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A new optical security system for image encryption based on a nonlinear joint transform correlator (JTC)
in the Fresnel domain (FrD) is proposed. The proposal of the encryption process is a lensless optical
system that produces a real encrypted image and is a simplified version of some previous JTC-based
encryption systems. We use a random complex mask as the key in the nonlinear system for the purpose
of increasing the security of the encrypted image. In order to retrieve the primary image in the decryption
process, a nonlinear operation has to be introduced in the encrypted function. The optical decryption
process is implemented through the Fresnel transform and the fractional Fourier transform. The security
system proposed in this paper preserves the shift-invariance property of the JTC-based encryption sys-
tem in the Fourier domain, with respect to the lateral displacement of the key random mask in the de-
cryption process. This system shows an improved resistance to chosen-plaintext and known-plaintext
attacks, as they have been proposed in the cryptanalysis of the JTC encrypting system. Numerical
simulations show the validity of this new optical security system. © 2014 Optical Society of America

OCIS codes:

(050.1970) Diffractive optics; (070.4550) Correlators; (070.4340) Nonlinear optical

signal processing; (070.2575) Fractional Fourier transforms; (350.4600) Optical engineering.

http://dx.doi.org/10.1364/A0.53.001674

1. Introduction

Information security is an integral part of our
lives, which affects most of the transactions among
individuals or institutions (public or private).
Optical-processing systems have been proposed for
information security applications in the last two dec-
ades [1] due to their high level of security, parallel-
ism, and ultrafast processing speed.

In 1995, Réfrégier and Javidi proposed an optical
encryption scheme named double random phase en-
coding (DRPE) [2], which has been further extended
from the Fourier domain to the Fresnel domain (FrD)
[3-10] and the fractional Fourier domain [11], in or-
der to increase the number of keys and hence the
security strength of the optical encryption—decryption
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system. The optical DRPE can be implemented using
a classical 4f-processor [12]. This processor typically
requires strict optical alignment, which in practice is
difficult to attain. To alleviate this constraint, the op-
tical DRPE can be also performed by means of a joint
transform correlator (JTC) architecture that also
shows other advantages [13-18]. With the JTC, a
CCD camera captures the intensity distribution of
the joint power spectrum (JPS) as the encrypted data
in the Fourier domain, while the classical DRPE
method requires the recording of complex-valued in-
formation. An additional advantage of JTC is that
the decryption process utilizes the same security key
previously used in the encryption process, which
eliminates the need pointed out in [2] to produce
an exact complex conjugate of the key. However, a
practical difficulty arises when trying to reproduce
the mathematics of DRPE algorithm as proposed in
[2] by means of the JTC architecture: in the input
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plane of the JTC, the image to be encrypted, which is
attached to a first random phase mask (RPM), is
placed side by side with a “key code” that has to be
the inverse Fourier transform of a second RPM [13].
This key code in the input plane of the JTC is a fully
complex-valued distribution whose Fourier transform
produces a phase-only distribution. The physical re-
production of the key code is not trivial. To optically
reproduce this key code in the input plane of a JTC,
Nomura and Javidi split the optical entrance of the
setup into two beams. This solution is conceptually
correct but adds more complexity to the optical setup,
which requires finer alignment than a conventional
JTC [13]. An alternative solution is given in [18],
where the key code is represented by real-valued
data. Another solution that involves the nonlinear
processing of the JPS is given in [16].

Other optical security applications that use the
JTC architecture in the FrD have been proposed in
several works [19-22]. These security applications
are based on phase-shifting methods, and therefore,
the image encryption and the decryption processes
differ from the DRPE technique proposed in [2,4,13].
The JTC in the FrD presented in [19,20] was 1mple—
mented using the Mach—Zehnder interferometer, and
hence, the optical entrance of the setup was split into
two beams.

Concerning the security of the optical DRPE pro-
posed in [2], it has been proved that the DRPE is
vulnerable to chosen-plaintext attack (CPA) [23,24]
and known-plaintext attack (KPA) [24,25]. This
weakness is due to the linear property of the DRPE
scheme [24]. The DRPE implemented by means of a
JTC is also vulnerable to CPA [26] and KPA [27].
Fmally, the optical DRPE in the FrD proposed in
[3-5] is also vulnerable to plaintext attacks [28,29].

Image quality has also been an issue in optical
security applications based on JTC architectures.
The possibility of applying nonlinear transforma-
tions onto the JPS has been explored in order to im-
prove both the security of the encrypted image and
the image quality in the retrieval of the decrypted
image [16] and in image verification [30].

As mentioned above, the optical DRPE proposed in
[2] was extended to the FrD. In this work, we will ex-
tend the DRPE implemented with a nonlinear JTC,
as proposed in [16], to the FrD in order to increase
the security of the encryption scheme and simplify
the optical implementation of the encryption—
decryption system in comparison with the previous
JTC-based encryption systems [13—-20]. We introduce
a nonlinear operation in the encrypted function that
contains the joint Fresnel power distribution (JFPD),
for the purpose of retrieving the primary image in the
decryption process [31]. The nonlinearity introduced
in the FrD becomes essential to retrieve the en-
crypted image. This makes a significant difference
with respect to the JTC-based encryption system in
the Fourier domain described in [16], where the non-
linearity applied to the JPS was not essential to de-
crypt the image but to retrieve it with higher quality

and in more secure conditions. The nonlinear JTC-
based encryption system in the FrD [31] is math-
ematically described and further investigated in this
paper with the introduction of a general random com-
plex mask (RCM), the use of different probability
density functions to generate the random codes,
and the evaluation of the system resistance to crypt-
analysis. As we will show in the following sections,
the nonlinearity introduced in the JFPD and other
features of the optical setup, make the system more
resistant to CPA [26] and KPA [27]. We also use a
RCM as the key of the security system, where both
the modulus and phase functions of the RCM are of
random magnitudes. This RCM is a general key
random mask to be implemented in a JTC-based sys-
tem and, as we demonstrate, it also increases the
security of the encryption compared to the previous
algorithm [16].

The proposed encryption technique can be applied
by means of a lensless optical system that avoids the
beam splitting required by other optical JTC imple-
mentations [13,19,20]. There is no need to make the
optical setup more complicated because a simplified
JTC in the FrD suffices for the implementation of the
whole process. In addition to this, the amount of in-
formation to transmit does not increase with respect
to the referred algorithms. Regarding the implemen-
tation of the decryption process, we use an optical
fractional Fourier transform in the last step of the
decryption stage. Finally, the proposed nonlinear
JTC-based encryption—decryption system in the FrD
preserves the shift-invariance property with respect
to lateral displacements of the key random mask in
the decryption process [1,17].

The rest of the paper is organized as follows.
Section 2 describes the proposed nonlinear JTC-
based encryption system in the FrD and presents
some numerical experiments to illustrate the pro-
posal. Section 3 specifies the system resistance
against CPA [26] and KPA [27]. The results pre-
sented and discussed in the paper lead us to outline
the conclusions in Section 4.

2. Nonlinear JTC-Based Encryption System in the
Fresnel Domain

A. Encryption Stage

The input plane of a JTC is typically composed by
two nonoverlapping data distributions, g(x) and c(x),
placed side-by-side (Fig. 1) [12-18]. We use one-
dimensional notation for the sake of simplicity. Let
f (x) be the real image to be encrypted with values
in the interval [0, 1], r(x) a RPM, and A(x) a RCM
whose mathematlcal expressions are given by

r(x) = exp{i2zs(x)}, h(x) = m(x) exp{i2zn(x)}, (1)
where s(x), m(x), and n(x) are normalized positive
functions randomly generated, statistically indepen-
dent, and distributed in the interval [0, 1]. In the
encryption stage, the two functions g(x) and c(x)
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Fig. 1.

Scheme of the optical setup composed by an encryption system based on a nonlinear JTC architecture in the FrD and a decryption

system based on an optical FrT combined with an optical fractional Fourier transform.

are placed in the input plane of the JTC at coordi-
nates x = xy and x = —x, respectively. The function
g(x) consists of the real image to be encrypted bonded
to the RPM r(x) and modulated by a pure linear
phase term

12704(x — vg)

= (2)

g) = exp{ }r(x)f(x),

where v is a real constant. Let the function c(x) be
the RCM hA(x) modulated by another pure linear
phase term

—127v0(x + vg)

e 3

c(x) = exp{ }h(x).

Let us denote the Fresnel transform (FrT) at the
wavelength 1 and the propagation distance z of the
functions r(x)f(x) and h(x) by

t,(u) = FrT, {r(x)f x)}.
h,(u) = FrT, {hx)} = |h,(w)| exp{i2zd,(w)}. (4)

We introduce the JFPD at parameters 4, z, and
Up = —Xp as

JFPD, (1) = |FrT, {g(x —x¢) + c(x +x0)}|2.  (5)

It is worth remarking that the linear phase terms
symmetrically introduced in g(x —xy) [Eq. (2) with
vy = —x and shifted to x = x¢] and c(x + x¢) [Eq. (3)
with vg = —x¢ and shifted to x = —x4] are solely in-
tended to ensure that both FrT,, {g(x -x()} and
FrT; {c(x +x9)} are centered at the same spatial
point of the FrD. We define the encrypted image
as the JFPD divided by the nonlinear term |k, (u)|?,
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and it is determined by the following equation (see
Appendix A):

JFPD.)  [t.()?
XOLEIADL
) .

|hz(%)|2 exp {% (4x°)“}
B ()
o) P

+1

e (u) =

+ 2 w)

+ 2. (w)

exp {%ﬂ (4x0)u}. (6)

If |h,(u)|? is equal to zero for a particular value of ,
this intensity value is substituted by a small con-
stant to avoid singularities when computing e,(u).
It is also important to remark that the products
t:(w)h,(v) and ¢,(u)h}(u) can be obtained in the FrD
due to the pure linear phase modulation introduced
in Egs. (2) and (3). These products in the FrD are es-
sential to convert the primary image in random
noise according to the DRPE algorithm implemented
with a JTC architecture. The encrypted image
consists of a real-valued distribution that can be
computed from the intensity distributions of the
JFPD, (u) and |h,(u)|? previously acquired by a con-
ventional power-law device, such as a CCD camera.
The nonlinear expression of Eq. (6) is the natural ex-
tension to the FrD of the nonlinear expression given
in our former work [16] for the JPS in the Fourier
domain.

The security keys needed for decryption are the
RCM h(x), the wavelength 1, and the distance of
propagation z. The RPM r(x) is used to spread the
information content of the original image f(x) onto
the encrypted distribution e,(x). Compared to pre-
vious JTC-based encryption systems [13-18], this
encryption system is a lensless setup that minimizes
the optical hardware requirements and is easier to



implement. Figure 1 shows the optical encryption
scheme based on a nonlinear JTC architecture in
the FrD.

B. Decryption Stage

The initial step of the decryption process is to per-
form the product between the encrypted distribution
and the FrT at parameters A and z of c(x + xp)
with vy = —xy, and this can be expressed (see
Appendix A) by

d,(u) = e,W)FrT; {c(x + xo)}

—expl?” ENEAON 2
— exp {7 (2rqu =) | =0 )
+ exp {;—Z (2xu — x%)}hz(u)
. %
+ exp {Z—Z (Bxou — xg)}t;‘ (w) ﬁ
+ exp {%ﬂ (2xou + x%)}tz(u) %

(7

The fourth term of Eq. (7) is the most interesting
since it retains the information to be decrypted [16].
Therefore, when the FrT at parameters A and -z is
applied to the simplified fourth term of Eq. (7) and
the absolute value is taken, we obtain the decrypted
image at coordinate x = x, given by

flx—x) =

FrT,_, {exp [%ﬂ (2xou + x(z)):| t, (u)} ’
€))

Note that if we use c(x) shifted to the position of
coordinate x = —x; with vy = —x; for the decryption
process, the decrypted image can be recovered at
coordinate x = 2xy — x;

f(x = 20cq + 1)

FrT, ., {exp ["E‘” (2(2x—x)u + x%)}@(u)} ' ©

The previous equation demonstrates that the
encryption—decryption system based on a nonlinear
JTC in the FrD preserves the shift-invariance prop-
erty of the complex key mask c(x) for decryption, in
the same way as the Fourier domain-JTC encryption
system does. This shift-invariant property of the
proposed encryption—decryption system is a conse-
quence of the definition of the JFPD given in Eq. (5).
We remark that it will not be possible to retrieve the
original image in the decryption stage unless the
nonlinear operation is introduced as described in
Eq. (6). This result differs from the previous proposal
[16] where the applied nonlinearity helped to im-
prove the quality of the retrieved image, but it was

not such an essential operation. The reason for this
is that all the transformations are performed in
the FrD and the key mask of the encryption—
decryption system is a fully complex-valued random
distribution in the input plane of the JTC.

Since the FrT at parameters 4 and —z cannot be
implemented optically [4] and the complex conjuga-
tion of the real-valued encrypted distribution e, (u) is
not useful in the decrypting procedure, we use the
relationship between the FrT and the fractional
Fourier transform (Appendix B) for the purpose of
simulating an optical inverse FrT. The FrT at param-
eters 1 and z is related to a fractional Fourier trans-
form at fractional order a [5,32,33]. Therefore, we
applied an optical fractional Fourier transform at
fractional order 7 — a to the simplified fourth term
of Eq. (7) and then we take the absolute value in or-
der to retrieve an inverted version of the primary im-
age f(—x) at coordinate x = —x,. Figure 1 also shows
the optical decryption scheme based on an optical
FrT combined with an optical fractional Fourier
transform (the distances d;, dy, and the focal length
of the lens define the value of the fractional order
z—a [32]).

C. Computer Simulations

Numerical simulations are carried out to analyze the
performance of the proposed encryption and decryp-
tion procedures. The original image to be encrypted
is 256 x 256 pixel size [Fig. 2(a)l, the distance be-
tween pixels (pixel pitch) is 8 pm. The random distri-
bution code s(x), corresponding to the RPM r(x), and
its histogram are shown in Figs. 2(b) and 2(c), respec-
tively. Similar noisy distributions are considered for
m(x) and n(x) of the RCM h(x). Figure 2(c) reveals
the relative uniformity of the probability density
function of the random distribution code s(x). The
distance x, used in the input plane of the JTC, is
set to 4.096 mm (512 pixels). The encrypted function
obtained by using the keys A =532 nm and z =
70 mm is depicted in Fig. 2(d).

The absolute value of the output plane after the
decryption procedure with the correct keys 4, z,
and the RCM hA(x) is shown in Fig. 3(a). The de-
crypted image is presented in Fig. 3(b), which depicts
the magnified region of interest of the output plane
[Fig. 3(a)]. The ideal decrypted image has been ob-
tained by calculating just the right term of Eq. (8)
and it is displayed in Fig. 3(c). To evaluate the quality
of the decrypted image, we use the root mean square
error (RMSE) defined by [34]

(10)

M () —f(x)]z)%
xM=1 [f(x)]2 '

where f(x) and f(x) denote the original image and the
decrypted image, respectively. The RMSE between
the original image of Fig. 2(a) and the decrypted im-
age of Fig. 3(b) is 0.114, whereas it is only 4.44 x
10715 if the original image of Fig. 2(a) is compared
with the ideal decrypted image of Fig. 3(c). The

RMSE = (
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(a) Original image to be encrypted f(x). (b) Random distribution code s(x) of the RPM r(x). (¢c) Histogram of s(x) (uniform random

distribution). (d) Encrypted image e, (z) for the keys 4 = 532 nm and z = 70 mm.

two previous decrypted images have been simulated
using the FrT with parameters A = 532 nm and z =
—70 mm in the last step of the decryption process.
When this inverse FrT is replaced by a fractional
Fourier transform of fractional order n—a, with
a = 0.357x, the decrypted images obtained are similar
to those presented in Figs. 3(b) and 3(c).

We test the role of the introduced nonlinearity in
the proposed encryption system. When the nonli-
nearity |k, («)|? of Eq. (6) is not applied in the encryp-
tion algorithm, the decrypted output obtained with
the correct keys is shown in Fig. 3(d). In such a case,
the resulting image has still a noisy-like appearance
and thus the original image can not be retrieved. The
RMSE between the original image of Fig. 2(a) and
the decrypted image of Fig. 3(d) is 0.783. The result
shown in Fig. 3(d) proves that the nonlinearity
|h,(w)|? introduced in the encrypted function is es-

Fig. 3.

sential to the decryption process in order to retrieve
the original image.

We also tested the influence of the security keys on
the decrypted image. The retrieved image with an
incorrect distance of propagation z and the others
correct keys [the wavelength A and the RCM A (x)]
is shown in Fig. 3(e). The resulting decrypted image
has a noisy pattern without any relevant information
from the original image. The RMSE between the
original image of Fig. 2(a) and the decrypted image
of Fig. 3(e) is 0.794. When an incorrect wavelength A
or an incorrect random code images of the RCM A (x)
[either the modulus m(x) or the phase n(x), or both at
the same time] are used in the decryption process,
the decrypted images obtained are noisy patterns
similar to Fig. 3(e). These results prove that all the
keys are required in the decryption stage for the cor-
rect retrieval of the original image.

(d)

(e)

(a) Absolute value of the output plane after the decryption procedure with the correct keys 4, z, and the RCM A(x). (b) Magnified

region of interest of (a) corresponding to the decrypted image. (c) Ideal decrypted image obtained by calculating just the right term of
Eq. (8). Decrypted images from Fig. 2(d): (d) when the nonlinearity |A,(u)®> of Eq. (6) is not introduced in the encrypted function and
all the correct keys are used for decryption and (e) using just an incorrect distance of propagation z = 73 mm, but the rest of keys

[4 and the RCM h(x)] are correct.
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Additionally to the examples just provided, the
interested reader is referred to other papers
[3-5,9,11,29] that report similar effects obtained
after introducing small errors in the various keys
(such as the lateral distances z, d;, and d,, and the
wavelength 1) of related DRPE encryption systems in
the FrD.

As another test, the random distribution codes
m(x) and n(x) of the RCM A(x) presented in Figs. 4(a)
and 4(b), respectively, were generated using the
nonuniform random distributions Weibull and chi-
square, respectively. Figures 4(c) and 4(d) show the
histograms of m(x) and n(x), respectively, which re-
veal the nonuniformity of the probability density
functions of these codes. Considering such RCM ki (x)
and the original image shown in Fig. 2(a), the en-
crypted image for the keys 4 =532 nm and z =
70 mm is depicted in Fig. 4(e). Even though the
RCM h(x) is obtained by using nonuniform distribu-
tions, the final encrypted image of Fig. 4(e) has a
noisy-like appearance very similar to the result of
Fig. 2(d). The decrypted image using all the correct
keys is shown in Fig. 4(f). Thus, in accordance to the
analysis carried out in [16], we recommend using
nonuniform random distributions for m(x) or n(x) in
the encryption system, for the purpose of improving
the security of the encrypted image.

D. Feasibility of Experimental Optical Setup

The former optical implementation of the DRPE us-
ing the JTC architecture [13] has been modified in
several works [14-16]. Initially, the complex-valued
key code in the input plane of the JTC was directly
replaced by a RPM [14,15]. Although this did not ex-
actly reproduce the DRPE as proposed in [2], this
modified JTC-based encryption system became eas-
ier to implement with the help of a simple diffuser

2000
1500
1000
500
0
0 01 02 03 04 05 06 07 08 09 1

(d)

glass (random phase element) placed in the input
plane to fully cover its aperture. On the one side of
the JTC input plane, a zone of the diffuser (first
RPM) was against the image to be encrypted and,
on the other side, another zone of the diffuser was
used for the second RPM. The latter RPM constituted
the security key used in both the encryption and the
decryption stages. Thus, whereas the second RPM
acted in the Fourier domain for the original DRPE,
it acted in the spatial domain for the modified DRPE
[16]. The decrypted images obtained in [14,15] pre-
sented low quality, due to this modification. As we
showed in [16], it is possible to significantly improve
the quality of the decrypted image in the security
system described in [14,15] by introducing a simple
nonlinear operation in the encrypted function that
contains the JPS.

The nonlinear JTC-based encryption system pro-
posed in this work can be implemented using the opto-
electronic setup of Fig. 1 (JTC part) by following the
procedure proposed in [35-37] extended to the FrD.
The encrypted image given by Eq. (6) can be optically
implemented by a two-step JTC [35 36] in the FrD.
In the first step, the intensity function |h,(w)|? is
captured, which is equal to |FrT,_ {c(x + x¢)}|> with
vg = —%xo. Then, the JFPD represented by Eq. (5) is
captured in the second step [37]. Finally, the JFPD
is digitally divided by |, (x)|% and thus, the encrypted
image of Eq. (6) is computed. This encrypted distribu-
tion is the only information to transmit. Therefore,
this method does not increment the amount of data
to send prior the decryption stage [16].

The pure linear phase terms introduced to the dis-
tributions g(x) and c¢(x) in the input plane of the JTC
can be implemented using an optical biprism or a
phase-only SLM. The RCM can be displayed by

!
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Fig. 4. Nonuniform random distributions: (a) Weibull for m(x) and (b) Chi-square for n(x). Histograms of (c) m(x) and (d) n(x).
(e) Encrypted image e, () and (f) Decrypted image using all the correct keys.

10 March 2014 / Vol. 53, No. 8 / APPLIED OPTICS 1679



means of the optical implementation presented in
[17]. This optical implementation requires a more
precise optical alignment, because it is necessary
to employ two SLMs in order to modulate the ampli-
tude and phase in a separate way. The requirements
of the optical implementation for the proposed non-
linear encryption—decryption system can be relaxed
when the RCM A(x) is reduced to a RPM, making
m(x) equal to 1in Eq. (1). In this case, the RPMs r(x)
and A (x) can be implemented using a diffusor glass as
mentioned in this section. Another practical optical
implementation could be by displaying the pure lin-
ear phase terms and the RPMs r(x) and A(x) of the
input plane of the JTC by means of a phase-only
SLM. The optical fractional Fourier transform that is
used in the decryption process, can be performed by
means of the optoelectronic setup developed in [38].

3. Cryptanalysis

The security of the proposed nonlinear JTC-based
encryption system in the FrD is further evaluated
in this section. We test the resistance of the nonlinear
encryption system against CPA [26] and KPA [27]
that proved the Vulnerablhty of the JTC-based en-
cryption system in the Fourier domain.

A. Chosen-Plaintext Attack

The CPA defined in [26] was applied to a JTC-based
encryption system in the Fourier domain, which has
a RPM as key. The encryption process proposed in
this paper is based on a JTC in the FrD (1 and z re-
present additional keys) and has a RCM h(x) as key.
The CPA presented in [26] does not directly apply to
our encryption method. However, if we consider that
/ and z are known, the CPA defined in [26] can be still
applied to the encryption system proposed in this
paper. The CPA introduces a couple of chosen plain-
texts in the encryption system in order to obtain the
information related to A(x) [26]. The first chosen
plaintext introduced in the encryptlon system is a
null image f(x) = 0, and thus, the encryption distri-
bution according to Eq. (6) would be

e,(u) =1. 11D

The previous result shows that, unlike the tradi-
tional JTC in the Fourier domain, it is not possible
to obtain any information about either A(x) or A, (u)
when a null image is introduced in the proposed en-
cryption system. The second chosen plaintext
presents a Dirac delta function for the image to be
encrypted fa(x) = 6(x). The corresponding encrypted
image, using Eq. (6), would then be

e, (u) = #+ +#
T k2lh(w))? Vaz|h, ()|
X COS (27r|:q52(u) (u 4xq) —s(0) —= + ;})

(12)
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where both the modulus |/, (1)| and phase ¢, (1) func-
tions of A,(u) are unknown and cannot be obtained
separately. Therefore, the proposed nonlinear JTC-
based encryption system in the FrD is resistant to
the CPA defined in [26], because the information
about A(x) or h,(u) cannot be disclosed.

B. Known-Plaintext Attack

The KPA implemented in [27] also was designed to be
applied to a JTC-based encryption system in the
Fourier domain. The KPA tries to find the RPM key
of the encryption system. This KPA is an iterative
process that is based on a heuristic hybrid algorithm
[39,40] and the Gerchberg—Saxton (GS) algorithm
[41] . The heuristic hybrid algorithm produces a first
key based on an initial guess of the RPM key and a
plaintext with its corresponding ciphertext (en-
crypted image). The first key along with the plaintext
and its corresponding ciphertext are introduced in
the GS algorithm adapted to the JTC architecture
[27], in order to obtain the final RPM key. Once
again, the KPA defined in [27] does not directly apply
to the encryption system proposed in this paper,
because the nonlinear encryption system described
in Section 2.A is based on a JTC in the FrD and
has a RCM h(x) key. However, if we consider that
A and z are known, the KPA defined in [27] requires
extending the GS algorithm to the FrD [42] in order
to find a final RPM key. Even if such extension of the
GS algorithm was done, the KPA developed in [27]
would only be able to ﬁnd a RPM key (phase-only
function), but the nonlinear encryption system pro-
posed in this paper has a RCM key A(x) (with both
modulus and phase function being random magni-
tudes). We remark that it is very important to use
the correct random code image of the RCM h(x)
[modulus m(x) and phase n(x)] to retrieve the origi-
nal image in the decryption system, as mentioned
previously in Section 2.C.

On the other hand, the GS algorithm in [27] was
adapted only for the J PS in the Fourier domain, and
we have shown in Section 2.A that the encrypted
image is currently represented by a nonlinear
modification of the JFPD. Therefore, the convergency
of the GS algorithm in [27] extended to the FrD [42]
would be affected by the introduction of the nonlinear
modification in the JFPD.

Since the RPM key obtained in [27] depends on the
probability density function selected at the begin-
ning of the attack, we propose to increase the secu-
rity of the RCM A(x) used in our work by considering
different probability density functions (not only uni-
form) for the random code distributions correspond-
ing to the RCM A (x). For all these reasons, we can say
that the proposed nonlinear JTC-based encryption
system in the FrD is resistant to the KPA imple-
mented in [27].

4. Conclusion

A new optical information system has been proposed
for image encryption—decryption involving the use of



a nonlinear JTC architecture in the FrD. The pro-
posed encryption system is a lensless optical system,
which makes the difference with respect to the pre-
vious DRPE implemented with a JTC architecture.
The nonlinear modification introduced in the FrD
has allowed the retrieval of the primary image in
the decryption process. Additionally, the nonlinear
term introduced into the JFPD and the RCM used
in the input plane of the JTC has improved the secu-
rity of the encrypted image. We have tested the secu-
rity of the proposed encryption system against CPA
and KPA and proved its resistance to these attacks.
The nonlinear modification of the JFPD, applied just
before the generation of the encrypted image, does
not increase the amount of data to transmit. The
security system proposed in this paper preserves
the shift-invariance property of the complex key
mask for decryption in the same way as the Fourier
domain-JTC encryption system does. Finally, the
nonlinear encryption and decryption systems are
suitable for optoelectronic implementation. A two-
step JTC in the FrD can be used for the encryption
stage and an optical FrT combined with an optical
fractional Fourier transform for the decryption stage.

Appendix A: Fresnel Transform
The Fresnel transform (FrT) of an object f(x) at a
propagation distance z when it is illuminated

by a plane wave of wavelength A can be expressed
as [12]

fow) = FrT, {f @)} = / " feohadr, (AL

with
in
h,.(w.x) =M,, exp {A_z (u- x)z}, and

1 .2nz
Mi,z = \/__Tllg exp {LT}’

where the operator FrT,, denotes the FrT at param-
eters 1 and z, h,, is the kernel of the transformation,
and M, , is a constant for a given distance of propa-
gation z. The properties of the FrT that are used in
the encryption—decryption method of Section 2 are

(A2)

FrT), {FrT,.,[f @} = FrT;, .., {f ()}, (A3)

FrT,, {exp (izzzox)f(x - xo)}

= exp {Z (2uvy - v3) }fz(u —Xo = Ug), (A4)

where x;, and v, are real constants. If we choose
vy = —Xg, the Eq. (A4) is reduced to

P fesp (200 ) x|

= exp {_};ﬂ (2uxg + x%)}fz(u). (AB)

Appendix B: Relationship between the Fractional
Fourier Transform and the Fresnel Transform

The fractional Fourier transform of order « is a linear
integral operator that maps a given function f(p)
onto function f,(c) by [32]

folo) = FH4F(p)} = / " fp)Kao.p)dp  (BD

with

K, (0.p) = C, explin[(c® + p?) cot a—20p csc a]},

exp ¢—i(Zsgn(a) —<
C,= { (4 2)} —-z<a<nm (B2

“ J/Isin q] '

where K, is the fractional Fourier kernel and sgn is
the sign function. For a = 0, it corresponds to the
identity transform. For a = z/2, it reduces to the di-
rect Fourier transform. For a = 7, the reverse trans-
form is obtained. For a = -z /2, it corresponds to the
inverse Fourier transform. The inverse fractional
Fourier transform corresponds to the fractional
Fourier transform at fractional order —a. The frac-
tional Fourier operator is additive with respect to
the fractional order FoF/ = Foth,

The FrT represented by Eq. (Al) can be related to
the fractional Fourier transform denoted by Eq. (B1)
using the following relationship [33]:

£ vizZ) = @MAZC;l exp{iro® tan a}
L K *
. fa{f(dz_z Iﬁ{)} (B3)
where
p=1/12)2Kx, o= (1/i):Lu, K?=tana,
L? = sin a cos a, 0<a<ax/2. (B4)
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