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Overview

Nonlinear optical properties in
open-shell molecular systems
Masayoshi Nakano1* and Benoît Champagne2

For more than 30 years, nonlinear optical (NLO) properties of molecular systems
have been actively studied both theoretically and experimentally due to their
potential applications in photonics and optoelectronics. Most of the NLO molec-
ular systems are closed-shell species, while recently open-shell molecular species
have been theoretically proposed as a new class of NLO systems, which exhibit
larger NLO properties than the traditional closed-shell NLO systems. In particu-
lar, the third-order NLO property, the second hyperpolarizability γ, was found to
be strongly correlated to the diradical character y, which is a quantum-
chemically defined index of effective bond weakness or of electron correlation:
the γ values are enhanced in the intermediate y region as compared to the
closed-shell (y = 0) and pure open-shell (y = 1) domains. This principle has been
exemplified by accurate quantum-chemical calculations for polycyclic hydrocar-
bons including graphene nanoflakes, multinuclear transition-metal complexes,
main group compounds, and so on. Subsequently, some of these predictions
have been substantiated by experiments, including two-photon absorption. The
fundamental mechanism of the y–γ correlation has been explained by using a
simple two-site model and the valence configuration interaction method. On the
basis of this y–γ principle, several molecular design guidelines for controlling γ

have been proposed. They consist in tuning the diradical characters through
chemical modifications of realistic open-shell singlet molecules. These results
open a new path toward understanding the structure—NLO property relation-
ships and toward realizing a new class of highly efficient NLO materials. © 2016

The Authors. WIREs Computational Molecular Science published by John Wiley & Sons, Ltd.
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INTRODUCTION

During the past 50 years due to their wide appli-
cations in spectroscopy, photonics, optoelec-

tronics, etc., nonlinear optical (NLO) properties have
attracted a great deal of attention from experimental
and theoretical researchers in many fields (physics,

chemistry, biology, and materials science).1,2 Nonlin-
ear optics describes various physicochemical phe-
nomena where the properties of light are modified
by matter and vice versa. These phenomena are
caused by intense light sources like with lasers,1,2

and include (1) frequency mixing, which generates
light having frequencies different from those of the
incident light such as second-harmonic generation
(SHG) and third-harmonic generation (THG),
(2) intensity dependent refractive index, leading to
light beam self-focusing or defocusing, and (3) multi-
photon absorption like two-photon absorption
(TPA), where pairs of photons simultaneously excite
molecular systems.1,2 These phenomena are described
by the nonlinear polarization terms in the μ = μ0 + α
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E + β E2 + γ E3 + … expansion formula, where μ is
the dipole moment (μ0 is the permanent dipole
moment), α is the polarizability, and E the electric
field amplitude (in this work, we concentrate on the
effects of the electric field component of light,
whereas magnetic and mixed electric-magnetic effects
also exist but are usually weaker). The nonlinear
coefficients, β and γ, are referred to as the first and
second hyperpolarizabilities, respectively. For exam-
ple, the SHG and THG phenomena are characterized
by real parts of β and γ, whereas TPA is associated
with the imaginary part of γ. In order to realize such
fascinating applications, molecules and materials
exhibiting highly efficient NLO properties are
requested together with simple rules to control them.
Thus, lots of investigations have been performed to
clarify the underlying mechanism of NLO responses
and to design molecular and material with targeted
NLO responses. In the early studies on the NLO
materials, inorganic crystals, e.g., lithium niobate
(LiNbO3) and potassium dihydrogen phosphate
(KH2PO4), were employed because they exhibit large
SHG effects. Then, since the 1990s, π-electron conju-
gated organic molecular systems have attracted much
attention1,2 due to their larger optical nonlinearities
and faster optical responses as well as feasible molec-
ular design and lower processing cost. Most of these
studies have been focused on closed-shell molecular
systems and there have been few studies dealing with
the NLO properties of open-shell molecular systems
before our studies on the spin multiplicity effects on
the NLO properties3 and the diradical character
dependences of the NLO properties.4 In this article,
we focus on the latter topics, where the open-shell
nature of open-shell singlet systems plays a major
role in the control of NLO properties.5

Open-shell singlet systems, e.g., diradical sys-
tems, have been investigated to understand the chem-
ical bond nature, i.e., its covalent and ionic
components in the ground state.6–8 The simplest
examples are the stretched H2 and twisted ethylene
molecules, and are involved in attractive organic
chemical reactions and unique optical transitions.9

These phenomena have been rationalized in terms of
the diradical character (y; 0 ≤ y ≤ 1), a quantum-
chemically well-defined index. y defines both an
effective bond weakness (chemical view) and the
localization versus delocalization of the electrons or
electron correlation (physical view).5,10 In this article,
we introduce the diradical character dependence of
the third-order NLO properties, e.g., the second
hyperpolarizability γ at the molecular scale, for a
two-site model based on the perturbative formula
including excitation energies and transition moments.

From this theoretical result, we describe the correla-
tion between y and γ, referred to as ‘y–γ correlation,’
and state the following NLO-design principle : ‘ γ

values of systems with the intermediate diradical
character (y ~ 0.5) are enhanced as compared to
those of closed-shell (y = 0) and pure open-shell
(y = 1) singlet systems.’11 Then, we summarize
theoretical investigations on a wide variety of model
and real molecular systems with intermediate
diradical characters that lead to control schemes of
the diradical character through chemical modification
and physical perturbation.5,12–23 We also introduce
extensions of the y–γ correlation, e.g., for multiradi-
cal systems going beyond diradicals,24–26 dynamic
(frequency-dependent) hyperpolarizabilities,27,28

asymmetric open-shell singlet systems,23,29 and spin
state dependence.13,26 From the experimental side,
several real open-shell singlet molecular systems have
recently been synthesized and have been found to
exhibit large TPA-cross sections30–35 and large THG
properties36,37 (typical third-order NLO properties),
the facts of which substantiate the ‘y–γ correlation’
principle. It is thus expected that ‘open-shell singlet
NLO systems’ surpass the conventional closed-shell
NLO systems, and also exhibit multifunctionalities,
e.g., optical and magnetic properties, as well as a
high controllability via chemical and physical
modifications.5

OPEN-SHELL NATURE AND
EXCITATION ENERGIES/
PROPERTIES

Two-Site Model in the Valence
Configuration Interaction Scheme
In order to reveal the relationship between excitation
energies/properties, which determine the hyperpolar-
izabilities and open-shell nature, i.e., diradical char-
acter, we consider the simplest two-site model A•

–B•

with two electrons in two active orbitals in the
valence configuration interaction (VCI) scheme.8,11

Using bonding and antibonding molecular orbitals
(referred to as g and u, respectively), the localized
natural orbitals (LNOs; referred to as a and b) are

expressed as a≡ g + uð Þ=
ffiffiffi

2
p

and b≡ g−uð Þ=
ffiffiffi

2
p

, which
are nearly localized on one site (A or B). For MS (the
z-component of spin angular momentum) = 0, we

define two neutral ( a�b
�

�

�

, |b�ai) and two ionic (|a�ai,
b�b
�

�

�

) determinants, where the upper-bar indicates the

β spin, while non-bar does the α spin. The electronic
Hamiltonian matrix for the two-site model is
described using several physical parameters, namely,
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effective Coulomb repulsion U(≡Uaa − Uab) (the dif-
ference between on-site and intersite Coulomb inte-

grals), direct exchange integral Kab ≡ a�b
� �

�1=r12 b�aj i
� �

,

and transfer integral tab(≡ha|f|bi, where f indicates
the Fock operator in the LNO basis).11 By diagona-
lizing the electronic Hamiltonian matrix, we obtain
four electronic states including three singlet states
and one triplet state (see Figure 1), i.e., an essentially
neutral lowest-energy singlet state of g symmetry

gj i= κ a�b
�

�

�

+ b�aj i
� �

+ η a�aj i+ b�b
�

�

�� �

= ξ g�gj i−ζ u�uj i
(ground state, with energy Eg; κ > η > 0), a pure
ionic singlet state with u symmetry

kj i= a�aj i− b�b
�

�

�� �

=
ffiffiffi

2
p

= g�uj i + u�gj ið Þ=
ffiffiffi

2
p

(first excited

state with energy Ek), an essentially ionic singlet

state of g symmetry fj i= −η a�b
�

�

�

+ b�aj i
� �

+ κ a�aj i+ b�b
�

�

�� �

= ζ g�gj i+ ξ u�uj i (second excited state

with energy Ef; κ > η > 0), and a neutral triplet state

Tj i = a�b
�

�

�

− b�aj i
� �

=
ffiffiffi

2
p

= g�uj i− u�gj ið Þ=
ffiffiffi

2
p

(with energy

ET). Here, ξ = κ + η and ζ = κ − η are the functions
of tab and U, respectively. The Hartree–Fock
(HF) ground state (in the mean-field approximation,
i.e., in the limit of no electron correlation) is given by

gHF
�

�

�

= g�gj i, so that κ = η = 1, which corresponds to

equal weights for the neutral (covalent) and ionic
components. As increasing the electron correlation,
the neutral component increases as compared to the
ionic one, and finally the ionic component vanishes

[ κ,ηð Þ = 1=
ffiffiffi

2
p

,0
� �

or ξ,ζð Þ = 1=
ffiffiffi

2
p

,1=
ffiffiffi

2
p� �

] at the

strong correlation limit. In other words, ζ increases

from 0 to 1=
ffiffiffi

2
p

, which corresponds to the variation
from the stable bond to the bond dissociation limit,
so that we can define the diradical character (y) as
y = 2ζ2 [0 (closed-shell) ≤ y ≤ 1 (pure-diradical)].10,38

Owing to the states symmetry, there are only two

nonzero transition moments, μgk =
ffiffiffi

2
p

ηRBA (between

states g and k) and μkf =
ffiffiffi

2
p

κRBA (between states k
and f ), where RBA≡(b|r1|b) − (a|r1|a) indicates the
effective distance between the unpaired electrons.

The effective exchange interaction J(=(Eg − ET)/2),
which is a function of (tab, U, Kab),

11 describes,
within Heisenberg model,39 the ground state mag-
netic interaction, where negative/positive J indicates a
singlet/triplet (antiferromagnetic/ferromagnetic)
ground state. For the following discussion, we intro-
duce the dimensionless physical quantities: rt≡|tab|/U
(≥0), rK≡2Kab/U(≥0), and rJ≡2J/U. As |tab| and
U indicate the easiness and difficulty of electron
transfer between the A and B sites, respectively, rt
represents the degree of electron delocalization over
A and B, and rt

− 1 the degree of electron localization
(electron correlation). rK is expressed by, e.g.,

a�b
�
�

�H b�aj i=U or a�ah jH b�b
�

�

�

=U, so that rK is propor-

tional to the overlap between a and b. The (dimen-
sionless) state energies depend linearly on rK (≥0),
with stabilization of the k and T states by an rK
amount and a destabilization by the same amount
for the g and f singlet states. This originates from the

relative phase between the LNO { a�b
�

�

�

, |b�ai} in the

neutral determinants and {|a�ai, b�b
�

�

�

} in the ionic

determinants.
In order to clarify the physical and chemical

meanings of y, it is expressed as a function of these
physical quantities:

y≡2ζ2 =1−
4jtabj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 +16t2ab

q = 1−
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + 4rtð Þ−2
q ð1Þ

showing that it is the function of r−1t (electron corre-

lation). Indeed, y increases with r−1t as shown in
Figure 2: from the delocalization (y ! 0) to the
localization (y ! 1) limit, with an electron on each
site for the latter. In the present model, y is also
expressed by the occupation number of the lowest
unoccupied natural orbital (LUNO), nLUNO. As
nLUNO = 2 − nHONO and q≡1 − y = (nHONO −

nLUNO)/2 means an ‘effective bond order’ because
nHONO and nLUNO are the numbers of electrons in
bonding and antibonding orbitals, respectively. From
these considerations, the diradical character
y represents electron correlation in the physical sense
and an effective bond order in the chemical sense.

The dimensionless excitation energies (EDL
ig ,

i = k, f ) and transition moments squared [ðμDL
ij Þ2, i,

j = g, k, f] are expressed as a function of the effective
bond order q(=1 − y) by11

EDL
kg ≡

Ek−Eg

U
=
1

2
1−2rK +

1
ffiffiffiffiffiffiffiffiffiffiffiffi

1−q2
p

 !

,

Efg

k

T

g

f

Ekg

ETg

μkf

μgk

FIGURE 1 | Singlet three states {g, k, f} and a triplet sate {T}
together with excitation energies and transition moments of the two-
site diradical model with two electrons in two orbitals.
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EDL
fg ≡

Ef −Eg

U
=

1
ffiffiffiffiffiffiffiffiffiffiffiffi

1−q2
p ð2aÞ

ðμDL
gk
Þ2≡ μgk

RBA

� 	2

=
1−

ffiffiffiffiffiffiffiffiffiffiffiffi

1−q2
q

2
, ðμDL

kf
Þ2≡ μkf

RBA

� 	2

=
1 +

ffiffiffiffiffiffiffiffiffiffiffiffi

1−q2
q

2

ð2bÞ

The diradical character dependences of these quanti-
ties are shown in Figure 3 for rK = 0, which is
approximately satisfied for most systems with a sin-

glet ground state. As rK is included only in EDL
kg ,

which originates in the contributions of + Kab and
− Kab to the energies of the ground (g) and the first
excited (k) states, respectively, due to the phase fea-

tures of their wavefunctions, EDL
kg is reduced by rK for

any y value. In the small y region, EDL
kg decreases

more rapidly with y than EDL
fg , but they converge

toward the same stationary value (EDL
kg =EDL

fg = 1).

Note that in the case of a finite rK, E
DL
kg converges to

1 − rK. This diradical character dependence of the
DL excitation energies originates from the relative
decrease of the transfer integral |tab| as compared to
U, which destabilizes (stabilizes) the g (f ) state, while
it does not affect the k state. Concerning the squared

DL transition moments, ðμDL
gk Þ

2 and ðμDL
kf Þ

2 are identi-

cal at y = 0 but they monotonically decrease to 0 or
increase toward 1 with increasing y, respectively.
These variations stem from the decrease (increase) of
the ionic component of state g (f ) against state u
keeping a pure ionic nature, as a function of y. One
should also emphasize that (1) the excitation energies
do not only depend on y (or q) but also on the ampli-
tude of U, so that Ekg decreases with U (for a fixed
tab) until a minimum and then it increases and that
(2) the transition moments squared are proportional
to the square of RBA, which corresponds approxi-
mately to system size when the radical sites are well
separated.

Diradical Character Dependence of the
Second Hyperpolarizability
Within perturbation theory, the second hyperpolariz-
ability γ is expressed by a sum-over-state (SOS)
formula,1,2 involving the excitation energies, transi-
tion moments, and dipole moment differences
(Box 1). For the present two-site model in the static
limit, this formula leads to the dimensionless second
hyperpolarizability γ

DL by using Eqs (2(a) and (b)):11

γDL
≡

γ

R4
BA

=U3

 � =

−
8 1−yð Þ4

1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− 1−yð Þ2
q

� 2

1−2rK +
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− 1−yð Þ2
q

8

>

<

>

:

9

>

=

>

;

3

+
4 1−yð Þ2

1−2rK +
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− 1−yð Þ2
q

8

>

<

>

:

9

>

=

>

;

2

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− 1−yð Þ2
q

8

>

<

>

:

9

>

=

>

;

ð3Þ

where the first and second terms on the right-hand
side correspond to γ

II DL and γ
III-2 DL, respectively.

The variations as a function of y of these terms as
well as of the total γDL are shown in Figure 4(a) for
rK = 0. γ

DL displays a bell-shape variation with a
maximum value at y ≈ 0.359: systems with

0.0
0.1 1.0 10.0 100.0 1000.0

IU/tabI (–)

Delocalization

Localization

q = 1

q = 0

0.2

0.4

0.6

D
ira

di
ca
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ha

ra
ct

er
 y

 (
–) 0.8

1.0

FIGURE 2 | Diradical character y versus |U/tab|. Effective bond
order q = 1–y is also shown at delocalization (y = 0) and localization
(y = 1) limits.
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FIGURE 3 | Diradical character dependences of dimensionless
excitation energies (EDLkg and EDLfg), squared transition moments
((μDLgk)

2 and (μDLkf)
2).
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intermediate diradical character exhibit larger γ
DL

than closed-shell (y = 0) and pure diradical (y = 1)
systems.11 This bell-shape behavior originates from
the dominating γ

III-2 DL term, which takes a maxi-
mum (~0.243) at y ≈ 0.306, that is caused by the

rapid decreases of ðEDL
kg Þ

2EDL
fg and ðμDL

gk Þ
2ðμDL

kf Þ
2 as y

! 1 (Figure 4(b)). The variations of γ
DL as a func-

tion of y and rK are shown in Figure 4(c), where the
blue curve indicates rJ = 0 and the lower and upper
regions of this curve correspond to singlet and triplet
ground states, respectively. For small rK, γ

DL in the
intermediate y region (B) is larger than that in the
(nearly) closed-shell region (A). Then, upon increas-
ing rK, γ

DL further increases and the maximum γ
DL

moves toward larger y values. The (C) region corre-
sponds to triplet ground state but its singlet excited
state with intermediate y value gives the largest γDL

values in the examined (y, rK) region. In addition, the
region (D) characterized by small y (< ~0.4) and large
rK (> ~0.8) values provides negative γ

DL values of
large amplitudes. Besides the traditional NLO sys-
tems (closed-shell region A), we have now found sev-
eral real molecular systems belonging to region
B (open-shell singlet NLO systems) while we have
proposed several design guidelines for region B. They
are described in this article. Investigating regions
C and D is also interesting because molecular mag-
nets may be candidates for these regions. Finally, as

seen from Eq. (3), γ also depends on R4
BA=U

3, i.e., it

increases proportionally to the fourth power of the
effective diradical distance and to the third power
of U− 1.

Asymmetric systems form another type of
open-shell singlet systems. By employing the asym-
metric two-site diradical model, we have described
the evolution of γDL as a function of yS, rK, and rh,

29

where yS is the pseudo-diradical character and rh
indicates the core Hamiltonian difference, (hbb −

haa)/U (set positive), i.e., the ionization energy differ-
ence between A and B (referred to as asymmetricity).
It is found that asymmetric open-shell singlet molecu-
lar systems exhibit remarkable enhancements of the
local maximum γ

DL amplitudes as compared to the
corresponding closed-shell asymmetric systems and
symmetric diradical systems with similar diradical
character. Similarly, the amplitudes of the first hyper-
polarizability β (which varies as a function of rh) are
magnified in the intermediate/large yS region with
respect to the closed-shell region.29 From these
results, asymmetric open-shell singlet systems appear
as candidates for building second- and third-order
NLO materials, which outstrip those of the tradi-
tional closed-shell and symmetric open-shell singlet
systems.

METHODOLOGY

Calculations to sample the y − γ correlation have
been performed at different levels of approximation.
The reliability of lower-level methods on model com-
pounds has been assessed in comparison to high-level
ab initio calculations. The latter encompass Full CI
and PNOF5 calculations on model hydrogen
chains40,41 as well as unrestricted Coupled Cluster
method with singles, doubles, and a perturbative
estimate of the triples [UCCSD(T)], spin-flip (SF) CI,
and approximate spin-projected unrestricted Møller-
Plesset perturbation theory [APUMPn, n = 2–4],
that have been employed to study compounds like
p-quinodimethane (PQM).4,41–43 Figure 6(a) shows
the resonance structure of the latter,5 where the qui-
noid and benzenoid forms correspond to the closed-
shell and pure open-shell (diradical) states, respec-
tively. Its diradical character was artificially varied
over the 0.15–0.7 window by stretching the external
CC bond (Figure 6(b)). Results on stretched H2 dem-
onstrate how close are the Full CI (=CISD = CCSD)
and PNOF5 values (Figure 5(a)). Comparisons
between UCCSD(T) and other levels of approxima-
tion are illustrated in Figure 5(b) and (c). Their anal-
ysis has substantiated the adoption of density

BOX 1

DIRADICAL CHARACTER AND
FUNCTIONALITY

The diradical character y is not an observable,
but a quantum-chemically well-defined index
describing the ground state. For two-site two-
electron model systems, in the physical sense,
y has the meaning of a degree of localization
of the electrons on each site, i.e., of electron
correlation, while, in the chemical sense, 1 − y

indicates the degree of bond strength or bond
order between the two radical sites. Namely,
the diradical character is a fundamental index
for describing the electronic structure of
ground and excited states. It has been shown
that an intermediate diradical character makes
the electronic state very sensitive to external
physical perturbations and chemical modifica-
tions, the feature of which implies that systems
with intermediate diradical character are func-
tional molecular systems.
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functional theory (DFT) to investigate structure–
property relationships in larger systems such as phe-
nalenyl derivatives. In the first studies, the BHandH-
LYP functional was employed,4 while, later on, long-
range corrected exchange-correlation functionals
have been used (more specifically the LC-BLYP func-
tional with a range-separated parameter μ = 0.33 for
organic molecules,44 whereas for bimetallic systems,
larger μ values are requested17). Approximate spin-
projected spin-unrestricted DFT, ASP-LC-UBLYP,
was also employed and shown to be reliable, using
μ = 0.47 for PQM (Figure 5(c)).43

For this broad range of methods, γ was evalu-
ated using the finite-field procedure, as the fourth-

order derivative of the energy with respect to the
electric field. Analyses have been carried out for an
adequate choice of the field amplitudes.45,46 Results
were analyzed in terms of the γ density,47 highlight-
ing the compounds moieties that contribute most to
γ. These were related to the odd electron density as
well as, in a less rigorous though mostly equivalent
way, to the spin density. Basis set effects have also
been investigated on several compounds, starting
with valence double-ζ+polarization basis sets and
adding a few sets of diffuse functions. In the
case of PQM, at the UCCSD(T) level, the 6-31+G
(d) basis set overestimates the aug-cc-pVDZ value
(γ = 150 × 103 a.u.) by 12% while the 6-31G(d)+p
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basis set performs even better (99%). On the other
hand, the 6-31G(d) basis set, which lacks diffuse
functions, underestimates γ by about 40%. Still,
although these diffuse functions play a non-negligible
role on γ of small systems, their impact is more limited
on large systems, like graphene nanoflakes (GNFs)
and IDPL. For the latter, it was indeed found that the
difference between the 6-31G(d) and 6-31G+p γ

values, evaluated at the HF level, is only about 10%.12

DESIGN GUIDELINES OF OPEN-
SHELL SINGLET NLO MOLECULAR
SYSTEMS

On the basis of the y − γ correlation, we expect the
molecules with intermediate diradical character to be

superior to the traditional closed-shell conjugated
NLO molecules. As shown above for PQM one of
the most simple design rules for realizing such stable
diradicaloids consists in tuning the quinoid–
benzenoid resonance structure (Figure 6(b)). Indeed,
the longitudinal component of γ displays a bell-shape
variation as a function of y, where the maximum γ is
obtained around y = 0.54 (Figure 5(b)). Still, real
PQM has a small diradical character y = 0.146, as
determined at the spin-projected unrestricted
Hartree–Fock (PUHF)/6-31G*+p level, tuning the
molecular architectures and chemical compositions
can lead to intermediate y values. For example, two
phenalenyl rings, each of which bringing an unpaired
electron, connected by a condensed-ring conjugated
linker provide thermally stable diradicaloids.
Figure 7 shows phenalenyl diradicaloids 1(n) of
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different size (n = 1–3), having y = 0.770, 0.854, and
0.91, respectively, as well as closed-shell analogue
2 (y = 0.0).12,42 In contrast to 2, 1(n) includes
quinoid–benzenoid forms in their resonance struc-
tures, which explains the nonzero y value. Then,
increasing the central fused-ring linker increases the
aromaticity and therefore the y value. Thus, although
they are of similar size, 1(1) has a longitudinal γ

(that, for simplicity, will be called γ) value that is
about one-order magnitude larger than that of 2.
Then, the monotonous increase of γ with n originates

from the size effect (γ/R4
BA) in addition to the

y dependence of dimensionless γ (see Eq. (3)). Simi-
larly, 3 (as-IDPL) has a nearly pure diradical charac-
ter (0.923) due to the large aromaticity of the central
ring, so that γ of 3 is significantly smaller than that
of 1(1) (IDPL). Such control scheme of the open-shell
character through tuning the relative contribution of
the quinoid–benzenoid resonance forms is also valid
for GNFs 4–6 (Figure 7). In these systems, on the
basis of Clar’s sextet rule,48 the dominant resonance
structures have the most disjoint aromatic π-sextets,
i.e., benzene-like moieties so that the multiradical res-
onance structures are stabilized by their aromaticity.
This multiradical nature can be characterized by

FIGURE 6 | Resonance structures [quinoid (closed-shell) and
benzenoid (open-shell)] of p-quinodimethane model (a) and
dependence of the diradical character (y) as a function of the length
of the exo-cyclic carbon–carbon bonds (R1) from 1.350 to 1.700 Å
(b) under the bond-length constraint of R2 = R3 = 1.4 Å. Note that
the equilibrium geometry (R1 = 1.351, R2 = 1.460, R3 = 1.346 Å,
optimized by the RB3LYP/6-311G(d)) gives the lowest diradical
character (y = 0.146).

FIGURE 7 | Resonance structures for open-shell singlet molecules including diphenalenyl compounds (1(n), 3), oligoacenes (4), rectangular
graphene nanoflake (GNF) (5), and hexagonal GNF (6), as well as a closed-shell analogue 2 for 1(1). The γ (γzzzz) values are calculated using the
UBHandHLYP/6-31G (d) method.
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using multiple diradical characters yi (i = 0, 1, …),
which are defined by the LUNO+i occupation num-
bers.10,47 As a result, zigzag-edged GNFs have open-
shell nature, while armchair-edged analogues have
closed-shell nature.14,47 In these GNFs, the y–γ corre-
lation is satisfied, provided their sizes are similar.

As multiradical systems, open-shell singlet oli-
gomers and aggregates exhibit further enhancement
of their NLO properties and interesting dependences
on their multiple diradical characters.24–26,49 Studies
on one-dimensional (1D) hydrogen chain models
with different interatomic distances, which realize a
wide range of average diradical characters yav, show
that, for different chain lengths, these systems exhibit
bell-shape yav–γ variations, and that the maximum
γ/n increases with chain length, while the average dir-
adical character (yav max) giving the maximum γ/n
values decreases (Figure 8(a)). Then, the regular mul-
tiradical linear chains with small average diradical
character exhibit not only larger γ/n amplitudes than
closed-shell chains but also significant chain-length
dependence, demonstrating the advantage of multira-
dical linear chains. Going from model to real sys-
tems, for 1D π-π stacked phenalenyl radical
aggregates (Figure 8(b)), the multiple diradical char-
acter strongly depends on the intermolecular dis-
tance, e.g., for a dimer close to equilibrium stacking

distance, its y is intermediate and its γ (in the stack-
ing direction) is maximized. The γ/monomer exhibits
about a 30-fold enhancement as compared to the iso-
lated phenalenyl monomer.50 This suggests that in
such pancake bonding the equilibrium distance is an
optimum compromise between localization and delo-
calization of the radical electron pairs. As going from
the dimer (diradical) to the tetramer (tetraradical),
the γ enhancement ratio increases nonlinearly with
the aggregate size, whereas switching from the singlet
to the highest (quintet) spin state causes a remarkable
reduction of γ by a factor of ~50.50 Furthermore,
switching from the neutral (tetraradical) to the dica-
tionic (diradical) state in the tetramer causes a signifi-
cant enhancement of γ by a factor of ~13.50 These
results demonstrate that these aggregates composed
of radical monomers are potential candidates for a
new class of open-shell NLO systems with enhanced
third-order NLO properties, which can be switched
by changing the spin multiplicity.

CONCLUSION

The theoretical origin of the third-order NLO
responses of open-shell singlet systems is unraveled
by using the VCI method, which highlights the

FIGURE 8 | (a) Dependence of longitudinal γ/n as a function of yav of regular H2n chains (n = 1–5) calculated by the UCCSD(T)/(6)-31(+)
+G(*)* method, where the dotted line represents the displacement of the maximum γ/n value; (b) Dependences of diradical character y0 and γ/
monomer (in the stacking direction) on the intermolecular distance d for the π-π stacked phenalenyl dimer model.
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relationships between the excitation energies/proper-
ties and the open-shell (diradical) character. Systems
with intermediate diradical characters are shown to
exhibit larger second hyperpolarizabilities γ than
closed-shell and pure diradical systems, giving birth
to a new class of highly efficient NLO systems. The
diradical character has both physical and chemical
meanings, i.e., it describes the degree of electron cor-
relation and the effective bond weakness in the
ground state and, qualitatively, it can be predicted
based on the resonance structures. Therefore, design
rules toward efficient open-shell NLO systems can
be constructed for various types of molecular sys-
tems, e.g., π-conjugated condensed-ring molecules
described by both quinoid and benzenoid resonance
structures, transition-metal—metal bonded systems,
and open-shell singlet supramolecular systems. Asym-
metric open-shell systems constitute another class of
NLO systems, which exhibit further enhancement of
γ as compared to symmetric open-shell singlet

analogues. This asymmetricity can be introduced by
physical perturbation (external electric fields) and/or
chemical modifications (donor/acceptor substitu-
tions).23,29 These guidelines can be extended to other
NLO properties like the first hyperpolarizabilities β

in the case of asymmetric systems,29 as well as to
frequency-dependent and/or resonant NLO proper-
ties.27,28 Another extension is based on the drastic
change of γ by changing the spin multiplicity: the γ

values of intermediate diradical systems are signifi-
cantly reduced by switching from the singlet to the
triplet states due to Pauli repulsion/localization
effects.3,13 This behavior is also interesting from the
viewpoint of multifunctional NLO systems, where
the NLO and magnetic properties can be mutually
controlled by applying magnetic fields. In summary,
the quest for realistic (stable) open-shell NLO molec-
ular systems and the investigation of design rules
based on the diradical character is a fertile research
field of materials science and engineering.
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