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Abstract—This paper describes the application of state-estima-
tion techniques for the real-time prediction of the state-of-charge
(SoC) and state-of-health (SoH) of lead-acid cells. Specifically,
approaches based on the well-known Kalman Filter (KF) and
Extended Kalman Filter (EKF), are presented, using a generic
cell model, to provide correction for offset, drift, and long-term
state divergence—an unfortunate feature of more traditional
coulomb-counting techniques. The underlying dynamic behavior
of each cell is modeled using two capacitors (bulk and surface) and
three resistors (terminal, surface, and end), from which the SoC
is determined from the voltage present on the bulk capacitor. Al-
though the structure of the model has been previously reported for
describing the characteristics of lithium-ion cells, here it is shown
to also provide an alternative to commonly employed models of
lead-acid cells when used in conjunction with a KF to estimate
SoC and an EKF to predict state-of-health (SoH). Measurements
using real-time road data are used to compare the performance
of conventional integration-based methods for estimating SoC
with those predicted from the presented state estimation schemes.
Results show that the proposed methodologies are superior to
more traditional techniques, with accuracy in determining the
SoC within 2% being demonstrated. Moreover, by accounting
for the nonlinearities present within the dynamic cell model, the
application of an EKF is shown to provide verifiable indications of
SoH of the cell pack.

Index Terms—Batteries, Kalman Filter, observers, state-of-
charge, state-of-health.

I. INTRODUCTION

P
EAK power buffers of hybrid-electric vehicles (HEVs) are,

by their very nature, subject to large dynamic transients

in current and power demand. An example is the RHOLAB

driving cycle requirements, introduced in Section V-C, which

shows road data collected from a Honda Insight HEV, where

peak charge- and discharge-current demands of 60 A and

100 A, respectively, are required from the battery pack when

subjected to a series of vehicle driving tests [1]. The accom-

modation of such operating conditions requires that the man-
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agement system have accurate knowledge of the peak power

buffer’s state of charge (SoC) to facilitate safe and efficient oper-

ation. Failure to control SoC, leading to under- or over-charging

conditions, can degrade the ability of the pack to source/sink

subsequent power transients.

Various electric equivalent circuit models have been applied

to lead-acid batteries to determine SoC. However, the complex

nonlinear electrochemical processes that occur during power

transfer to/from the battery has, in the past, proven difficult to

accurately describe dynamically. These processes include the

flow of ions, amount of stored charge, ability to deliver instan-

taneous power, and the effects of temperature and internal pres-

sure, to name a few. An accurate determination of SoC is re-

quired, in particular, for the efficient utilization of the battery

for HEVs to optimize performance, extend the lifetime, and pre-

vent progressive permanent damage to the battery. Although, in

theory, the SoC of a battery can be determined from terminal

quantities in conjunction with an appropriate battery model, in-

accuracies and measurement noise ultimately introduce errors

that can become significant over time. Increased accuracy in the

estimation of SoC, therefore, facilitates safe and efficient oper-

ation of the battery under HEV driving duties.

A variety of techniques have been proposed to measure or

monitor the SoC of a cell or battery, each having its relative

merits, as reviewed by Piller et al. [2]. Charge counting or cur-

rent integration is, at present, the most commonly used tech-

nique, requiring dynamic measurement of the cell/battery cur-

rent, the time integral of which is considered to provide a direct

indication of SoC [3]. However, due to the reliance on integra-

tion, errors in terminal measurements due to noise, resolution,

and rounding are cumulative and large SoC errors can result. A

reset or recalibration action is, therefore, required at regular in-

tervals—in all electric vehicles (EVs). This may be carried out

during a full charge or conditioning discharge, but is less ap-

propriate for standard HEV operation where full SoC is rarely

achieved. Other factors that ultimately influence the accuracy of

SoC estimates, and create additional complications for the tra-

ditional integration-based techniques, are the variation of cell

capacity with discharge rate, temperature, and Coulombic effi-

ciency losses.

When considering flooded lead-acid cells, the specific gravity

of the electrolyte is known to be a good measure of SoC. How-

ever, estimates of SoC are complicated when using valve regu-

lated lead-acid (VRLA) cells due to the nominal amount of elec-

trolyte being immobilized in the glass fiber separator mat or gel.

Nevertheless, since the open-circuit terminal voltage of a VRLA
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Fig. 1. Open circuit voltage versus SoC.

battery varies almost linearly over the majority of the battery’s

SoC [4] (see Fig. 1), it has been used in many SoC estimators.

For the method to be effective, however, corrections must be

made for temperature and electrolyte concentration gradients

(concentration polarization) formed during high-rate charge and

discharges (long settling times may be required to allow such

concentration gradients to disperse prior to making an open cir-

cuit voltage reading [4]). More commonly, therefore, the mea-

sured open-circuit voltage is used to periodically correct the es-

timated SoC derived from other charge integration techniques.

However, as with measurements of specific gravity, suitable pe-

riods of operational inactivity may not occur frequently enough

in HEV driving duties for this to be successfully utilized.

Cell-impedance measurements have also been reported as

a useful technique for resetting or adjusting SoC estimates

from integration-based methods. However, from results of

various studies undertaken to identify the impedance variation

of cells/batteries, with SoC [5], [6], contradictory views to their

usefulness in practical systems currently remain unresolved [2].

Other reported methods for estimating SoC have been based

on artificial neural networks [7] and fuzzy logic [8] principles,

although the latter was reported to have relative poor perfor-

mance. Although such techniques incur large computation over-

head on the battery pack controller, which would in the past have

led to problems for online implementation, the increasing com-

putational power of digital signal processing chips and the ac-

companying fall in device costs may, in the near future, make

their application an attractive alternative. Neural networks, in

particular, have been used to avoid the need for the large number

of empirically derived parameters required by other methods.

Indeed, for application to the less demanding task of prediction

of SoC in portable equipment, a neural network modeling ap-

proach has been shown to give mean errors of 3% [9]. Also,

a neural network model for predicting battery power capacity

during driving cycles has been added to the ADVISOR EV and

HEV modeling environments [10].

Ultimately, manufacturers of HEVs would like predictions

of the state-of-health (SoH) or state-of-function (SoF) of a bat-

tery pack, since the increasing reliance on drive-by-wire tech-

nologies is making the battery a key safety-critical component

of the vehicle. Knowledge of whether a battery will fail when

subjected to high transient loadings, as may be experienced in

emergency braking, for instance, is therefore essential. How-

ever, SoH monitoring techniques are currently in their infancy,

with little being reported to date.

Fig. 2. RC battery model schematic.

Here then, model-based state-estimation techniques are pro-

posed for predicting the states of a cell that would normally be

difficult or expensive to measure, or are subject to the signif-

icant problems described previously—the SoC being the key

state in this case. Using an error-correction mechanism, the ob-

servers provide real-time predictions of SoC. Specifically, the

well-known Kalman filter (KF), developed during the 1960s to

provide a recursive solution to optimal linear filtering, for both

state observation and prediction problems [11], [12], is used for

this study; a unique feature of the KF is that it optimally (min-

imum variance) estimates states affected by broadband noise

contained within the system bandwidth, i.e., that cannot other-

wise be filtered out using classical techniques, and enables em-

pirical tradeoffs between modeling errors and the influence of

noise.

Furthermore, the model is extended to accommodate SoH via

the real-time estimation of bulk capacitance. Due to the resulting

nonlinearities of the underlying dynamic model, an EKF is con-

sidered for real-time estimation to monitor bulk capacitance

while cycling a cell. Experimental results ultimately show the

ability of the EKF to compensate for inaccuracies in the initial

estimates of cell model bulk capacitance and to track changes

in the value of the bulk capacitance that can be considered as a

measure of the cell’s capacity.

II. BATTERY MODEL

A dynamic model of the battery, in the form of state variable

equations, is necessary to predict the SoC or SoH. Here, a

generic model [13] consisting of a bulk capacitor to

characterize the ability of the battery to store charge, a capacitor

to model surface capacitance and diffusion effects within the

cell , a terminal resistance , surface resistance

and end resistance , is used—see Fig. 2. The voltage across

the bulk and surface capacitors are denoted and ,

respectively.

Initial parameters of the cell are precalculated from ex-

perimental data, where open-circuit voltage (OCV) tests are

performed upon successive discharges of the battery, by the

application of current pulses. An initial estimate of is

obtained by analyzing the amount of stored energy in the

cell, while a provisional value of relies on calculating

the time constant of the cell in response to high-frequency

excitation. Complete derivation details, along with the initial

parameters for the cells considered, are given in Appendix A,

for completeness.
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III. STATE VARIABLE DESCRIPTION OF BATTERY MODEL

A. State Variables , , and

Voltages and currents describing the characteristics of the net-

work shown in Fig. 2, are given by (note: by convention, current

flowing into the cell is considered positive)

(1)

(2)

Equating the two voltage equations and, after some algebraic

manipulation, yields

(3)

From Kirchoff’s laws, and from (3)

(4)

Since (assuming a relatively slow varying

), (4) can be rearranged to give

(5)

Through a similar derivation, the rate of change of the surface

capacitor voltage is obtained from (1) and (2) as

(6)

A state variable description relating the voltages and currents

is therefore

(7)

and the output voltage, as a function of terminal current, is given

from (1) and (2) by

(8)

Taking the time derivative of the output voltage and assuming

(the rate of change of terminal current, per sampling

interval when implemented digitally, is negligible) gives

(9)

Solving for from (8) and substituting into (9) provides

the complete state variable description of the network as

(10)

B. Observability of the RC Battery Model

Observability of the linear system is investigated from con-

struction of the observability matrix

(11)

where and is given by the first term on the right-

hand side (RHS) of (10). When expanded, is [see (12) at the

bottom of the page]. Under mild conditions, the observability

matrix is always of full rank.

(12)
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Fig. 3. High-power cell test bench schematic.

Fig. 4. (a) Test chamber. (b) 8 Ah sealed lead-acid cell.

IV. VERIFICATION OF THE BATTERY MODEL

A. High-Power Cell Test Bench

A high-power cell test bench has been constructed to allow

continuous cycling of individual cells using custom power and

current profiles, thereby permitting the characterization of indi-

vidual cells over closely managed operating duties. The cells are

contained within a thermally controlled environmental chamber

to provide known environmental conditions. A schematic of one

channel of the test bench is shown in Fig. 3.

Power for cell charging is supplied from a rectified , 500 A

power supply via a smoothing capacitor bank. The charge/dis-

charge circuits employ an analog PI controller driving two par-

allel arrays of MOSFET power devices, acting as variable re-

sistors. One array of MOSFETs controls the charging current to

the cell, while the other, the discharge current, where both are

forced air cooled. The demand signal is provided via a PC-based

LabVIEW, National Instrumentation Corporation, Austin, TX,

hardware-development platform, the current cycle for the cell

being defined within a text file, with cell current, temperature,

and voltage being continuously logged at 1 kHz. The test facility

measures the cell current with Hall-effect current transducers

that are auto calibrated at the start of each test. Control signals

are generated at 100 Hz and the analog circuitry has a bandwidth

of 6 kHz. A photograph of the test facility is given in Fig. 4(a).

Furthermore, a dSPACE system is employed in parallel with the

LabVIEW hardware. Measurements of the cell voltages and cur-

rents are fed into 16-bit ADCs, from which the observer algo-

rithms estimate SoC (and, ultimately, SoH).

The cell tested in this paper is a novel, spiral-wound, 8 Ah

sealed lead-acid cell, with terminals on either end, developed

by Hawker (ENERSYS, Inc., Reading, PA), for the RHOLAB

project [Fig. 4(b)]. The double terminal encapsulation is in-

troduced to lower grid currents and, hence, thermal gradients,

and thereby promotes efficient utilization of the active mate-

rials in the cell, thus leading to a battery that is optimized for

the high-power duties typical of hybrid driving cycles.

B. Evaluation of the RC Model

The validity of the proposed model is tested prior to the design

of the KF. A discharge pulse of 1.53 A is applied to both the cell

and model and a comparison of the output voltage and bulk-

and surface-capacitor voltages is made. The results are given in

Fig. 5. Although some discrepancy exists between the measured

and modeled voltages, the underlying dynamic characteristics

are essentially the same, with the principle difference being the

voltage response between discharge pulses. The offset and drift

are due to errors in initial condition estimates and the effect of

employing the model in an open-loop state over a long time

period.
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Fig. 5. Dynamic behavior of RC battery model in response to discharge
pulses of 1.53 A. (a) Current and voltage of cell. (b) Measured and modeled
cell voltage. (c) Modeled voltages across bulk and surface capacitors.

V. FORMULATION OF KF FOR SoC ESTIMATION

A continuous time-invariant linear system can be described

in state-variable form by

(13)

where

vector of applied inputs;

state vector;

vector of measured outputs;

dynamics matrix (time invariant);

input matrix (time invariant);

is the measurement matrix (time invariant).

Fig. 6. Discrete system model subject to random disturbances � and � .

Assuming the applied input is constant during each sam-

pling interval, a discrete-time equivalent model of the system is

given by

(14)

where

(15)

and is the sampling period. The system is now assumed to

be corrupted by stationary Gaussian white noise, via the additive

vectors and —the former being used to represent system

disturbances and model inaccuracies and the latter representing

the effects of measurement noise. Both and are consid-

ered to have a zero mean value, for all , with the following

covariance matrices ( denoting the expectation operator):

for all

for all (16)

The resulting system is, therefore, described by

(17)

where

vector of measured outputs after being corrupted by

noise;

coupling matrix that governs the influence of the dis-

turbance/modeling inputs on each state

and is shown diagrammatically in Fig. 6.

For notational purposes, represents an estimate of at

step based on all the information up to, and including, time

step . A property of the KF is that the estimated state vector

of the system, at time , minimizes the sum-of-

squared errors between the actual and estimated states

(18)

For recursive implementation, the KF estimate

is calculated from the previous state estimate , the input

, and the measurement signals . The available input/output

data at each sample step is, therefore, considered to be
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Fig. 7. Recursive KF algorithm.

and . The recur-

sive KF algorithm is obtained with the predictor/corrector

stages being explicitly identified in Fig. 7.

A. Online Implementation of the KF

The stochastic principles underpinning the KF are appealing

for this investigation, since it is recognized that the presence of

disturbances stemming from sensor noise on the cell terminal

measurements, and the use of non-ideal dynamic models, make

it impossible to predict with certainty the states of the system

over prolonged time periods—a statistical predictor/corrector

formulation thereby providing obvious advantages.

Since only terminal quantities of the battery can be measured,

the input is defined as and the measured output is

. Assuming, for now, that cell parameters are time-invariant

quantities, the recursive KF algorithm (Fig. 7) is applied, where

where

(19)

Although no formal stability and tuning methods are avail-

able for initializing the KF, and recourse to empirical tuning is

normally required, its use is nevertheless widespread. Informa-

tion about the system noise contribution is contained in matrices

and and, in essence, the selection of and determine

the accuracy of the filter’s performance, since they mutually de-

termine the action of the KF gain matrix and estimation

error covariance matrix . The covariance matrix rep-

resenting measurement noise can be estimated from knowl-

edge of the battery terminal voltage. The variance is obtained

from the square of the root-mean-square (rms) noise on each

cell, and is assumed to be Gaussian distributed and independent.

Initialization of the covariance matrix describing distur-

bances on the plant is complicated by the fact that knowledge

of model inaccuracies and system disturbances is limited, par-

ticularly as each cell has different characteristics. A judicious

choice of is, therefore, obtained from experimental studies

under the simplifying assumption that there is no correlation

between the elements of and the noise present on each cell’s

voltage transducer, thereby leading to a diagonal . The initial

covariance matrix , together with and , are ultimately

therefore chosen to be

(20)

B. Application of the KF

A discharge pulse of 1.53 A, as described in Section IV-B, is

applied to both the experimental test battery and to the real-time

KF, with feedback of terminal current as its input. A compar-

ison of the actual and estimated output voltage, and the volt-

ages across the bulk and surface capacitors, are shown in Fig. 8,

where excellent convergence can be seen, particularly of output

voltage in Fig. 8(a), where the error is negligible except during

transients.

It is notable that, for linear systems, after several iterations,

converges to a constant matrix and, in such cases,
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Fig. 8. Dynamic behavior of KF estimator to discharge pulses of 1.53 A.
(a) Actual and estimated cell voltage and voltage error. (b) Estimated bulk and
surface capacitor voltages.

can be precalculated offline, thereby presenting significant sav-

ings in computational load at the expense of potentially incur-

ring a loss of accuracy during transients. Experimental studies

reveal that converges to a constant value within 4 s to

(21)

Fig. 9 shows the difference between using a static and dy-

namic Kalman correction gain matrix. The results demonstrate

that a significant computational saving, typically by a factor of

1.5, can be obtained by employing the static gain with a neg-

ligible loss of state convergence accuracy.

The impact of the covariance matrix on the estimation

performance of the KF is shown in Fig. 10, where it is seen

that although significant noise is present on the cell terminal

voltage measurements, careful selection of can provide esti-

mates with enhanced noise immunity.

C. Comparison of SoC Estimation Techniques

The KF is applied to the real-time estimation of SoC of a

single cell that is subject to a RHOLAB driving cycle [1] (see

Fig. 11). The initial cell SoC is set to 0.8, this being the defined

operating point for partial SoC on the HEV driving profile. Note

that SoC is a normalized value used to define a fully charged

cell. Fig. 12 shows the SoC estimated by charge integration and

Fig. 9. Convergence of output voltage using Kalman correction gain. (a) Static
gain. (b) Dynamic gain.

Fig. 10. Impact of the covariance matrix (R = 1,R = 0:001,R = 10) on
the states of the KF.

the KF, upon initially discharging the cell from a SoC of 1 to

0.8. The RHOLAB driving cell-current profile, Fig. 11, is sub-

sequently applied to the cell. Results using conventional SoC

estimation, by the integration of current method, with charging

efficiency fixed at 0.97 [1], and those from the proposed KF

scheme are given, respectively, in Figs. 13 and 14. Having been

subjected to a RHOLAB driving cycle, at , the tests

are terminated and the remnant charge in the cell is measured

using a 1.53 A discharge, to a terminal voltage of 1.7 V and

noting the remaining Ampere hours (Fig. 15). This corresponds
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Fig. 11. (a) Typical RHOLAB [1] driving cycle cell current. (b) RHOLAB
Honda Insight HEV employed to gather test data.

Fig. 12. Discharging a cell from SoC of 1–0.8.

to a final SoC of the cell of 0.167. From Fig. 14, it can be seen

that the performance of the KF is excellent and, although both

SoC estimation techniques follow the correct profile, the inte-

gration-based method demonstrates significant drift over time,

with an error of 15% ensuing, whereas the KF consistently

provides estimates within 2% of the measured values.

VI. IMPORTANCE OF THE SoH OF A CELL

SoH is the ability of a cell to store energy, source and sink

high currents, and retain charge over extended periods, relative

to its initial or nominal capabilities. The available charge stored

within a fully charged cell is expected to fall with cell usage, as

Fig. 13. Implementation of KF on cells subjected to RHOLAB cycle.
(a) Measured and estimated cell voltage. (b) Cell voltage error. (c) Estimated
bulk and surface capacitor voltage.

active material on the cell plates gradually degrades by mecha-

nisms such as loss of plate active surface area due to repeated

dissolution and recrystallization, loss of electrical contact be-

tween metallic grids and active materials, and growth of large

inactive crystals of lead sulphate. Such capacity-loss mecha-

nisms generally occur slowly in VRLA batteries that are cycled

at low rates over their full SoC range. However, when operated

as a peak power buffer, in a HEV system, the cells are oper-

ated at a partial state-of-charge (PSoC), i.e., the cell is never cy-

cled over its full SoC range and is subjected to both high charge

and discharge currents. Studies have shown that this PSoC op-

eration can lead to truncated service life in VRLA cells due to

the buildup of sulphate within the plate structures, as a result of

inefficient recharge of plate material [14], [15]. Such capacity



BHANGU et al.: NONLINEAR OBSERVERS FOR PREDICTING STATE-OF-CHARGE AND STATE-OF-HEALTH OF LEAD-ACID BATTERIES 791

Fig. 14. Comparison of determination of SoC by conventional means by
integration of current and from estimated bulk capacitor voltage.

Fig. 15. Cell discharge characteristic to 0% SoC.

loss can be deemed a loss of cell SoH. Early detection of SoH

degradation would allow a “smart” battery pack to take reme-

dial action, such as the application of conditioning routines to

the cell, to remove small sulphate crystals before they form large

inactive crystals, thereby restoring the cells capacity. Measuring

cell capacity by the standard means of a low current discharge

is impractical for HEV applications; online techniques that uti-

lize only cell terminal measurements, made while the HEV is

driven, are, therefore, required.

A. EKF-Based Estimation of SoH

A means of estimating bulk capacitance requires

adding an extra state into the observer structure

(10) and assuming the rate of change of , over a sampling

interval, is negligible. Since the derivatives of and

are coupled by nonlinear elements, an EKF is now required

for effective estimation of state variables. It should be noted,

however, that the realization results in an increase in order

of the resulting Jacobians, covariance, noise, and disturbance

matrices, with a consequential increase in computationoverhead.

The proposed nonlinear battery model is written in the form

(22)

where is given by

and

(23)

The EKF requires a small-signal model of the system, at each

sample step, by linearizing (23) about the current operating

point , . From a Taylor series expansion, (ignoring the

presence of noise)

(24)

where [see (25) at the bottom of the next page].

The resulting small signal model, about the operating point

, , is given by

(26)

(where ) that can be discretized, to give

(27)

and used in the KF algorithm described previously in Fig. 7.

B. Online Implementation of SoH Monitoring

The SoH of known cells has previously been evaluated

[14] by performing continuous power cycling tests [using the

RHOLAB profile shown in Fig. 11(a)], on two separate battery

packs, each consisting of 18 cells. Results of the tests have

demonstrated similar pack lifetimes in each case, over 77 and

74 power cycles, respectively. During the tests, the cells of

both packs suffered a measurable mean loss in cell capacity of

0.01 Ah, per power cycle [14]. While performing the tests,

the EKF is employed and the variation of is estimated.

The results, shown in Fig. 16(a), demonstrate the ability of the
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state observer scheme to estimate , over time, ultimately

indicating a reduction of 10% during the tests, corresponding

to an average loss of cell capacity of 0.8 Ah for a nominal 8 Ah

cell. This, therefore, compares well to the measured loss of

capacity of 0.77 Ah from the packs under test.

A characteristic of the results shown in Fig. 16(a) is the initial

rise in the estimated cell capacity at the start of cell cycling. Var-

ious reasons contribute to this feature. First, it is recognized that

it is difficult to accurately predict initial conditions for the state

estimates. In reality, only a mean value of initial bulk capaci-

tance can realistically be employed; hence, the results include

an initial period of dynamic convergence to the “true” values.

Moreover, from Fig. 16(b), which shows the voltage profile, a

corresponding rise in voltage is displayed over the first few cy-

cles, as a consequence of a rise in the internal cell temperature,

corresponding to internal Joule and chemical heating within the

cell. After 10 cycles thermal equilibrium is achieved and the

voltage profile displays a near constant envelope. A further con-

tributory factor may be insufficient preconditioning of the cell

prior to testing, leading to an initial gain in cell capacity during

the first few cycles as active plate materials are cycled through

charge/discharge, leading to a fine highly reactive plate crystal

structure of a large surface area.

VII. CONCLUSION

This paper has presented an alternative approach to esti-

mating the SoC of a cell pack by the application of a KF. It is

shown that, when using a generic model (recently applied to

lithium-ion cells) to describe the dynamic behavior of lead-acid

cells, large state errors can develop over time. However, rather

than increasing the complexity of the cell model to closely

Fig. 16. EKF employed to predict SoH of the cell pack. (a) Estimated bulk
capacitance C . (b) Cell terminal voltage.

match the real system, the application of a KF, with its inherent

predictor-corrector mechanism, is shown to accommodate such

inadequacies. In particular, a comparison of SoC estimates

(25)
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Fig. 17. Cell terminal voltage when discharge current pulses of 1.53 A are
applied.

using the presented KF technique and the more conventional

integration of current method is undertaken using “road data”

collected from a Honda Insight HEV driven on a test track. The

presented results show a significant improvement in SoC esti-

mation from the proposed KF methodology, when compared to

more traditional integration of charge methods.

Furthermore, extensions for SoH monitoring, by employing

an EKF, have also been presented—using only measurements

of cell terminal quantities as input. Such data is extremely im-

portant for the ultimate prediction of SoF, which describes the

ability of a cell to perform adequately under HEV demands and

is related to both SoC and SoH information. SoF will give a

prediction of available capacity, and discharge and recharge ca-

pability, thereby allowing a “smart” battery to forecast the re-

sponse of the cell to driving demands, leading to optimal uti-

lization of the battery pack with regard to performance and life-

time and, therefore, better overall energy management within

the vehicle.

It is notable that, while the presented work has focused on a

specific battery model, ultimately, due to presented benefits, it is

expected that similar state-estimation schemes will be adopted

for other model structures and cell chemistries.

APPENDIX

A. Calculation of Initial Parameters

Initial parameters required for the battery model are deter-

mined from experimental data, where OCV tests are performed

upon successive discharge of battery by injection of current

pulses.

1) Capacitor : The capacitance is determined by an-

alyzing the amount of stored energy. Fig. 17 shows the OCV

when discharge current pulses of 1.53 A are applied for 1800 s

at 3600-s intervals.

The energy stored in is determined from the OCV at

0% SOC and 100% SOC, using the following expression:

(28)

Fig. 18. Cell terminal voltage when a discharge current of 10 A pulse is applied
at 500-ms intervals.

is equivalent to the rated Amp-sec capacity of the

battery, giving:

Rated(AmpSec)
(29)

2) Capacitor : An initial value of relies on

results of high-frequency excitation of the cell to determine the

time constant given by the surface capacitor and its associated

resistance. As before, OCV tests are performed. Discharge

pulses of 10 A are applied at 500-ms intervals, thereby isolating

the results from the effects of .

From Fig. 18, it is seen that

The time constant is approximated using the following rela-

tionship:

(30)

and solving for gives

(31)

The time constant is described by

(32)

Hence, the initial estimate of surface capacitor, is determined

as

(33)
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3) Battery Resistance: The internal resistance of the battery

is measured as 4.6 . It is assumed that and are equiv-

alent and account for 75% of total resistance. Hence, is

(34)

A summary of initial values is given in Table I.
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