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ABSTRACT

In linear optics, the concept of a mode is well established. Often these modes correspond to a set of fields that are
mutually orthogonal with intensity profiles that are invariant as they propagate through an optical medium. More
generally, one can define a set of orthogonal modes with respect to an optical measure that is linear in intensity
or quadratic/Hermitian in the fields using the method of Optical Eigenmodes (OEi). However, if the intensity of
the light is large, the dipole response of an optical medium introduces nonlinear terms to Maxwell’s equations.
In this nonlinear regime such terms influence the evolution of the fields and the principle of superposition is
no longer valid and consequently, the method of Optical Eigenmodes breaks down. In this work, we define
Optical Eigenmodes in the presence of these nonlinear source terms by introducing small perturbation fields
onto a nonlinear background interaction and show how this background interaction influences the symmetries
associated with the eigenmodes. In particular, by introducing orbital angular momentum (OAM) to the Hilbert
space of the perturbation and background fields, we observe conservation laws and symmetries for which we
derive associated operators.
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1. INTRODUCTION

The method of “Optical Eigenmodes” (OEi) represents a generalisation of the eigenmode decomposition in the
context of linear optics.1 Indeed, the OEi decomposition is valid for any optical measure provided it is defined as
a quadratic function of the electromagnetic field. Examples of such measures include intensity, energy density,
linear momentum and orbital angular momentum of electromagnetic fields. Experimentally, these eigenmodes
have been used in the context of sub-wavelength optics,2,3 imaging4,5 and in the information density of optical
systems.6

In this paper, we extend the method of Optical Eigenmodes to nonlinear optics. Using small perturbations
fields, we linearise the system and restore the principle of superposition allowing for the definition of background
dependent eigenmodes which we denote, Nonlinear Optical Eigenmodes (NOEi). Unlike the OEi of linear optics,
these novel modes correspond to a set of orthogonal beams distributed across multiple interacting fields prop-
agating in distinct frequency channels. With these eigenmodes defined we highlight the influence of the high
intensity background field on the symmetry of the mode. This is illustrated by using the propagation modes of
a square cavity as a probe space for the perturbation fields. This influence is highlighted with the addition of
optical vortex charge to the probe space.

This paper is organized as follows: In Section 2 the equations of motion in nonlinear materials and eigenmodes
are introduced. In Section 3 the propagation modes of a rectangular waveguide are introduced as a probe space
in which to define intensity eigenmodes. Section 4 deals with the symmetry of the eigenspectra with respect
to the background field and the probe space representation. Section 5 finishes the paper with a summary and
conclusions.
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2. THEORY

2.1 Equations of Motion

In the following section we outline the relevant equations and approximations to describe the dynamics of the
optical fields. After which, the optical eigenmodes are introduced in the context of nonlinear optics. We begin
with the coupled equations of motion describing three wave mixing processes in nonlinear materials,7

−i∂zB1 =
1

2k1
∇2B1, (1)

−i∂zF2 =
1

2k2
∇2 F2 + χB∗

1F3, (2)

−i∂zF3 =
1

2k3
∇2 F3 + χB1F2. (3)

The field B1 is a high-intensity non-depleting pump field evolving independent of the fields Fτ with τ = 2, 3

and the symmetrised interaction strength is given by χ =
√
χ2χ3 where χτ = 2χ(2)ωτ

nic
. We expand the fields into

some orthonormal basis,

Fτ =
∑

j

ατ,jfτ,j . (4)

The basis should be complete such that any field can be expanded as Eq.(4) and orthonormal
∫

dr f∗i (r)fj(r) =
δij .. If we input this expansion into Eqs. (2) and (3) we derive our equations of evolution in coefficient form,

∂zα2,j =
∑

k

iω2,jkα2,k + igjkα3,k, (5)

∂zα3,j =
∑

k

iω3,jkα3,k + ig
†
jkα2,k. (6)

where g
†
jk = g∗kj and the matrices ωτ,jk =

∫

1
2kτ

f∗τ,k∇2fτ,j dr and gjk = χ
∫

B∗
1 f

∗
2,jf3,k dr. Let α = (α2,j , α3,j)

T

then the equations of motion can be simplified as follows,

αj(z) = αj(0) e
iHjkz, (7)

where αj = (α2,j , α3,j)
T .

2.2 Eigenmodes

Using our field decomposition as described in Eq. (4) we can define eigenmodes of the system. We simplify by
looking for fields that do not diffract as they propagate, which is to say they are eigenfunctions of the operator
propagation matrix or indeed the operator ∂z. The eigenmodes in terms of the evolving coefficients are,

F(B1) =
∑

λ

eλzβλ

∑

j

(α2,j , α3,j)
T .(f2,j , f3,j). (8)

As a direct result of the interaction terms in Eq. (2) and (3) the eigenmodes are distributed across both of
the frequency channels. Consequently, as an eigenmode propagates there will be a transfer of energy between
the field components of the mode. Due to the orthogonality of the eigenmodes there is no cross-talk between
them and as such the transfer of energy is limited to the components of a given mode. Another important
feature of the modes given by Eq. (8) is the influence of the complex background field B1. This field has some
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spacial distribution that will restrict the Hilbert space in the output plane and hence the eigenmodes and their
associated symmetries. If we consider the single mode case the eigenvalues of Eq. (5) are given as

λ =
1

2
i
(

ω2 + ω3 ±
√

(ω2 − ω3)2 + 4g2
)

, (9)

where the coefficients are ωτ =
∫

1
2kτ

fτ∇2fτ dr and g = χ
∫

B∗
1 f

∗
2 f3 dr for a single mode propagating in each

frequency channel. As the eigenvalues are always complex the evolution of the eigenmodes is oscillatory regardless
of the interaction strength, g. Nevertheless, the eigenvalue and as will be shown the intensity of the mode is
dependent on the magnitude of g and consequently the overlap with the background field. In this basis the
propagation of the field coefficients is simplified,

∂zαj = λjαj ⇒ αj(t) = eλjzαj(0). (10)

At the output we write the intensity operator as ωjαj(z)
†αj(z) and diagonalise to allow us to uniquely label

the eigenmodes with respect to their overlap with the background field.

3. RECTANGULAR WAVEGUIDES

3.1 Rectangular Symmetry

If we consider our medium of propagation to be a perfectly conducting rectangular waveguide with a thin layer
of nonlinear material embedded inside then we can write our basis elements as,

fτ,j(x, y) = sin
(nπ

2a
x− n

π

2

)

sin
(mπ

2b
y −m

π

2

)

, (11)

where 2a and 2b corresponds to the transverse lengths of the optical waveguide and τ = 2, 3. If we assume our
basis to be fixed as in section 2 then we can describe the dynamics of the system by evolving the coefficients
ατ,j . The link between the two is the expansion Fτ =

∑

j ατ,jfτ,j (we label the pair {nj ,mj} with a single index
j for simplicity). If we assume the fields to be normalised in their respective channels we can write the matrices
ωτ,jk and gjk as follows,

ωτ,jk = − (amj + bnj)
2π2

4ab
δjk, (12)

gjk =
ζnζm (1± cos (njπ) cos (nkπ)) (1± cos (mjπ) cos (mkπ))

(n4
j + (n2

k − n2
b)

2 − 2n2
j (n

2
k + n2

b))π
2(m4

j + (m2
k −m2

b)
2 − 2m2

j (m
2
k +m2

b))
, (13)

with ζn = 4anbnjnk and ζm = 4bmbmjmk. The index nb dictates the sign in the numerator, it takes a positive
sign when the index is odd and negative when the index is even. In the cases where gij is indeterminate we set
the matrix element to zero.

In Fig. (1) we show some of the intensity eigenmodes of the cavity for three distinct pump fields. The
eigenmodes are ordered with respect to their eigenvalue which corresponds to a scaling factor of intensity at the
output plane which is dependent on the modes overlap with the background field As illustrated in (i) and (iii)
of the figure in cases where the background fields exhibit some n-fold rotational symmetry there exists some
degenerate eigenmodes in the system. This is a result of the C4 and C2 type symmetry of the pump and can be
easily lifted with an additional operator in the form of a discrete rotation. Depending on the choice of rotation
i.e left or right, the eigenvalues can be classified as even or odd with λ = ±1 - this is shown in Fig. (2). Given
the system is oscillatory the eigenmode with the largest overlap with the background will only have the highest
intensity at periodic intervals. This periodicity is determined by the overlap integral, gjk = χ

∫

B∗
1 f

∗
2,jf3,k dr,

where the fields fτ are the intensity eigenmodes. This overlap integral determines both the interaction between
the mode components by Eq. (2) and (3) and the transfer of energy with the background field.

Proc. of SPIE Vol. 10935  109351K-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 20 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 1: F3 components for first five intensity eigenmodes for (i) TM11, (ii) TM21 and (iii) TM22 background
fields shown on the left of each panel.

Figure 2: F3 components of eigenmodes for the degenerate subspaces shown in Fig. (1)(i) on the left and Fig.
(1)(iii) on the right.

3.2 Rectangular Vortex Modes

In a similar way to the transformation between Hermite-Gaussian and Laguerre-Gaussian beams8 we can use
a superposition of the rectangular waveguide modes to form singular beam profiles. We denote these beams
rectangular vortex modes and characterise them by the amount of ‘twist’ in the beam given by the vortex
charge, l. We also adopt the convention of Laguerre-Gaussian beams and denote the radial index as p. We write
the vortex modes, VTMlp as,

VTMlp =
∑

cnmlp TMnm, (14)
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where the coefficients linking the VTMlp modes the TMnm modes take the values,

cnmlp =







i(m−1)a
(

N+l
2 , N−l

2 ,m
)

: 2p+ |l| = n+m

0 : 2p+ |l| 6= n+m

where

a(n′,m′,m) =

√

(n′ +m′ − (m− 1))!(m− 1)!

2n′+m′

n′!m′!

1

(m− 1)!

dm
′

dtm
′
[(1− t)m

′

(1 + t)n
′

]|t=0. (15)

Assuming the basis Eq. (11) is truncated with respect to some maximum mode order, N, the vortex basis
can be written in full as,

flp(x, y) = Afnm(x, y). (16)

In this basis the matrices ωτ and g can be found directly from their integral form or be written in terms
of Eqs. (12) and (13) using the transformation matrix, A. Assuming the basis given by Eq. (11) is truncated
with respect to some mode maximum order N , with n+m = N , this vortex basis probes the same Hilbert sub-
space. However, in this representation we must consider both the field profile and the vortex charge (lb) of the
background field. In this case we consider a simplified background field of the form eilbφ. Due to the interaction
terms in Eqs. (5) to conserve the vortex charge during propagating we have the selection rule, lb = l3 − l2. This
is illustrated in the eigenmodes shown in Fig. (3) and (4). Note, as we are considering a thin slice of material
the transfer of energy to F3 field is small and so those components of the mode are of lower intensity than the
F2 components.

Figure 3: Intensity eigenmodes for vortex background fields (not shown) of the form eilφ with lb = 0. The fields
F2 are shown above with the eigenvalue in the top left corner and the corresponding fields F3 are displayed
directly below. Complex fields are represented by the false colour map with Hue showing intensity and colour
showing phase.

As seen previously there exists some degeneracy due to the interaction with the complex background field.
We attribute this to the angular momentum of the eigenmodes which the intensity operator can not generate.
Motivated by this notion we can write the general transformations that will probe the angular momentum and
commutes with the Hamiltonian, i.e Eq. (2) and (3). We find the operators,

L′
i → i(x∂y − y∂x + a) (17)

L′
j → i(x∂y − y∂x + (a− lb)) (18)
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Figure 4: Intensity eigenmodes for vortex background field (not shown) of the form eilφ with lb = 1. The fields
F2 are shown above with the eigenvalue in the top left corner and the corresponding fields F3 are displayed
directly below.

Figure 5: Degenerate eigenmodes in Fig. (3) in OAM space. The fields F2 are shown above with the eigenvalue
in the top left corner and the corresponding fields F3 are displayed directly below.

where a is free constant. Clearly, angular momentum itself is not a conserved quantity unless lb = 0. In
general we have to transform the operator to take into account the vortex charge of the background field.
This is somewhat trivial as we cannot transform the background interaction as it exists in a Hilbert space
independent of the eigenmodes. These operators can be used to lift the degeneracy of the intensity eigenmodes
in Fig. (3) or indeed be used to order the eigenmodes assuming the background field is of the form eilbφ i.e an
eigenfunction of the angular momentum operator, this is illustrated in Fig. (5). In this space the field components
of the eigenmodes have the same vortex charge and are no longer invariant under the operations F2 → F∗

3 and
F3 → F∗

2. This operator allows us to uniquely label our eigenmodes and along with the Hamiltonian corresponds
to a complete set of commuting observables.
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4. SUMMARY AND CONCLUSION

In this paper we have extended the method of optical eigenmodes to nonlinear systems in the non-depletion
approximation. We use small perturbation fields propagating in the presence of a high-intensity background
interaction to define a set of orthogonal fields with interacting components in both of the available frequency
channels. With these eigenmodes we highlight the influence that the complex background field has on the Hilbert
space at the output plane of optical systems. In future work will look at correlations between single photons
in nonlinear systems by using these eigenmodes as our orthonormal basis. Looking further we plan to extend
this work to a full nonlinear theory that goes beyond the limits of the non-depleting pump approximation and
expand the tools available in nonlinear sciences.
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