alignment errors propagate through inte-

gration and leads to degraded performance over time. As

a consequence, INS is aided by other sensors or position

reference systems to combat the long term drift of the PVA

estimates.

Integration of INS and GNSS is far from novel. May-

beck [1] presents aided navigation by utilizing the extended

Kalman filter (EKF). GNSS aided navigation is the primary

focus of Farrell [2]. A disadvantage of the EKF is the lack

of global stability guarantees due to linearization about the

given trajectory. Nonlinear observer theory offers a way

around these potential limitations and is applied in this paper.

In the last two decades several nonlinear observers for

attitude estimation have been presented. The basis for these

observers has either been a direct attitude measurement or

resolving the attitude with vector measurements. The latter

concept is based on comparison of vector measurements with

their respective reference vectors in a given reference frame.

The first principle was utilized in [3]–[5], whereas Mahony
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et al. [6], Hua [7], Batista et al. [8]–[9] and Grip et al. [10]

utilized vector measurements to estimate the attitude.

Integration of strapdown INS and GNSS with nonlinear

observer theory was first demonstrated by Vik and Fossen

[5]. The work of Vik and Fossen is based on the assump-

tion that the attitude could be resolved independently from

other measurements. A direct attitude measurement was not

needed in Hua [7] and Roberts and Tayebi [11] where the

INS/GNSS integration was carried out with linear GNSS ve-

locity measurements together with inertial and magnetometer

measurements. More recently, Grip et al. [12] estimated

position, velocity and attitude by utilizing a rotation matrix as

attitude representation with the framework of interconnected

observers from [13]. The origin of the INS/GNSS integration

error dynamics was proven to be global exponential stable.

A semiglobal result was presented in Grip et al. [14] where

the unit quaternion was utilized as attitude representation.

The work of [12] and [14] included gyro bias estimation

and feedback from estimated linear acceleration in inertial

coordinates.

The results in Grip et al. [14] are valid with fixed observer

gains related to the estimation of translational motion. The

gains related to the attitude and gyro bias estimation can

be time-varying as long they are sufficiently large. When

GNSS quality changes should the observer gains be modified.

GNSS quality can e.g. be affected by changes in satellite con-

stellation or satellite shadow when approaching an offshore

installation. Such quality changes can occur during dynamic

positioning (DP) of ships and marine vessels. A DP vessel is

defined in Fossen [15, Ch. 12.2.10] as: “A free-floating vessel

which maintains its position (fixed location or predetermined

track) exclusively by means of thrusters”.

A. Contribution of Paper

This paper expands the work of Grip et al. [14] with

a modified problem formulation and sensor configuration;

customizing the observer for surface vessels in order to

obtain high performance and robust sensor fusion. The two

main contribution of this paper can be summarized as:

• In general, the GNSS height measurement has low

precision. For operations at the (known) sea surface

level, this measurement is replaced with a virtual mea-

surement of the integrated height, i.e. p0nz =
R t

0
pnzdt,

to achieve increased performance related to estimation

of heave and vertical acceleration in the North, East,

Down reference frame.



• Expanding the work of [14], related to the estimation of

translation motion, by introducing time-varying gains.

In marine applications such as DP are time-varying

gains beneficial when GNSS quality changes. This can

e.g. prevent unnecessary measurement noise to prop-

agate from the estimates to the control system when

GNSS quality is reduced. Such gain strategy has the

potential to reduce fuel cost, emissions from engines

and wear of mechanical equipment such as thrusters.

B. Notation and Preliminaries

The transpose of a matrix M and vector v is denoted M|

and v|, respectively. The identity matrix is denoted, In⇥n

where n is the dimension. A block diagonal matrix is defined

as M := blkdiag{M1, ...,Mn} for some square matrices

M1 to Mn. Moreover, the Euclidean and Frobenius norms

are denoted k · k.

The unit quaternion is defined as q := [s, r|]| where the

s 2 R denotes the real part whereas, r 2 R
3 constitutes the

vector part and is given as r = [r1, r2, r3]
|. The conjugate

of q is denoted q⇤ and is given as q = [s, �r|]|. Moreover,

kqk = 1 from the unity constraint. The quaternion product

is denoted q = q1⌦q2, for two unit quaternions q1 and q2,

respectively.

The rotation matrix is denoted R 2 SO(3) and can be

calculated according to R(qn
b ) = I3⇥3 +2sS(r) + 2S(r)2,

as in e.g. [14], where S(·) denotes the skew-symmetric

matrix and is given such that v1 ⇥ v2 = S(v1)v2 for two

given vectors v1,v2 2 R
3.

This paper employs two reference frames. The North,

East, Down (NED) and the BODY frame, denoted n and

b, respectively. The BODY frame is fixed to the vessel. For

marine surface vessels, employing local navigation, NED

is assumed to be nonrotating and fixed to the average sea

surface level.

II. PROBLEM FORMULATION

We state the problem formulation for local navigation by
considering

ṗ
n = v

n
(1)

v̇
n = f

n + g
n

(2)

q̇
n
b = T q(q)ω

b
b/n (3)

ḃ
b

g = 0. (4)

where pn, vn and fn denote the position, velocity and

specific force in NED, respectively. Moreover, an additional

state of integrated vertical position, i.e. p0nz =
R t

0
pnz dt or

ṗ0nz = pnz (5)

is introduced. qn
b is the unit quaternion between BODY and

NED. ωb
b/n is the angular velocity of BODY with respect to

NED expressed in BODY. The three gyro biases are denoted,
bbg . Finally, T (qn

b ) is defined as:

T (qn
b ) :=

1

2

2

6

4

�r1 �r2 �r3
s �r3 r2
r3 s �r1
�r2 r1 s

3

7

5

,

(6)
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Fig. 1. Observer Structure. The attitude and observer translational motion
observer is denoted Σ1 and Σ2, respectively. Σ1 provides an estimate of

the unit quaternion, q̂, together with an estimate on the gyro biases, b̂
b
.

The latter is estimated to improve the estimate of q̂. The signals q̂n
b and σ̂

are utilized by Σ2 to estimate the specific force, f̂
n

, in NED as seen in

(9d)–(9e). Moreover, f̂
n

is fed back to Σ1 and is utilized as a reference
vector in the attitude estimation.

for qn
b = [s, r|]|. The system (1)–(4) is based on the

formulation in [14] with the difference that NED is the

navigation frame and the gravity vector, gn, is known. This

is valid in DP since the operation is confined to a small

geographical area. Then, the gravity error components will

be significantly less than the GNSS standard deviation. The

total feedback interconnected observer is illustrated in Fig.

1 and described in Section III-A and III-B.

A. Sensor Configuration

The results in this paper are based upon the following

sensor configuration of IMU, GNSS, compass and virtual

measurements:

1) Horizontal position measurement from GNSS given in

NED: pn
gnss,xy = diag{pnx , p

n
y}

2) Virtual measurement: p0nz = 0, for all t � 0, moti-

vated by Godhavn [16]. The mean vertical position

of the vessel is assumed zero over time since the

wave-induced motion in heave oscillates about the sea

surface. Hence, from Godhavn [16], the following can

be stated: lim
T!1

1
T

R T

0
pnz (t)dt = 0.

3) Angular velocity measurement in BODY from a three

axis rate gyro with biases: ωb
IMU = ωb

b/n + bbg . The

biases, bbg , in (4) are constant.

4) Acceleration measurements providing specific force in

BODY: f b
IMU = f b. Accelerometer biases are assumed

to be compensated at system start up or by online

estimation, utilizing e.g. Grip et al. [10, Sec. VI], if

the acceleration is persistently exciting.

5) Heading measurement from a compass:  c =  .

B. Assumptions

As in [14], the bounds of the specific force and the gyro

biases are denoted, Mf and Mb. Also here is the angular

velocity, ωb
b/n, and the time derivative of the specific force,

ḟ b, assumed to be uniformly bounded. Moreover, there exist

a constant cobs > 0 such that for all t � 0, kcb ⇥ f bk �
cobs, 8t � 0, yielding uniform observability.

III. NONLINEAR OBSERVER DESIGN

As seen in Fig. 1, the nonlinear observer for estimating

PVA is constructed in two steps. The first stage is to estimate



the attitude, represented by the unit quaternion qn
b . The three

gyro biases, bbg , are also estimated. The second stage is to

estimate the velocity and the position in NED by exploiting

the attitude estimate, q̂, and the injection term of the attitude

observer, σ̂.

The overall stability of the interconnected observer with

fixed gains was proven to be uniformly semiglobal exponen-

tially stable (USGES) by Grip et al. [14]. We will change one

of the attitude vector measurements before augmenting the

translation motion state space and expanding the translational

motion observer to handle time-varying gains.

A. Attitude Observer with Compass Vector Measurement

The attitude observer Σ1, similar to Grip et al. [14], is

given as

Σ1 =

8

<

:

˙̂qn
b = T (q̂n

b )(ω
b
b/n,IMU � b̂

b

g + σ̂) (7a)

˙̂
bbg = Proj(b̂

b

g,�kI(t)σ̂). (7b)

where the attitude estimate q̂ is represented as a unit quater-

nion and the gyro bias estimate is denoted b̂
b

g . However,

the Earth’s rotation is neglected. The injection term, with a

compass vector measurement, is given by

σ̂ = k1(t)f
b ⇥R(q̂)|f̂

n
+ k2(t)c

b ⇥R(q̂)|cn (8)

where kI(t) > 0 in (7b) and the gains in (8) satisfies

k1(t) � kP and k2(t) � kP for some kP > 0. The vector

measurement based on  c, from the compass, is defined as

cb := [cos( c), � sin( c), 0]
| whereas the reference vector

is defined as cn := [1, 0, 0]|. f b is measured specific force

from the accelerometer. The estimate of the specific force

in NED, f̂n, is fed back to the attitude observer from the

translational motion observer, Σ2. See Fig. 1 and Section

III-B for details.

Finally, Proj(·, ·) denotes the parameter projection such

that the gyro bias estimate is confined to a compact set,

kb̂bgk  Mb, as with the previous results presented by Grip

et al. [10], [12] and [14].

B. Augmented Translation Motion Observer with Time-

varying Gains

The main result of this paper is obtained by extending the

work of [14] with:

1) The state space augmentation, p0nz =
R t

0
pnzdt

2) Introduction of a time-varying observer gains by re-

placing the combined high-gain/regular gain, K =
Kθ, with K(t) = #(t)Kθ as given in (9a)–(9d).

Kθ is defined as Kθ := ✓L�1
θ K0, where Lθ is given in

Appendix I. Design flexibility and performance enhancement

are obtained if #(t) is chosen properly.

The total augmented observer Σ2 is given as

Σ2 =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

˙̂p0nz = p̂
n
z + ϑ(t)θKp0zp

0
z
p̃
0

z (9a)

˙̂pn = v̂
n + ϑ(t)θ2



0 Kpp

Kpp0z
01⇥2

� 

p̃0z
p̃xy

�

(9b)

˙̂vn = f̂
n
+ g

n + ϑ(t)θ3


0 Kvp

Kvp0z
01⇥2

� 

p̃0z
p̃xy

�

(9c)

ξ̇ = �R(q̂n
b )S(σ̂)f b

IMU

+ϑ(t)θ4


0 Kξp

Kξp0z
01⇥2

� 

p̃0z
p̃xy

�

(9d)

f̂
n
= R(q̂n

b )f
b
IMU + ξ, (9e)

where p̃0z = p0nz � p̂0nz and p̃xy = [pnx � p̂nx , p
n
y � p̂ny ]

| are

the innovation signals. ξ is an intermediate state providing

information of the translation motion to the specific force

estimate, f̂
n

. The signals q̂
n
b and σ̂ are provided by Σ1.

The observer structure can be written as:

x̂ = (A� #(t)KθC)x̂+Bd̂

= (A� #(t)✓L�1
θ K0C)x̂+Bd̂ (10)

with x̂ = [p0nz , (p̂n)|, (v̂n)|, (f̂
n
)|]| and d̂ =

R(q̂)(S(ωb
b/n+ b̃))f b

IMU + ḟ
b
). The unknown signals b̃ and

ḟ b are the estimation error of bbg from Σ1 given as b̃ =

bbg � b̂bg and the derivative of the specific force, respectively.

In addition, the remaining matrices from (10) are given as:

A =

2

6

6

4

0 0 0 1 01⇥3 01⇥3

03⇥1 03⇥3 I3⇥3 03⇥3

03⇥1 03⇥3 03⇥3 I3⇥3

03⇥1 03⇥3 03⇥3 03⇥3

3

7

7

5

,

B =

2

6

6

4

01⇥3

03⇥3

03⇥3

I3⇥3

3

7

7

5

,

C =

2

4

1 0 0 01⇥7

0 1 0 01⇥7

0 0 1 01⇥7

3

5

,

(11)

K0 =
h

Kp0zp0z
01⇥2 Kpzp0z

01⇥2 Kvzp0z
01⇥2 Kξzp0z

02⇥1 Kpp 02⇥1 Kvp 02⇥ Kξp 02⇥1

i|

,

The nominal stationary gain K0 can be chosen freely in

order to make A � K0C Hurwitz. ✓ � 1 is a high-gain

tuning parameter used to guarantee stability and robustness

with respect to the uncertainties in d̂. The time-varying scalar

#(t) � ⌧ > 0, can e.g. be chosen by taking into account the

horizontal GNSS accuracy reported by the GNSS receiver.

C. Stability Analysis

In order to state the main result of the total interconnected

observer, Σ1 � Σ2, the respective estimation errors of the

translational motion are defined in the following manner;

p̃0z := p0nz � p̂0nz , p̃ := pn � p̂
n, ṽ := vn � v̂

n and f̃ :=

fn � f̂
n

. The attitude and gyro bias estimation error are

defined as q̃ := qn
b ⌦ q̂

n⇤
b and b̃ := bbg � b̂

b

g , respectively.

The constraint of the unit quaternion yield zero estimation

error when s̃ = 1 or equivalently kr̃k = 0. Hence, s̃ = 0
corresponds to the maximum attitude error of 180� about

some axis. As in Grip et al. [14] we define a set Dq(✏) :=
{q̃ | |s̃| > ✏} which represents the attitude errors bounded

away from 180� by a margin determined by ✏ 2 (0, 1
2 ).

Furthermore, the combined estimation error of Σ1 is defined



as χ̃ := [r̃|, b̃|]| similar to [14], while the combined

estimation error of Σ2 is defined as x̃ := [p̃0z p̃, ṽ, f̃ ]
|. Now,

the main result is stated as:

Theorem 1 (USGES of Σ1–Σ2): Let D ⇢ R
10 be an

arbitrary compact set containing the origin, and let ✏̄ 2 (0, 1
2 )

be an arbitrary constant. Furthermore, let kP be chosen to

ensure stability according to [10, Theorem 1] for Σ1 with

known fn, with respect to some ✏ < ✏̄. Also let P = P | > 0
be the solution of the algebraic Riccati equation

AP + PA| +Q�2⌧PC|CP = 0 (12)

where Q = Q| > 0. Then, there exist a ✓⇤ � 1, a scalar

⌧ > 0 and a #(t) � ⌧ such that for ✓ � ✓⇤, some gain

K0 = PC| and constants K > 0 and � > 0 yield
p

kx̃k2 + kχ̃k2  Ke�λt
p

kx̃(0)k2 + kχ̃(0)k2,

for all initial condition such that (p̃0z(0) ⇥ p̃(0) ⇥ ṽ(0) ⇥
ξ̃(0)) 2 D, q̃(0) 2 Dq(✏̄), and kb̂bg(0)k  Mb. Conse-

quently, the origin of Σ1–Σ2 is USGES.

Proof: The error dynamics of p̃0z , p̃ and ṽ are given as

˙̃p0z = p̃z � #(t)✓Kp0

zp
0

z
p̃0z

˙̃p = ṽ � #(t)✓2


02⇥1 Kpp

Kpzp0

z
01⇥2

� 

p̃0z
p̃xy

�

˙̃v = f̃ + gn � #(t)✓3


02⇥1 Kvp

Kvzp0

z
01⇥2

� 

p̃0z
p̃xy

�

.

It can be shown that

˙̃
f = d̃� #(t)✓4



02⇥1 Kξp

Kξzp0

z
01⇥2

� 

p̃0z
p̃xy

�

,

where d̃ = (I3⇥3 � R̃
|

)R(qn
b )
�

S(ωb
b/n)f

b + ḟ
b� �

R̃
|

R(qn
b )S(b̃)f

b with R̃ = R(qn
b )R(q̂n⇤

b ) = R(q̃). Then,

the total error dynamics becomes

˙̃x = (A� #(t)KθC)x̃+Bd̃. (13)

The transformed error dynamics (Appendix I) with η :=
[⌘1,η2,η3,η4]

| where ⌘1 := p̃0z , η2 := p̃/✓, η3 := ṽ/✓2

and η4 := f̃/✓3, similar to [14], can be expressed as

1

✓
η̇ = (A�K0C)η + ρ(t, χ̃) (14)

where ρ(t, χ̃) = [0,0|

3⇥1,0
|

3⇥1,
1
θ4 d̃

|

]|. See Appendix I for

details.

The Lyapunov function candidate (LFC) is defined as

U := 1
θ
η|P�1η. Differentiation along the trajectories of

(14) gives

U̇ =
1

✓
η̇|P�1η +

1

✓
η|P�1η̇

= η|(P�1A+A|P�1)η � #(t)η|P�1K0Cη

� #(t)η|C|K
|

0P
�1η + 2η|P�1ρ(t, χ̃). (15)

By using that K0 = PC|, resolving the transposes and

exploiting that P = P | gives

U̇ = η|P�1(AP + PA|)P�1η

� 2#(t)η|C|Cη + 2η|P�1ρ(t, χ̃).
(16)

Furthermore, by inserting (12) into (16) gives

U̇ = �η|P�1QP�1η � 2(#(t)� ⌧)η|C|Cη

+ 2η|P�1ρ(t, χ̃).
(17)

Then, (17) can be simplified further since #(t) � ⌧ > 0
yielding,

U̇  �η|P�1QP�1η + 2η|P�1ρ(t, χ̃). (18)

Moreover, since kI3⇥3 � R̃
|

k = ks̃S(r̃)� S(r̃2)k  2kr̃k, a
bound of ρ(t, χ̃) can be given as kρ(t, χ̃)k  1

θ4 �1kχ̃k,

where χ̃ = [r̃|, b̃|]|, for some �1 > 0 independent of ✓.
Hence, U̇ can take the following form

U̇  λmin(Q)λmin(P
�1)2kηk2 +

2kP�1k

θ4
γ1kηkkχ̃k. (19)

Since the reference vector fn, in (7)–(8), is not known,

but estimated, we turn the attention back to the dynamics of

s̃. The attitude observer of (7)–(8), with the injection term

σ based on known fn and the error dynamics,

˙̃s =
1

2
r̃|R(qn

b )(b̃+ σ) (20)

˙̃r = �1

2
(s̃I3⇥3 � S(r̃))R(qn

b )(b̃+ σ) (21)

˙̃
b = �Proj(b̂

b

g,�kIσ), (22)

was proven to be USGES in Grip et al. [10]. First, Grip et al.

defines V (s̃) := 1 � s̃2 = kr̃k2 and V̇ = M � kP c
2
obs↵(s̃),

where ↵(s̃) = s̃2(1� s̃2). Moreover, from [10], a sufficiently

large kP and |s̃| = ✏ imply that V̇ = M � kP c
2
obs↵(✏). This

results in the trajectories not being able to escape the region

defined by |s̃| � ✏. Furthermore, ˙̃s can be expressed as

˙̃s =
1

2
r̃|R(qn

b )(b̃+ σ) + µ1, (23)

where µ1 = 1
2 r̃

|R(qn
b )(σ̂�σ), by taking into account (20)

and that σ̂, instead of σ, is utilized as the injection term.

Moreover, µ1 has the property |µ1|  1
2k1kf

bk kr̃k kf̃k 
�2kr̃k kf̃k for a �2 > 0 independent of ✓. We also write the

bound of µ1, |µ1|  ✓3�2kr̃k knk. By following the steps

of [14, Proof Theorem 1] we also have | ˙̃s|  1
2 (kb̃k+ kσ̂k).

Since kb̃k  M and σ̂ only consist of bounded signals we

have | ˙̃s|  Ms for a Ms > 0 independent of ✓.

Motivated by Grip et al. [14, Lemma 2], the bound of x̃

can be given as kx̃k  �, obtained for all t � T , for some �,

as presented in Lemma 1, Appendix II. Furthermore, � can

be defined as � := kP c2obs(↵(✏+ ✏̃/2)�↵(✏))/(2�2) > 0 and

T = ✏̃/(2Ms), where ✏̃ := ✏̄ � ✏, and let ✓ be sufficiently

large such that for all t � T , kx̃k  �. Then, as in [14,

Proof Theorem 1],

|s̃(T )| � |s̃(0)|�
Z T

0

| ˙̃s(t)| dt  ✏̄�Ms✏̃/(2Ms) = ✏+ ✏̃/2,

and for all t � T , |µ1|  �2kr̃k kηk  �2�  kP c2obs(↵(✏+
✏̃/2)�↵(✏))/2. Now, it follows for t � T that the derivative

of V (s̃) yields

V̇ M � kP c2obs ↵(s̃) + 2|s̃µ1|

M � kP c2obs(↵(s̃)� ↵(✏+ ✏̃/2) + ↵(✏)).



Then, with the reference to the proof of [10, Theorem 1] it

follows for |s̃| = ✏ + ✏̃/2 that V̇  M � kP c2obs↵(✏) < 0.

Hence, q̃ cannot escape the set Dq(✏ + ✏̃/2) ⇢ Dq(✏) and

we can assume |s̃| � ✏ in the remainder of the analysis.

By taking in account (21)–(22) and that σ̂ is the injection

term, the error dynamics of r̃ and b̃ are written

˙̃r = �1

2
(s̃I3⇥3 � S(r̃))R(qn

b )(b̃+ σ) + µ2 (24)

˙̃
b = �Proj(b̂

b

g,�kIσ) + µ3. (25)

Hence, µ2 and µ3 take the form, µ2 = 1
2 (s̃I3⇥3 �

S(r̃))R(qn
b )(σ � σ̂) and µ3 = �Proj(b̂bg,�kIσ) �

Proj(b̂bg,�kI σ̂). Then, kµ2k  �3kf̃k  ✓3�3kηk for

some �3 > 0 independent of ✓. From the properties of the

parameter projection, it can be shown that kµ3k  �4kf̃k 
✓3�4kηk for some �4 > 0 independent of ✓.

Furthermore, [10] also presents the LFC, W (t, r̃, s̃, b̃) =
V (s̃) + 2 l s̃ r̃|R(qn

b ) b̃ + l
2kI

b̃
|

b̃ > 0, 8 r̃, b̃ 6= 0. By

following the steps of [10, Proof, Theorem 1] result in

Ẇ  �
⇥

kr̃k kb̃k
⇤|



kP a� lM2 ?

� 1
2 (1 + 2 lMω) l ✏2

� 

kr̃k
kb̃k

�

(26)

where ? indicates symmetry, a > 0 and Mω � kωb
b/nk. l

is given in [10]. Moreover, from [10] for some sufficiently

large kP , can it be shown that Ẇ  �kχ̃k2 < 0 for some

 > 0. With the relations above we get that Ẇ is less or

equal than �kχ̃k2 plus the terms related to µ1, µ2 and µ3,

yielding that

Ẇ  �kχ̃k2 � 2s̃µ1 + 2lµ1r̃
|R(qn

b )b̃+ 2ls̃µ|

2R(qn
b )b̃

+ 2ls̃r̃|R(qn
b )µ3 +

l

kI
b̃
|

µ3.

Furthermore, by taking in account the bounds on µ1, µ2 and

µ3, it follows that

Ẇ  �kχ̃k2 + 2✓3�2kr̃k kηk+ 2l✓3�2kb̃k kηk

+2l✓3�3kb̃k kηk+ 2l✓3�4kr̃k kηk+
l

kI
✓3�4kb̃k kηk

 �kχ̃k2 + �5✓
3kχ̃kkηk

for an appropriate constant �5, independent of ✓.

Now, defining the LFC Y := U + 1
θ7W on the form of

�1(kηk2 + kχ̃k2)  Y  �2(kηk2 + kχ̃k2) where �1,�2 >
0. Then, the derivative of Y along the trajectories satisfies

Ẏ � �min(Q)�min(P
�1)2kηk2 + 2 �1

✓4
kP�1kkηkkχ̃k

� 1

✓7
kχ̃k2 + �5

1

✓4
kχ̃kkηk,

yielding

Ẏ �
⇥

kηk kχ̃k
⇤

"

�min(Q)�min(P
�1)2 ?

� 2kP�1kγ1+γ5

2θ4

κ
θ7

#



kηk
kχ̃k

�

,

where ? indicates symmetry. Clearly the first-order principal
minor, �min(Q)�min(P

�1)2 > 0, is positive. The second-
order principal minor,

1

θ7
λmin(Q)λmin(P

�1)2κ�
1

θ8
(2kP�1kγ1 + γ5)

2

4

is positive for ✓ > (2kP�1kγ1+γ5)
2

4λmin(Q)λmin(P�1)2 κ
. Inherently Ẏ 

��3(kηk2 + kχ̃k2) for some �3 > 0. By invoking the

comparison Lemma [17, Lemma 3.4] with the linear system

u̇ = ��3u, and the corresponding solution u(t) = u(0)e�β3t

yields Y (t)  Y (0)e�β3t for all t � 0. Consequently, the

equlibrium point [η|, χ̃|]| = 0 is USGES as defined in

Loria and Panteley [18, Def. 2.7].

Remark 1: The stability result of Theorem 1 is achieved

for a sufficiently large ✓ and kP , respectively. By studying

the proof one can calculate the explicit minimum values of ✓

and kP . However, ✓ and k1(t), k2(t) � kP will probably be

unnecessary large due to the conservative nature of the proof.

Therefore, the choice of gains should be based on careful

tuning such that unnecessary amplification of sensor noise is

prevented. Moreover, high gains in discretized systems can

result in numerical instability. Hence, the gains should be

chosen with care.

IV. CASE STUDY

This section presents a case study with time-varying

gains illustrating how such gain strategy can yield higher

performance and a more robust sensor fusion when GNSS

quality changes.

A. DP Vessel and INS Configuration

The GNSS aided INS was applied to a simulated supply

vessel in DP operation with two-set points. The vessel was

exposed to environmental disturbances. These were irrota-

tional current with fixed speed and first-order wave loads

utilizing the JONSWAP wave spectra, see Fossen [15, Ch. 8]

for details. The total 6 degrees of freedom vessel motion data

were obtain using the Marine System Simulator [19] at 100
Hz. From this IMU data was generated at the same frequency.

The GNSS’ position measurements were obtained at 5 Hz.

Zero mean Gaussian noise was added to all measurements

Finally, the three axis gyro biases were simulated using

bbg = 10�3 · [�55, 35, �40]| rad/s.

B. Implementation

There exist other alternatives to calculate σ̂ than stated

in (8). First, in the implementation we utilized a saturated

estimate of f̂
n

, denoted satMf
(f̂

n
), in order to prevent

any peaking effects from initial transients to propagate from

Σ2 to Σ1. Then, the choice of measurement and reference

vectors, in the calculation of σ̂, was made with inspiration

from the Triad algorithm [20]. The first vector pair was

chosen to be the normalized versions of f b and satMf
(f̂

n
),

respectively. The second vector pair was chosen to normal-

ized versions of S(f b)cb and S(satMf
(f̂

n
))cn, respectively.

The proof of Theorem 1 is still valid for a uniformly bounded

and Lipschitz continuous σ̂ with respect to satMf
(f̂

n
).

The innovation signal p̃0z should be high-pass filtered to

remove any slow varying terms related to the height. These

can e.g. come from tidal components. This also gives a low-

pass effect since integration and high-pass filtering yield,

h(s) =
1

s
·

Th s

Ths+ 1
= Th ·

1

Ths+ 1 .

(27)



Then, the high-pass filtered innovation can be extracted as:

p̃0z,h = � 1

Th
xf + p̃0z, (28)

where xf is the low-pass filtered innovation signal.

The numerical integration was carried out with RK4 and

the corrector-predictor scheme presented in [15, Ch.11.3.4].

C. Tuning and Gain Structure

The gains of Σ1, on compact form ga =
[k1(t), k2(t), kI(t)]

|, were chosen as:

ġa = � 1

T
ga +

1

T
ka,

(

ka = [20, 20, 1]| if t  100

ka = [0.55, 1, 0.01]| else.

with T = 25 s to speed up convergence of the q̂
n
b and b̂

b

g .

This strategy was compared to simulation with fixed attitude

gains given as k1 = 0.55, k2 = 1 and kI = 0.01.

The nominal gain of Σ2, K0, is obtained by solving (12)

with A, C, Q and the scalar ⌧ as design parameters. #(t) can

be chosen to any value larger than ⌧ > 0. #(t) was based on

the reported horizontal RMS error from the GNSS receiver.

However, in addition to be GNSS noise dependent is also a

higher initial #(t) reasonable to speed up the convergence of

Σ2. The following structure was chosen for #(t):

#(t) = #0 + #1 + #2 (29)

where #0 = 0.5 and #1 = b · e�a·ef with a = 2 and b = 1.5.
ef is obtained by filtering the horizontal RMS GNSS error,
erms,xy , with a first-order low-pass filter with time constant,
T = 125 s. erms,xy can be computed as:

erms,xy =
q

σ2
x + σ2

y = σure ·HDOP (30)

such as in [21, Eq. (2.27)] where �x and �y are the north and
east GNSS standard deviation, respectively whereas HDOP
is the horizontal dilution of precision. �ure is the standard
deviation of the user equivalent range measurements. The
signal #2 is calculated as

ϑ̇2 = �
1

T
ϑ2 +

1

T
k,

(

k = 1 if t  100

k = 0 else
.

(31)

with T = 25 s and is used to prescribe a higher gain initially

in order to obtain faster convergence. After some time #2
will vanish and #(t) will only depend on #0 and #1. Such a

strategy introduces additional degrees of freedom in the sense

that the position, velocity and acceleration estimates will

be less sensitive to high GNSS measurement noise. Other

methods instead of (29)–(31) can also be used.

The parameters related to K0 were chosen as ⌧ = 1/2
and Q = blkdiag{50, 0.5 · I3⇥3, 0.08 · I3⇥3, 0.0025 · I3⇥3},

yielding Kp0

zp
0

z
= 5.4295, Kpp0

z
= 2.2396, Kvp0

z
= 0.4454,

Kξp0

z
= 0.0354 and Kpp = 0.9513 · I2⇥2, Kvp = 0.3275 ·

I2⇥2, Kξp = 0.0354 · I2⇥2, respectively. ✓ was chosen to

✓ = 1. The time constant of the high-pass filter was chosen

as to be Th = 600 in order to compensate for the slowly

varying effect of ocean tides.
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Fig. 2. Horizontal position of the DP vessel. Blue: True position. Red:
Estimated position.
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Fig. 3. Horizontal GNSS RMS accuracy.

D. Results

This section presents the simulation results. Fig. 2 shows

the true horizontal position and estimates, respectively of the

vessel during DP operation with two set-points. Furthermore,

Fig. 3 shows how the reported horizontal GNSS RMS

accuracy is reduced between time t = 600 s and t = 700 s.

The resulting #(t) is shown in Fig. 4 where one can observe

the effects of the three gain components. For approximately

t < 150 s is the dominating terms of (29), #0 and #2.

#2 vanishes after t > 150 s. Furthermore, #0 is the main

component of # in the time interval t = [600� 700] s since

#1 is the exponential decaying when GNSS accuracy is low.

The quality of heave estimates are shown in Fig. 5. It is

seen that the heave estimates have a positive phase relative

to the actual heave signal. This is to due to the high-pass

filtering of the innovation signal p̃0z . Reduction of the phase

can be obtained with a different high-pass filter and by tuning

of the filter time constant, Th, as done in [16].

The estimation error of p̃ with time-varying and fixed

gains are presented in Figs 6 and 7, respectively. The RMS

error of the position estimates, when GNSS quality was

low with variable gains, resulted in erms,p̃x
= 0.6977 and

erms,p̃y
= 0.5751, while the RMS errors were erms,p̃x

=
0.8158 and erms,p̃y

= 0.8894 with fixed gains.
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Fig. 4. The time-varying gain component, ϑ(t), in Σ2. Blue: Simulation
with time-varying ϑ(t). Red: Simulation with fixed ϑ(t).
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Fig. 5. Illustration of the heave estimate quality. Blue: Heave of vessel.
Red: Estimated heave.
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Fig. 6. Position estimate error, p̃ with time-varying gains. Blue: p̃x. Red:
p̃y . Green: p̃z .
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Fig. 7. Position estimate error, p̃ with fixed gains. Blue: p̃x. Red: p̃y .
Green: p̃z .

The time evolution of the attitude gains can be seen in

Fig. 8. Furthermore, in Figs. 9 and 10, the attitude estima-

tion error are presented with time-varying and fixed gains,

respectively. The convergence of the attitude estimates are

observed to be significantly faster with time-varying gains.

Such functionality is particular useful if a critical fault has

occurred and the observers are re-initialized. By comparing

Figs. 9 and 10 one can also observe less attitude error in

roll and pitch with the time-varying gains when the GNSS

quality was low. This is due to ξ, in (9d)–(9e), was less

affected by the GNSS noise in the time-varying case since

#(t) was reduced. Inherently, since f̂
n

, in (9e), is utilized as

reference vector in Σ1, the attitude will be less affected by

GNSS noise. Finally, Fig. 11 show the decaying gyro bias

estimation error when time-varying gains are utilized.
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Fig. 8. Time-varying attitude gains. Blue: k1(t). Red: k2(t). Green: kI(t)
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Fig. 9. Attitude estimation error, given in Euler angles, with time-varying
gains. Blue: Roll. Red: Pitch. Green: Yaw
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Fig. 10. Attitude estimation error, given in Euler angles, with fixed gains.
Blue: Roll. Red: Pitch. Green: Yaw
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Fig. 11. Gyro bias estimation errors with time-varying gains. Blue: x-axis.
Red: y-axis. Green: z-axis

V. CONCLUSIONS

A uniformly semiglobal exponentially stable observer for

GNSS aided INS tailored for DP vessels was developed.

Time-varying gains were introduced to increase performance

and robustness. Moreover, through simulations it was shown

that time-varying gains in estimation of translational motion

and attitude are beneficial for fast convergence and suppres-

sion of sensor noise.

APPENDIX I

STATE TRANSFORMATION

The estimation error of Σ2, x̃ = [p̃0z, p̃, ṽ, f̃ ]
|, can be

transformed into the error variable η by defining: η := Lθx̃

where Lθ = blkdiag{1, 1
θ
I3⇥3,

1
θ2 I3⇥3,

1
θ3 I3⇥3}, ✓ is a

high-gain like parameter. The error dynamics from (13) yield

˙̃x = (A� #(t)KθC)x̃+Bd̃. (32)

with the A, B and C matrices together with d̃ and #(t) � ⌧

from Section III-B–III-C. Let the total gain be calculated as

#(t)Kθ = #(t)✓L�1
θ K0. (33)

with K0 from Theorem 1. Moreover, by defining η :=
[⌘1,η2,η3,η4]

| with ⌘1 := p̃0z , η2 := p̃/✓, η3 := ṽ/✓2

and η4 := f̃/✓3, is the transformed error dynamics written

η̇ = L̇θx+Lθẋ = Lθẋ. (34)



It can also be shown that

Lθ(A�#(t)KθC)L�1
θ = ✓(A� #(t)K0C) (35)

and

LθB = [0,0|

3⇥1,0
|

3⇥1, 1/✓
3 · 1|

3⇥1]
| (36)

from

η̇ = Lθ(A� #(t)KθC)L�1
θ η +LθBd̃ (37)

which again results in
1

✓
η̇ = (A� #(t)K0C)η + ρ(t, χ̃) (38)

with ρ(t, χ̃) = 1
θ4 [0,0

|

3⇥1,0
|

3⇥1, d̃
|

]|.

APPENDIX II

UNIFORM ATTRACTIVITY OF Σ2

Drawing upon the elements of [14, Lemma 2], is the origin

of x̃ proven to be uniformly attractive and stable.

Lemma 1 (Uniform Attractivity and Stability): For any

� > 0 and T > 0 there exist a ✓⇤1 � 1 such that for ✓ � ✓⇤1
and all initial condition as specified in Theorem 1 results

in kx̃k  � for all t � T . Hence, x̃ = 0 is an uniformly

attractive and stable equilibrium point.
Proof: The proof follows as in [14, Proof Lemma 2].

The parameter projection in (7b) ensures kb̃k  M and be-
cause kr̃k  1, we have that kχ̃k 

p
M2 + 1. Furthermore,

we define the level set Ωθ := {η |U  δ2

θ7�min(P
�1)}, and

note that η 2 Ωθ ) kηk  δ
θ3 ) kx̃k  �. Outside of Ωθ,

we have kηk � δ
θ3

q

�min(P
�1)/�max(P

�1) which implies

that U̇ can be stated as

U̇ �
1

2
λmin(Q)λmin(P

�1)2kηk2

�

✓

δ
p

λmin(P
�1)

p

λmin(Q)λmin(P
�1)2

2θ3
p

λmax(P
�1)

�
2kP�1kγ1

θ4

p

M2 + 1

◆

kηk

=�
1

2
λmin(Q)λmin(P

�1)2kηk2

�

✓

δ
p

λmin(Q)λmin(P
�1)

3

2

2θ3
p

λmax(P
�1)

�
2kP�1kγ1

θ4

p

M2 + 1

◆

kηk.

by utilizing (19). The first term is negative definite. The

second term can be made negative definite with a sufficiently

large ✓, yielding

U̇ � 1

2
�min(Q)�min(P

�1)2kηk2

� ✓

2

�min(Q)�min(P
�1)2

�max(P
�1)

U

outside Ωθ. Defining a as:

a :=✓ �min(Q)�min(P
�1)2/(2�max(P

�1))

and invoking the comparison Lemma [17, Lemma 3.4] with
u̇ = �au and the corresponding solution u(t)  u(0)e�a t

we get: U(t)  U(0)e�a t. By letting L > � be a bound on
kx̃(0)k for any initial condition as specified in Theorem 1,
then L is also a bound on kη(0)k. Then, outside Ωθ we have

U(t) 
λmax(P

�1)L2

θ
exp

✓

�
θ

2

λmin(Q)λmin(P
�1)2

λmax(P
�1)

t

◆

.

Thus, η must enter Ωθ before

t  T =
2λmax(P

�1)

λmin(Q)λmin(P
�1)2θ



6 ln(θ) + ln

✓

L2λmax(P
�1)

δ2λmin(P
�1)

◆�

.

Hence, for a sufficiency large ✓ � 1, kx̃k  � for t � T .
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