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We present a general theoretical method for deriving effective susceptibilities for(non)linear optical scat-
tering processes of arbitrary order using the reciprocity principle. This method allows us to formulate a
generalized treatment of nonlinear optical scattering and deduce selection rules independent of the precise
mechanism of light-matter interaction. We particularize this approach to second-order sum frequency scattering
from an inhomogeneous medium and consider the limiting cases of small particle scattering, refractive index
matched(Rayleigh-Gans-Debye) scattering, small refractive index contrast(Wentzel-Kramers-Brillouin) scat-
tering and correlated scattering. We compare the derived expressions to experimental results of sum frequency
scattering from monodisperse particles in suspension with varying sizes.
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I. INTRODUCTION

Nonlinear optical techniques have become well estab-
lished tools to study the properties of various media.1 Bulk
sum- and difference frequency generation are often used to
investigate the molecular properties of solids.2 Even-order
optical techniques like sum frequency generation1 and five
wave mixing3–6 are very well suited to study the physical and
chemical properties of interfaces. One of the key elements of
these approaches is the coherent character of the detected
light, which limits these techniques to the study of macro-
scopically flat surfaces. Only recently, attempts have been
made to expand these surface specific techniques to investi-
gate the properties of nonplanar surfaces, in particular to
particles dispersed in dilute suspensions.7–10

Theoretically, several studies have been performed with
the aim of modelling the radiation emitted in a nonlinear
scattering event. These studies include second harmonic scat-
tering from small dielectric8,11 and metallic12,13spheres, from
an ordered lattice14 and from a small metallic hemispherical
boss.15 All of these investigations are aimed at finding a
model for second harmonic generation(SHG) scattering
from a typical—mostly spherical—particle shape. No de-
scription exists of a general scattering event of arbitrary or-
der from an arbitrary shaped particle.

Previously, we have experimentally demonstrated the de-
velopment of a novel molecular specific technique of sum
frequency scattering.9 This can result in access to a wealth of
information on the physico-chemical molecular properties of
the surfaces of vesicles, micelles and nanoparticles. In this
paper, we introduce the concept of effective susceptibility for
a (non)linear scattering event of arbitrarysnthd order from
the reciprocity principle, which provides a general theoreti-
cal framework for nonlinear-optical scattering. This enables
us to derive selection rules for different experimental geom-
etries based on symmetry arguments alone. We then consider
different limiting cases for sum frequency generation(SFG)

scattering, for which appropriate assumptions exist. In par-
ticular we will consider small particle scattering, index
matched(nonlinear Rayleigh-Gans-Debye) scattering, small
contrast (nonlinear Wentzel-Kramers-Brillouin) scattering
and correlated scattering. Finally, we will compare the results
of the nonlinear Rayleigh-Gans-Debye(RGD) and Wentzel-
Kramers-Brillouin (WKB) approximations with infrared-
visible SFG scattering experiments from submicron sized
colloids in suspension.

II. THEORY

The nonlinear response of a material to incident electro-
magnetic waves is usually described in terms of the nonlin-
ear polarization. The polarization is related to the incoming
field(s) by the nonlinear susceptibilityxJ. Consequently, the
susceptibility is a measure of how much polarization is built
up in the medium by the incident fields. The incoming fields
are considered to be composed of monochromatic plane
waves of the form:

Ea
ksr ,td = Euaeisk·r−vtd s1d

with E the scalar amplitude of the wave andua the unit
polarization vector(a denotes the polarization state). This
restriction limits the further applicability to beams with a low
intensity gradient in the beam waist, i.e. excludes tightly fo-
cused pulses as in Refs. 16 and 17. As the fields interact with
the medium, there are two effects that modify the build-up of
the local nonlinear polarization: a microscopic local field
correction due to dipole-dipole interactions, and a change in
the average macroscopic field due to the linear optical prop-
erties of the medium(see Ref. 15, and references therein).
The first can be taken into account by the local Lorentz-
Lorenz correction,18 which we will not take into account in
this description(but can be readily done). The latter can be
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implemented by using Fresnel-type coefficientsLasr d, which
describe the modification of the local field by the particle
(note that far from the particleLasr d→ua), so that the local
field becomes

Ea
ksr ,td = ELasr deisk·r−vtd. s2d

The most general form of the non-locally-induced nonlinear
polarization reads as1

Pv0=v1+. . .+vnsr d =E ¯E xJsr ,r 1, ¯ ,r nd ·Ev1sr 1d ¯ ·Evnsr ndd3r 1 ¯ d3r n, s3d

which also includes any possible interaction with the mag-
netic field of the optical waves.19 In particular, this allows us
to set the optical magnetic permeabilitymsvd;1 without
loss of generality in the following. Apart from assuming
plane waves, we also restrict ourselves to detection in the far
field. No other restriction(e.g., on the nature of light-matter
interaction) is assumed in this section.

A. Reciprocity

Consider two different current sourcesj 1sr d and j 2sr d
emitting optical fieldsE1 andE2 at a single frequency. Then
the relationship between the currentsj 1,2 and the fieldsE1,2 is
given by the following relation19

E j 1sr d ·E2sr dd3r =E j 2sr d ·E1
†sr dd3r , s4d

where the integrals are taken over the volumes of the sources
and the † denotes that all nonreciprocal interactions must be
reversed in the calculation of the radiated fieldE1

†sr d (see
Ref. 20). Equation(4) is known as the reciprocity theorem
and is one of the basic concepts in physics. In linear optics
reciprocity arises from the following(Onsager) symmetry of
the linear susceptibility20

xJi jsr ,r 1d = xJ ji
†sr 1,r d, s5d

wherexJ† is the susceptibility of the same medium after ap-
plication of the time-inversion operation. The application of
the time-inversion operation is relevant for example, in mag-
netic materials where it reverses the direction of the dc media
magnetization. In nonmagnetic media, which can be de-
scribed by a local dielectric response, this leads to a symmet-
ric dielectric response tensoreJi jsr d=eJjisr d. Note that light
absorption, which is an intrinsically nonreversible process,
does not affect the reciprocity. The Onsager symmetry[Eq.
(5)] yields a general relation between results of two experi-
mental situations, in which the position of a monochromatic
light source and a detector are exchanged.19–22

As the current and polarization are related byj =s]P/]td,
the reciprocity theorem can be used to describe(non)linear-
optical scattering from a particle. One can consider the two
situations that are sketched in Fig. 1. In the first we are
dealing with a current source(j 1) induced in the scattering
particle by annth order nonlinear optical interaction withn

incoming waves that emits a fieldE1 which is detected at
position r 0. In the second situation we are dealing with a
dipolar point source located atr 0 having a currentj 2,dsr
−r 0d that induces a fieldE2 in the particle.

Assuming that the detector is placed in the Fraunhofer
zone, the wave incident from the detector on the particle can
be treated as a plane wave. Knowing the relation betweenj 2
and the distribution of the local fieldE2sr d it induces in the
particle, we can employ the reciprocity theorem, Eq.(4), to
evaluate the fieldE1 at the detector position, which can have
two orthogonal polarization components. To calculate its am-
plitudeEa0

k0 in a given polarization statea0, one has to choose
the direction of j 2 along the polarization vector. Herek0
denotes the wave vector of the wave scattered into the direc-
tion of the detector. Thus, the calculation of the emitted field
is now transformed into the problem of finding the local field
distribution induced by a plane wave of frequencyv0. The
result can be written in the form

Ea0

k0 = eik0r0
k0

2

r0
Ga0,a1,¯,an

k0,k1,¯,knEa0

k0Ea1

k1
¯ Ean

kn. s6d

Here a1, . . . ,an and k1, . . . ,kn denote the polarization state
and the wave vectors of the incident plane waves and

FIG. 1. Two different current sources. Current source 1 is the
scattering object(with the center of mass placed at the origin), in
which the currents are induced by annth order nonlinear optical
interaction.E1 is the field measured by a detector atr 0. Current
source 2 is a point dipole.E2 is the field experienced by the particle.
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Ga0,a1,. . .,an

k0,k1,. . .,kn =E E ¯E La0

−k0,†sr d · xJsr ,r 1, . . . ,r nd ·La1

k1sr 1d ¯ Lan

knsr ndeis−k0·r+k1·r 1¯kn·r ndd3r d3r 1 ¯ d3r n s7d

can be interpreted as an effective nonlinear polarizability of
the scattering object. It is analogous to atomic or molecular
polarizability, which is often introduced to describe the
nonlinear-optical interactions in, e.g., gases with the excep-
tion that Ga0,a1,¯,an

k0,k1,¯,kn is not only a property of the scattering
object, but also depends on the experimental geometry via
the wave vectorsk0,k1, . . . ,kn of the interacting waves. In
its essence, this treatment replaces an extended scattering
object, which could have any complex internal structure with
any nature of internal nonlinear interaction, by a simple point
object with dipole nonlinear polarizability given by Eq.(7)
that creates exactly the same scattered field at the position of
the detector for a given experimental configuration.

Thus, the reciprocity theorem allows us to reformulate the
problem in a way that is symmetric with respect to the inci-
dent and outgoing fields. This intrinsic symmetry of Eq.(7)
ensures reciprocity on the level of the field scattered by the
whole particle. One can also show that this symmetry is
needed in nonabsorbing systems to ensure energy conserva-
tion and the Manley-Rowe relations23 requiring that equal
amount of photons are emitted into or absorbed from each
interacting wave.

B. Symmetry

In nonlinear optics one often applies symmetry arguments
on the level of the susceptibilityxJ. The effective susceptibil-
ity presented in Eq.(7) is an integrated quantity, which is not
a function of the scattering object alone, but also depends on
the experimental geometry via the wave vectorsk i. Still, one
can apply the symmetry operations to the whole scattering
geometry.24 Thus, particle symmetry(like, e.g., inversion
symmetry) is no longer the sole factor of relevance. This
allows us to directly formulate selection rules for different
scattering events, independent of the mechanisms of linear-
and nonlinear-light-matter interactions.

For example, when using a planar geometry,(i.e., all in-
cident and scattered beams lie within one(scattering) plane),

the polarization direction of the waves parallel(perpendicu-
lar) to that plane are defined aspssd. If the particle is sym-
metric with respect to the scattering plane, then, upon reflec-
tion in the symmetry plane allp-polarized waves andxJ
remain unchanged, whereas thes-polarized waves change
phase by a factor ofp. The induced polarization should be
the same for both cases. Hence for allnth order scattering

processes all elements ofGJa0,a1,. . .,an

k0,k1,. . .,kn with an odd number of
s-polarized waves must equal 0. Thus, in the case of in-plane
second-order scattering there are only four allowed elements

of GJa0,a1,a2

k0,k1,k2 (ppp, ssp, sps, andpss). Analogously, for third-
order scattering there are only 8 allowed elements of

GJa0,a1,a2,a3

k0,k1,k2,k3 , (ssss, pppp, sspp, ppss, spsp, psps, pssp, and
spps). For situations with an additional twofold rotational
symmetry(which is the case in second harmonic scattering,
when detection is in the forward, or backward direction) no
even-harmonic scattering can occur as the only allowed ele-
ments must have both an even number ofs- andp-polarized
waves. This symmetry is broken if one uses noncollinear
input waves of different frequencies(which occurs for ex-
ample in infrared-visible sum frequency generation).

III. SUM FREQUENCY SCATTERING

The solutions to Eqs.(6) and (7) for the scattered fields
depend on the order of the scattering event and on possible
simplifications imposed by the symmetry of the geometry. In
the following description we focus on second-order scatter-
ing processes. For dielectric and metallicsphericalparticles
an exact treatment(Mie theory) exists for second harmonic
scattering, in which the amplitude of the scattered wave is
expressed as a set of absolutely converging series of complex
terms, which involve spherical harmonics and Bessel func-
tions of increasing order.8,12 For the special case of second-
order sum frequency scattering the effective susceptibility
[(Eq. (7))] becomes:

Ga0,a1,a2

k0,k1,k2 =E La0

−k0,†sr d · xJsr ,r 1,r 2d ·La1

k1sr 1d ·La2

k2sr 2deis− k0·r+k1·r 1+k2·r 2dd3rd3r 1d
3r 2. s8d

We will use this expression as a starting point for sum fre-
quency scattering from small particles(Sec. III A). In Secs.
III B and III C we will implement approximations that are
generally employed in nonlinear surface spectroscopy.

A. Small particles

To consider the scattering from small particles(with size
dimensions) we decompose the local-field factors into even
and odd parts as
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La
ksr d = La

k,evensr d + La
k,oddsr d, s9d

where

La
k,evensr d ; 1

2„La
ksr d + La

−ksr d…, s10d

La
k,oddsr d ; 1

2„La
ksr d − La

−ksr d…, s11d

where La
k and La

−k are the normalized local fields of the
wave, propagating in the forward and backward directions.

The interactions are now split into a centrosymmetric[Eq.
(10)] and an anticentrosymmetric part[Eq. (11)]. Expanded
in powers ofs /l, the lowest order contribution toLa

k,evensr d
comes fromss /ld0. Likewise La

k,oddsr d, is determined by
ss /ld1.

If we expand the phase factors in Eq.(7) as well, we can
decompose the effective susceptibility[Eq. (7)] in powers of
s /l. The zeroth-order contains all even parts of the local
field

Ga0,a1,a2

k0,k1,k2 =E La0

k0,even,†· xJsr ,r 1,r 2d ·La1

k1,evensr 1d ·La2

k2,evensr 2dd3r d3r 1d
3r 2. s12d

The next order inss /ld is obtained by expanding the phase factor in Eq.(8) or by using the odd part for one of the local fields
yielding:

Ga0,a1,a2

k0,k1,k2 =E La0

−k0,even,†sr d · xJsr ,r 1,r 2d ·La1

k1,evensr 1d ·La2

k2,oddsr 2dd3r d3r 1d
3r 2

+E La0

−k0,even,†sr d · xJsr ,r 1,r 2d ·La1

k1,oddsr 1d ·La2

k2,evensr 2dd3r d3r 1d
3r 2

+E La0

−k0,odd,†sr d · xJsr ,r 1,r 2d ·La1

k1,evensr 1d ·La2

k2,evensr 2dd3r d3r 1d
3r 2

+ i E La0

−k0,even,†sr d · xJsr ,r 1,r 2d ·La1

k1,evensr 1dLa2

k2,evensr 2d 3 s− k0 · r + k1 · r 1 + k2 · r 2dd3r d3r 1d
3r 2. s13d

For a centrosymmetric particle we have upon inversion of
the spatial coordinates:

xJsr ,r 1,r 2d = − xJs− r ,− r 1,− r 2d s14d

and for the local fields we have upon inversion,

Lam

k,evensr md = Lam

−k,evens− r md = Lam

k,evens− r md, s15d

Lam

k,oddsr md = Lam

−k,odds− r md = − Lam

k,odds− r md. s16d

Thus, for all second-order(and other even-order) nonlinear
processes the leading order[Eq. (12)], vanishes since the
contribution to the integral athr ,r 1,r 2j is cancelled exactly
by that at h−r ,−r 1,−r 2j. The first nonvanishing terms are
given by Eq.(13). For a noncentrosymmetric object(with a
noncentrosymmetric shape or made of noncentrosymmetric
material), Eq. (12) is the leading-order term.

In the limit of small scattering particles one can separate
the properties of the scattering objects from the experimental
geometry. In the zeroth-order approximationLa

k,even is given
by the electrostaticsk →0d approximation, which can be

written as La
k,evensr d<LJstaticsr d ·ua where Lstaticsr d is a

second-rank tensor. The next term, linear ink, leads to a

nonzero contribution:La
k,oddsr d<MJ sr d:ua ·k, whereMJ is a

third-rank tensor.

This separates the experimental geometry(contained ink
andua) from the particle properties in the field factors. The
omitted terms are of second or higher order inss /ld, which
can be neglected for small particles. For small particles we
can expandGa0,a1,a2

k0,k1,k2 as

Ga0,a1,a2

k0,k1,k2 < GJd ·ua0
·ua1

·ua2
+ GJQ0 ·ua0

·k0 ·ua1
·ua2

+ GJQ1 ·ua0
·ua1

·k1 ·ua2

+ GJQ2 ·ua0
·ua1

·ua2
·k2, s17d

where the third-rankGJd and the forth-rankGJQ tensors de-
scribe the dipolesdd and quadrupolesQd contributions and
depend on the properties of the scattering object only. For
SHG scattering from small spheres the above expression has
been evaluated previously by Dadapet al.8

B. Index matched particles

In Secs. III B and III C we consider nonlinear index-
matched Rayleigh-Gans-Debye(RGD) and small contrast
Wentzel-Kramers-Brillouin(WKB) scattering. From now on,
we shall restrict ourselves to a local form of the second-order
susceptibility, i.e.,xJsr ,r 1,r 2d=xs2dsr ddsr −r 1ddsr −r 2d. Fur-
thermore, we shall assume that the scattering particles are
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made of centrosymmetric material so thatxs2dsr d is nonvan-
ishing only at the particle surface. These assumptions are
very common in nonlinear surface spectroscopy.25 Equation
(8) then takes the form of a surface integral,

Ga0,a1,a2

s2d =R La0

−k0,†sr d · xs2dsr d ·La1

k1sr d

·La2

k2sr deis− k0+k1+k2d·rd2r . s18d

Before considering the cases of index matched and small
index contrast scattering, we remark that the optical fields in
the vicinity of an interface can be strongly screened by the
surface. The local-field factorsLa

k depend on whether the
fields are evaluated outside or inside the particle.15 xs2d ap-
pearing in Eq.(18) is an effective integrated nonlinear sus-
ceptibility, which must include the surface screening effects
(that are intrinsically nonlocal). Consequently, the values of
the elements ofxs2d depend on the definitions adopted. It is
assumed in this work that the fields are evaluated at the outer
side of the particle surface and the nonlinear source is lo-
cated outside. Furthermore, Eq.(18) assumes that the curva-
ture of the particle surface is small on the scale of the screen-
ing length so that the concept of the effective surface
susceptibility26 is applicable.

Equation(18) can be evaluated if the local field factorsLa
k

are known. If the refractive index of the particlesnpd and the
surrounding mediumsnmd are matched, such thatu(snp/nmd
−1) u !1, the local fields can be assumed to be identical to
the incoming fields. This approximation is known as the
Rayleigh-Gans-Debye approximation in whichLasr d=ua.

The effective second-order polarizability can then be writ-
ten as:

Ga0,a1,a2

s2d sqd =R ua0

−k0,†sr d · xs2dsr d ·ua1

k1sr d ·ua2

k2sr deiq·rd2r

s19d

with q=−k0+k1+k2=qq̂ the scattering wave vector. For an
arbitrary particle shape we can now find the scattered field,
Eq. (6), in terms ofGs2d.

It is enlightening to draw an analogy between sum fre-
quency scattering and conventional sum frequency genera-
tion from an(effective) planar surface.26 We define this ef-
fective surface(lower panel of Fig. 2) to be orthogonal to the
scattering wave vectorq (illustrated in the top panel of Fig.
2). Thus, we can envisage the scattering particle as an effec-
tive surface with its normalsZd parallel to q. In sum fre-
quency generation from a surface it is the interface that
breaks the inversion symmetry, leading to a second-order
nonlinear response. For a centrosymmetric index-matched
particle it is the spatial variation of the phase factoreiq·r ,
which lifts the inversion symmetry. In this picture,Gs2d plays
the role of the effective susceptibility of a surface. For a
symmetric particle(similar to an isotropic surface) there are
only four independent elements:G

'''

s2d , G
'i i
s2d , Gi'i

s2d , and
Gi i'

s2d , where' refers to directions perpendicular to the ef-

fective surface(i.e., parallel toq) and i refers to directions
parallel to the effective surface. The solutions for the trans-
verse scattered sum frequency fields become

Epppsrd = − Ev1Ev2
v2eik0r

2c2r
Hcos

u

2
fsG'''

s2d + G'i i
s2d dcosb

+ sG'''
s2d − G'i i

s2d dcossu − b + 2adg − sin
u

2
fsGi i'

s2d

− Gi'i
s2d dsin b + sGi'i

s2d + Gi i'
s2d dsinsu − b + 2adgJ ,

s20d

Esspsrd = − Ev1Ev2
v2eik0r

2c2r
Gi i'

s2d Scosb cosSu

2
+ aD

+ sin b sinSu

2
+ aDD , s21d

Espssrd = − Ev1Ev2
v2eik0r

2c2r
Gi'i

s2d cosSu

2
+ aD , s22d

Epsssrd = − Ev1Ev2
v2eik0r

2c2r
G'i i

s2d cosSu

2
D , s23d

whereu is the scattering angle,a is the angle betweenk1 and
sk1+k2d, b is the angle betweenk1 andk2, andpssd refers to
polarization parallel(perpendicular) to the plane of inci-
dence.

FIG. 2. Illustration of the analogy between a sum frequency
scattering experiment and a surface sum frequency experiment in
reflection mode from a planar surface. Top panel: Scattering geom-
etry with relevant parameters. Bottom panel: Surface analogy.
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If we introduce anglesu0,1,2 as in Fig. 2 we can rewrite
Eq. (20) as

Epppsrd ~ 2sG'''
s2d sin u0 sin u2 sin u1

+ G'i i
s2d sin u0 cosu2 cosu1

− Gi i'
s2d cosu0 cosu2 sin u1

− Gi'i
s2d cosu0 sin u2 cosu1d. s24d

Apart from a geometrical factor, this expression corresponds
exactly to that found for a conventional surface sum fre-
quency experiment(when the Fresnel factors26 are neglected,
which is essentially the Rayleigh-Gans-Debye approxima-
tion). The difference lies in the nature of the detection. In a
surface sum frequency experiment one detects the whole
SFG signal in the far field and has to take into account the
illuminated area of the surface(resulting in an amplitude
factor that scales with 1/cosu0). In the scattering experiment
only a small portion of the scattered field is collected, deter-
mined by the solid angle of detection.

For a given particle shapeGs2d can be expressed in terms
of the local susceptibility elements, the scattering angle and
particle dimension(both contained inq). For an isotropic
medium we only need to consider the surface contributions.
For a spherical particle we can write

Gi jk
s2dsqd = o

a,b,g
xabg

s2d R sea ·uidseb ·u jdseg ·ukdeiq·rd2r ,

s25d

where the integral is over the particle surface,xabg
s2d are the

elements of the local surface susceptibility, andea,b,g repre-
sent the unit vectors of the spherical coordinate system of the
particle. The resulting expressions for the elements ofGs2d

are given in Table I for an isotropic spherical particle(for
which xs2d has only four independent elements1).

C. Small index difference

One of the successful models, that has been used in the
past to describe linear scattering, is the so-called Wentzel-
Kramers-Brillouin(WKB) approximation.27 It can be applied
to particles, which have relatively small refractive index con-
trast sdn=np−nmd with the surrounding medium, i.e.,udnu
!1. In the RGD approximation the electromagnetic wave is
assumed to travel through the particle, without being modi-
fied in any way by its presence. It has been demonstrated that
in linear scattering the most important refinement lies in the
phase-shift that an electromagnetic wave experiences as it
travels through the particle.27 To embed this first correction
in the RGD approximation, one can assume that the waves
retain their parallel character, without changing direction or
amplitude. Hence the phase on the directly illuminated half
of the particle(the white area in Fig. 3) is exactly that of the
incoming wave, whereas the phase of the outgoing wave(the
grey area in Fig. 3) must be corrected by an amountdnil iki,
wheredni is the refractive index contrast at the frequency of
the ith wave, having wave vectorki and l i is the distance
travelled by the wave inside the particle.

If we apply this to scattering by a spherical particle, the
local field at theouter sideof the surface can be written as

Lai

k isr d = uai

k i expsidnifk i · r + uk i · r ugd. s26d

Effectively this restates that the wave becomes phase shifted
as it exits the sphere. Namely, fork i ·r ,0 (on the illumi-
nated part of the particle) the two terms in the exponent
cancel each other andLai

k i →uai

k i .
With the aid of Eq.(18) the effective surface polarizabil-

ity of a sphere in the WKB approximation becomes

Ga0,a1,a2

s2d =R fua0

k0 · xs2dsr d ·ua1

k1 ·ua2

k2gexps− iq · r d

3expfidn0s− k0 · r + uk0 · r ud + idn1sk1 · r

+ uk1 · r ud + idn2sk2 · r + uk2 · r udgd2r . s27d

For a centrosymmetric sphere one can also use the symmetry
of xs2d upon inversion of the spatial coordinates, namely,

TABLE I. Values of the elements of the effective second-order
polarizability Gs2d for sum frequency scattering from a sphere with
radiuss, in terms of the local susceptibilitiesxs2d and experimental
observables,9 u ands.

G
'''

s2d 2p(Bx
'''

s2d +Asx
'i i
s2d +xi'i

s2d +xi i'

s2d d)

G
'i i
s2d p(Ax

'''

s2d +sA+2Bdx
'i i
s2d −Asxi'i

s2d +xi i'

s2d d)

Gi'i
s2d p(Asx

'''

s2d −x
'i i
s2d d+sA+2Bdxi'i

s2d −Axi i'

s2d )

Gi i'

s2d p(Asx
'''

s2d −x
'i i
s2d d−Axi'i

s2d +sA+2Bdxi i'

s2d )

A s6i /q4s2dh2s1−q2s2/3dsinsqsd−2qs cossqsdj

B s6i /q4s2dhsq2s2−2dsinsqsd−qssq2s3/3 −2dcossqsdj

FIG. 3. Illustration of the Wentzel-Kramers-Brillouin approxi-
mation. At the surface of the backside(dark area) the wave is phase
shifted.
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xs2ds− r d = − xs2dsr d.

The integral in Eq.(27) runs over the whole spherical surface
and, thus,r can be replaced by −r . We can rewrite the inte-
gral as a half of the sum of these two forms(i.e., with r and
−r ). This gives

Ga0,a1,a2

s2d = iR ua0

k0 · xs2dsr d ·ua1

k1 ·ua2

k2expsidn0uk0 · r u

+ idn1uk1 · r u + idn2uk2 · r udsinsq · r − dn0k0 · r

+ dn1k1 · r + dn2k2 · r dd2r . s28d

If we compare these expressions to the ones obtained using
the RGD approximation it is clear that if the refractive index
contrastdni becomes appreciable and frequency dependent
dn0Þdn1Þdn2, the scattered intensity in the phase matched
direction sq=0d is not necessarily 0.

D. Correlated scattering

So far, we have considered scattering from only one par-
ticle. In general, even the linear-optical problem of light in-
teraction with scattering media consisting of many scatterers
could be very complex and could include such effects as
weak localization of light and coherent backscattering.28,29 If
scatterers are organized in a periodic structure, photonic
band gaps can be opened.30,31 Here, we restrict ourselves to
much simpler situations when scattering is weak so that one
can neglect the effect of the scatterers on the wave propaga-
tion (i.e., one can ignore multiple scattering of the incident
waves). For a system of many scatterers one has to take into
account the fact that the phases of the scattered waves can
become correlated. In the following we assume that the
sample consists ofN identical particles, which are spheri-
cally symmetric, i.e., their scattering field does not depend
on their orientation. Furthermore, it is supposed that(linear-
optical) scattering is weak so that one can neglect the effect
of the scatterers on the wave propagation(i.e., one can ig-
nore multiple scattering of the scattered wave).

We then have to sum up all the scattered wavesE j. Given
the assumptions mentioned above, these fields have the same
amplitude but may possess a different phase that arises from
a position-dependent delay of the fundamental fields and the
varying path length of the scattered fields(the distance be-
tween the scatterer and the detector,ur 0u). In the Fraunhofer
zone (i.e., ur j −r ku!Îlur 0u) we can write for the scattered
intensity,

Isqd = o
k=1

N

o
j=1

N

uEu2eiqsr j−r kd = NuEu2Ko
j=1

N

eiqsr j−r kdL
k

, s29d

where the brackets denote an ensemble average. This brack-
eted term is known as the structure factorSsqd in x-ray
diffraction.32,33 If the concentration of scattering particles is
low there is no positional correlation between the emitted
fields of the individual particles and the only nonzero contri-
bution to the sum in Eq.(29) arises from terms withj =k.
This means that we are dealing with independent scatterers
and that the scattered intensity can be described by uncorre-

lated scattering, i.e.,Ssqd=1. Consequently, the total scat-
tered intensity can be described by an incoherent sum of the
scattered intensity of the individual particles. For a dense
suspension, the particle positions become correlated, leading
to correlations of the phases of the scattered fields, so that
SsqdÞ1. In a disordered(fluid) suspension the structure fac-
tor Ssqd will reflect the short-range order between the neigh-
bors, while if the particles form a regular periodic structure
(as in colloidal crystals, for example), the long-range corre-
lation between the particle positions leads to development of
the Bragg peaks inSsqd at specific values of the scattering
vectorq.

Thus, the effect of particle correlations on nonlinear scat-
tering is very similar to that in linear optics. However, an
interesting aspect appears in the forward scattering, forq
=0. In linear scattering and diffraction extraction of useful
information in the forward direction(q=0) is complicated
due to the presence of the strong primary beam. In contrast,
this is not necessarily the case for nonlinear scattering as one
can directly measure the scattered field in the forward direc-
tion. At q=0 the waves scattered by different particles have
the same phase, which should lead to a development of a
Bragg-type forward peak even in disordered structures with-
out long-range order. For periodic(crystalline) arrangements
of scattering particles comparison of the “true” Bragg peaks
(at qÞ0) and the forward peak(at q=0) could open novel
approaches to access information on e.g. long-range ordering
from a nonlinear diffraction experiment.

As discussed above, the forward scattering intensity of a
single particle could be very weak, which could complicate
the observation of the forward nonlinear scattering peak. In
the case of second harmonic generationsv1=v2d the inten-
sity scattered exactly into the forward direction should van-
ish due to symmetry reasons. A forward SHG peak observed
in Ref. 16 in transmission through a system of silicon nano-
clusters in a silica matrix was associated with spatial inho-
mogeneities in the medium on length scales exceeding the
wavelength or a gradient of the light intensity in a tightly
focused laser beam.17 Both explanations imply that the for-
ward SHG peak must be broader than the angular width of
the excitation beam, in agreement with experiment.16 In the
case of sum frequency generationsv1Þv2d with a noncol-
linear excitation geometry, however, the symmetry does not
forbid forward scattering from a single particle even if the
latter possesses spherical symmetry. As shown in the preced-
ing section and further illustrated in Sec. V, the forward scat-
tering intensity remains finite for a finite refractive index
mismatch.

As a final remark, we note that for given directions of the
fundamental beams,q can be finite for any detection direc-
tion since its length(given by uqu= u−k0+k1+k2u) is deter-
mined by both the incidence angle and the refractive indices
for each different wavelength. In this case the resulting in-
tensity should depend on the sample thicknessd in the direc-
tion at whichq reaches its minimum valueqmin. For dqmin
!1 the whole sample volume will coherently contribute to
the forward peak. Otherwise, fordqmin.1, the intensity of
the forward scattering will display beatings as a function of
the sample thicknessd.
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IV. EXPERIMENT

To test the theory presented above we have performed
infrared-visible sum frequency scattering experiments on
colloidal suspensions consisting of submicron particles. In-
formation about the local environment on the particle surface
can be obtained by analysis of both the spectrum and the
angle dependence of the spectral features. From the spectrum
information about the local structure can be obtained, as the
absence or presence of local inversion symmetry leads to
distinct spectral features.9 The angle resolved data can be
used to extract information about the orientation. The sum
frequency scattering experiments were performed using
10 mJ s120 fsd infrared (IR) pulses(repetition rate 1 kHz,
FWHM bandwidth of ,180 cm−1) centered around
2900 cm−1 and 3.0mJ, 800 nm visible(VIS) pulses with a
10 cm−1 bandwidth. The selectively polarized IR and VIS
pulses were incident under a relative angle of 15°sbd and
were focused down to a,0.4 mm beamwaist. Note that the
beam diameter at the focus is three orders of magnitude
larger than the particle radius, so that field inhomogeneities
across single particles are negligible.16,17 The scattered light
was collimated with a lens, polarization selected and dis-
persed onto a gated, intensified charge coupled device(CCD)
camera.34,35 The angular resolution was controlled by an ap-
erture placed in front of the collimating lens and was typi-
cally 12°. The samples consist of dry stearic alcohol
sC18H37OHd coated36 silica particles37 dispersed in CCl4

(99.9%, Baker Analyzed) with radii ssd of 342 nm, 123 nm,
and 69 nm. The colloid volume fractions where, respectively,
5% ss=342 nmd, 4% ss=123 nmd, and 6.7%ss=69 nmd.
The sample cell consists of 2 CaF2 plates separated by a 1
mm Teflon spacer.

V. RESULTS AND DISCUSSION

Figure 4 shows SFG spectra of stearyl-coated silica par-
ticles with radii of 69 nm, 123 nm, and 342 nm, respectively.
Only two (pppandssp) polarization combinations are shown
(top panel). The intensity ratio is very well reproduced by the
RGD theory as witnessed by the bottom panel, which shows
calculated scattered power over a solid angle of 12°(marked
by the shaded area). The solid lines in Fig. 4 are fits to the
data, obtained by convoluting the effective susceptibility
Gn

s2dsv1d with the electric field envelope of the upconversion
pulseEsv2d,9,25,38,39

I0sv1 + v2d ~ Uo
n

Gn
s2dsv1d ^ Esv2dU2

,

Gn
s2dsv1d =

An

sv1 − v0nd + iYn
, s30d

wheren refers to a vibrational mode,v0n is the resonance
frequency, andYn the spectral half width at half maximum.
The fits were obtained using all five well-known CH stretch
resonances:40 the symmetric CH3 and CH2 stretches at
2890 cm−1 and 2853 cm−1, the asymmetric CH3 and CH2
stretches at 2980 cm−1 and 2910 cm−1 and a Fermi resonance

at 2930 cm−1. The central frequencies were obtained from a
linear infrared spectrum and a Raman spectrum of the same
colloid sample. This fit procedure is justified, because for a
given scattering angle, the transverse component of the scat-
tered field is a linear combination of the components of the
effective nonlinear spherical polarizabilityGs2d.9

Figure 5 shows the scattered intensity for the symmetrical
CH3 stretch vibrationsuAsym.CH3

u2d of the stearyl groups at-
tached to the surface of the 342 nm and the 123 nm particles
as a function of the scattering angleu. As the contrast be-
tween the particles and the solvent is relatively small, we see
that the RGD approximations provides a good description of
the scattered field. Both fits were generated with the same
values for the elements of the susceptibility tensor, namely,
x

'i i
s2d /x

'''

s2d =−0.29, xi'i
s2d /x

'''

s2d =0.28, and xi i'

s2d /x
'''

s2d

=0.32. Figure 6 shows a comparison between the RGD and
WKB approximations. Angular distributions are calculated
for different radii. The input parameters are:x

'''

s2d =1,
x

'i i
s2d =0, xi'i

s2d =0, xi i'

s2d =0, and l1=3448 nm,n1=1.49, l2

=793 nm,n2=1.46,l0=645 nm,n0=1.46 and a realistic re-

FIG. 4. Top panel: SFG spectra(gray lines) and fits(black lines)
obtained at different polarization conditions(the three letter codes
next to the spectra indicate polarizations(p for horizontal, s for
vertical with respect to the plane of incidence for SFG, VIS, and IR,
respectively) at a scattering angle of 26°. The angular resolution
was 12°. The intensities are corrected for polarization dependent
detector sensitivity. The solid lines are fits as described in the text.
Bottom panel: Calculated intensities as a function of scattering
angle. The shaded area indicates the angle for which the spectra in
the top panel have been recorded.
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fractive index contrast ofdni =−0.1(defined as the difference
between the solute and the particle). For these values both
approximations produce the same radiation pattern for the
small s10 nmd particles. For larger sizes, the phase shift be-
comes significant and the scattering patterns start to differ.
For relatively large particless1 mmd the difference becomes
appreciable, especially at larger angles. This effect was also
observed when the RGD and WKB approximation were
compared in linear scattering experiments.27 This shows that
for samples like the stearyl-coated silica particles in CCl4 the
Rayleigh-Gans-Debye approximation is valid and that typi-
cally for micron sized particles one needs to take into ac-
count the phase shift that the waves experience as they travel
through the particle.

Figure 7 shows several calculations for the scattered SFG
intensity as a function of the scattering angle for several
refractive index contrasts. It shows that, in contrast to the
Rayleigh-Gans-Debye approximation there can be scattered
intensity in the phase matched direction if the index contrast
increases. If we also take into account the notion that at this
scattering angle the scattered intensity becomes proportional
to the square of the number of particles in the suspension, we
might expect a peak in the phase matched direction. In our
experiments with colloidal particles dispersed in CCl4 how-
ever, we were not able to observe a peak in this direction.

FIG. 5. The angular distribution of SFG intensity for the sym-
metrical CH3 stretch mode for silica particles withs=342 nm(top
panel) and s=123 nm(bottom panel). The dashed lines are fits to
the data using Eq.(20).

FIG. 6. Comparison of the Wentzel-Kramers-Brillouin approxi-
mation to the Rayleigh Gans Debye approximation for spherical
particles, with a radius of 10 nm, 342 nm, and 1000 nm. It shows
that for larger particles the phase shift becomes significant and the
scattering patterns start to differ.

FIG. 7. Scattered intensity for a single sphere with a radius of
1000 nm in the Wentzel-Kramer-Brilliouin approximation, with dif-
ferent values ofdn0,1,2, demonstrating that in contrast to the
Rayleigh-Gans-Debye approximationsdn0,1,2=0d there can be scat-
tered intensity in the phasematched direction if the index contrast
increases.
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This could be due to the small contrast in our sample
(udnu,0.1 for all wavelengths9) in combination with the rela-
tively small radii. For a dried(drop-casted) sample of col-
loids we did observe a small signal in the forward direction.
Due to a poor resolution we were not able to collect an
angular dependent intensity plot. It does, however, corrobo-
rate our predictions.

VI. CONCLUSIONS

In conclusion, we have introduced the concept of an ef-
fective susceptibility to formulate a generalized treatment of
nonlinear optical scattering. From simple symmetry argu-
ments we can deduce selection rules that are independent of
the properties of the scattering object. For sum frequency
scattering in particular, we have considered limiting cases of
small particle scattering, index matched(Rayleigh-Gans-
Debye) scattering, small index contrast(Wentzel-Kramers-

Brillouin) scattering and correlated scattering. We have com-
pared these results to data from sum frequency scattering
experiments and found that for particles with radii up to
several hundred nanometers the RGD approximation gener-
ates a good description. Phase differences upon traversing
the particle need to be incorporated for larger particles(for
comparable refractive index contrast).
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