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We show theoretically that two atomic dipoles in a resonator constitute a nonlinear medium, whose prop-
erties can be controlled through the relative position of the atoms inside the cavity and the detuning and
intensity of the driving laser. We identify the parameter regime where the system operates as a parametric
amplifier, based on the cascade emission of the collective dipole of the atoms, and determine the corresponding
spectrum of squeezing of the field at the cavity output. This dynamics might be observed as a result of
self-organization of laser-cooled atoms in resonators.

DOI: 10.1103/PhysRevA.76.053829 PACS number�s�: 42.50.Dv, 42.50.Pq, 42.65.Yj

I. INTRODUCTION

Quantum light sources are an essential element for imple-
mentations of quantum-information processing and secure
telecommunication with quantum-optical systems �1–4�. Ex-
periments have demonstrated several remarkable milestones,
thereby opening promising perspectives for implementing
controlled generation of quantum light �5–16�. In addition,
these studies touch on the fundamental question of how mac-
roscopic nonlinear phenomena emerge from the dynamics of
quantum systems �17�. A paradigmatic example is the optical
parametric amplifier �18�. This system is usually realized
with nonlinear crystals in resonators, where the medium re-
sponse is characterized by the dependence of the macro-
scopic polarization on the electric field, and where symme-
tries of the crystal can enhance a certain nonlinear response
over others �19,20�. On the other hand, recent theoretical
works pointed out that a single atom in a suitable setup can
constitute an efficient nonlinear-optical medium operating in
the quantum regime �21–24�. A question that naturally
emerges from these works is how these dynamics scale up to
a macroscopic nonlinear medium, and in particular what is
the microscopic building block exhibiting the essential sym-
metries controlling the order of the medium susceptibility.

In this paper, we study the nonlinear response of a me-
dium constituted of two dipoles confined along the axis of an
optical resonator, and transversally driven by a laser, in a
configuration like the one depicted in Fig. 1. At certain in-
teratomic distances the state of the field at the cavity output
can exhibit nonclassical features. In particular, we show that
the system response can be switched from a parametric am-
plifier to a Kerr medium, just by varying the intensity of the
laser field. The validity of our analytical predictions is veri-
fied by numerical simulations which take into account the
internal dynamics of the atoms and their coupling with the
quantized mode of the resonator. The effect of atomic vibra-
tions on the field at the cavity output is estimated using a
semiclassical model for the atomic motion. Finally, we dis-
cuss the possibility of obtaining such patterns, operating in
the quantum regime, as the result of self-organization of
laser-cooled atoms in the resonator field �29,30�.

This paper is organized as follows. In Sec. II the model is
introduced and the basic properties are discussed. In Sec. III

the response of the atomic medium is determined as a func-
tion of the atomic position inside the resonator, when the
atoms are driven by a laser. The steady state of cavity and
atoms is determined for the specific parameter regime in
which the system behaves as an optical parametric amplifier.
In Sec. IV we consider the effect of the center-of-mass mo-
tion on the cavity field by means of a semiclassical model. In
Sec. V we summarize the results and discuss some outlooks.
The appendixes provide details of the calculations presented
in Secs. III and IV.

II. THE THEORETICAL MODEL

We assume two identical atoms of mass M, which are
confined inside a standing-wave cavity, and localized at po-
sitions x1 and x2, respectively, along the cavity axis. We de-
note by p1 and p2 the corresponding momenta, and by Hmec
the Hamiltonian determining the dynamics of the center of
mass in the absence of the coupling with the electromagnetic
field, which has the form

FIG. 1. �Color online� Two atoms are confined inside a high-
finesse optical resonator; their dipoles are driven by a laser and
couple to a mode of the cavity. The quantum state of the field at the
cavity output can be controlled by the interatomic distance inside
the resonator and the laser intensity and detuning. A detecting ap-
paratus measures the field at the cavity output. The parameters are
defined in Sec. II.
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Hmec =
p1

2

2M
+

p2
2

2M
+ V�x1,x2� , �1�

with V�x1 ,x2� an external potential, which localizes the at-
oms at their equilibrium positions such that they undergo
small vibrations with respect to the cavity-mode wavelength.
The relevant internal degrees of freedom of the atoms are the
ground state �g� and the excited state �e� of a dipole transition
with dipole moment d, which is at frequency �0. The dipoles
are driven by a transverse laser field at frequency �L and
couple to a mode of the resonator at frequency �c and wave
vector k, as displayed in Fig. 1. A detecting apparatus mea-
sures the field at the cavity output.

A. Master equation

In the reference frame rotating at the laser frequency, the
coherent dynamics of the atoms and cavity mode is described
by the Hamiltonian H=Hmec+Hat+Hcav+Hcav-at+HL. The
terms

Hat = − �� �
j=1,2

� j
†� j , �2�

Hcav = − ��ca
†a �3�

describe the system dynamics in the absence of coupling
with the electromagnetic field. Here, �=�L−�0 and �c=�L

−�c are the detunings of the laser from the dipole and from
the cavity frequency, respectively, � j = �g� j�e� the lowering
operator of the atom j, � j

† its adjoint, and a and a† are the
annihilation and creation operators of a photon of the cavity
mode. The terms

HL = �� �
j=1,2

�� j
† + � j� , �4�

Hat-cav = � �
j=1,2

g�x j��a
†� j + � j

†
a� �5�

describe the interaction of the dipoles with the cavity and
laser fields, respectively, with � the laser Rabi frequency and
g�x j� the cavity-vacuum coupling strength at x j, with g�x j�
=g cos�kx j�. In Eq. �4� the laser wave vector is orthogonal to
the cavity axis.

Coupling to the external environment gives rise to dissi-
pation and decoherence, which is described by spontaneous
emission of the excited state at rate � and by cavity decay at
rate �. The dynamics of the density matrix 	 of the cavity
and atomic degrees of freedom is given by the master equa-
tion

�

�t
	 = −

i

�
�H,	� + L�	 + L�	 �6�

	L	 , �7�

where

L�	 = ��2a	a† − a†a	 − 	a†a� �8�

is the superoperator that describes noise due to cavity decay,
and

L�	 = �
j=1,2

�

2
�2� j	̃ j� j

† − � j
†� j	 − 	� j

†� j� �9�

is the superoperator that describes the quantum noise due to
spontaneous emission. In the superoperator �9�, the term 	̃ j

accounts for the mechanical effect of the spontaneously emit-
ted photon on the atom in x j; see, for instance, �25�.

B. Multiphoton processes and atomic patterns

It is instructive to consider the dynamics in terms of the
collective states of the dipole. We denote by �+ � and �−� the
Dicke symmetric and antisymmetric states, respectively, with
�± �= ��eg�± �ge�� /
2, and rewrite the interaction of the atoms
with laser and cavity mode in terms of the operators

S± = ��1 ± �2�/
2. �10�

In this representation, the laser-atom interaction Eq. �4� is
rewritten as

HL = �
2�S+ + H.c., �11�

while the atom-cavity interaction term Eq. �5� can be decom-
posed as Hat-cav=H++H−, with

H± = �g±�x1,x2��aS±
† + a†S±� �12�

and

g±�x1,x2� =
g


2
�cos�kx1� ± cos�kx2�� . �13�

This decomposition highlights the relevant cavity-atom dy-
namics, which depend on the relative atomic position. The
term H− describes the coupling of the cavity mode with the
Dicke antisymmetric state, and it vanishes when the inter-
atomic distance d=x2−x1 is an integer multiple of the cavity
wavelength 
=2� /k. We denote the corresponding atomic
configuration as a “
-spaced pattern.” The term H+ describes
the coupling of the cavity mode with the Dicke symmetric
state and it vanishes when d is an odd multiple of 
 /2. We
denote the corresponding atomic configuration as a
“
 /2-spaced pattern.” Below we discuss the corresponding
dynamics in detail.

1. � -spaced pattern

We first consider the case in which the interatomic dis-
tance is an integer multiple of 
. For this configuration, at
steady state and for large cooperatives, the atoms are in the
ground state and the cavity mode is in a coherent state whose
amplitude is determined by the laser intensity �26,27�. This
behavior can be understood in terms of the coherent buildup
of a cavity field, such that its phase is opposite to the driving
field. As a result, the atomic dipole is not excited, even if the
cavity mode is in a coherent state with a finite number of
photons. When two or more atoms are present inside the
resonator, this situation can be achieved when the atoms
scatter in phase into the cavity modes, i.e., when they are
arranged in a 
-spaced pattern. The coherent scattering pro-
cesses that two atoms undergo are sketched in Fig. 2�a� in the
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Dicke basis, showing that the antisymmetric state �−� re-
mains always decoupled from the coherent dynamics. Here,
one identifies the suppression of excitation of the atoms at
steady state as due to interference between the excitation
path �gg ,n�→ �+,n�, driven by the laser, and the excitation
path �gg ,n+1�→ �+,n�, driven by the cavity. Figure 2�a� also
displays the other higher-order processes. In particular, we
note the processes that lead to the excitation of the state
�ee ,n� by the absorption of two laser photons, followed by
emission of a pair of photons into the cavity. These processes
are expected to give rise to squeezing of the coherent state of
the cavity field. We note that squeezed-coherent radiation has
been predicted in the resonance fluorescence of an atomic
crystal, at wave vectors such that the Bragg condition of the
atomic crystal is equivalent to the 
-spaced pattern discussed
here �28�. Finally, we note that the formation of 
 patterns of
laser-cooled atoms inside resonators has been predicted as
the result of a self-organizing process �29,30�, and features
of the field at the cavity output, associated with their forma-
tion, have been measured in �31,32�. Theoretical works have
shown that these patterns can also be stable in the strong-
coupling regime, under the condition in which atomic exci-
tation is suppressed and the cavity field is in a coherent state
�26,33�.

2. � Õ2 -spaced pattern

We now analyze the case when the interatomic distance is
an odd multiple of 
 /2, such that H+=0. In this case the
atomic ground state couples via the laser to the Dicke sym-
metric state �+ �, and via the cavity to the antisymmetric state
�−�, as depicted in Fig. 2�b�. Hence, when the laser drives the
atoms well below saturation, the cavity is empty �26�. In fact,
in this limit the two atoms scatter the laser photons with
opposite phase into the cavity and the resulting field vanishes
due to destructive interference. Figure 2�b� shows, however,
that the cavity mode can be pumped by higher-order pro-
cesses, which excite the state �ee ,0�. In this regime, the col-
lective dipole can emit photons in pairs into the cavity mode.
These processes are expected to give rise to squeezing of the
state of the cavity field. We note that squeezed radiation has
been predicted in the resonance fluorescence of an atomic
crystal, at wave vectors such that the Bragg condition of the
atomic crystal is equivalent to the 
 /2-spaced pattern dis-
cussed here �28�. In this paper we will investigate the quan-
tum state of the light in the presence of a high-finesse cavity
when the atoms are initially in a 
 /2-spaced pattern, and
determine the dynamics resulting from the competition be-
tween coherent processes and noise, such as cavity decay,
spontaneous emission, and atomic vibrations at the equilib-
rium positions.

III. NONLINEAR RESPONSE OF TWO TRAPPED ATOMS

In this section, starting from Eq. �6� we derive the equa-
tion describing the effective dynamics of the cavity mode in
the limit of large atom-laser detuning ���≫g ,� , ��c� ,� ,�. In
this analysis we neglect the effect of atomic motion, and
identify the parameter regime in which the system operates
as a parametric amplifier. The predictions of the analytical
model are compared with the results of a numerical simula-
tion, which evaluates the cavity-mode state by solving Eq.
�6�.

A. Effective Hamiltonian

We derive the effective Hamiltonian Heff for the coherent
cavity dynamics at fourth order in the expansion in the small
parameters g / ��� and � / ���. In the Hilbert subspace sub-
tended by the states �gg ,n�, with n the number of cavity
photons, it has the form1

Heff = ��̄ − �c�a
†a + ̄�a† + a� + �̄a†a†aa +

�̄

2
�a†2

+ a2� ,

�14�

where

�̄ =
g+

2�x1,x2� + g−
2�x1,x2�

�
, �15�

̄ =

2�

�
g+�x1,x2� , �16�

1Here we omit the light shift due to the laser field, which contrib-
utes a constant energy shift.

FIG. 2. �Color online� Sketch of the coherent scattering pro-
cesses between the collective states of two atomic dipoles driven by
a laser and coupled to the cavity mode, when �a� the interatomic
distance d is an integer multiple of the cavity-mode wavelength 
,
and �b� when d is an odd multiple of 
 /2. The states �J ,n� are the
Dicke states of the two dipoles �J� at n cavity photons, where �J�
= �gg�, �± �, �ee�, and �± �= ��eg�± �ge�� /
2. The arrows labeled by �

�g±� indicate the transitions driven by the laser �the cavity mode�.
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�̄ =
1

�3 �g+
2�x1,x2� − g−

2�x1,x2��2, �17�

�̄ =
2�2

�3 �g+
2�x1,x2� − g−

2�x1,x2�� . �18�

Here, �̄ is the ac Stark shift experienced by the cavity field

due to the interaction with the atoms, the term ̄ comes from
the H+ term, Eq. �12�, and results from the two-photon tran-
sitions coupling the photon states �n� and �n±1�; see Fig.
2�a�. The amplitude �̄ is the strength of the effective nonlin-
ear pumping of the cavity field, which gives rise to a ��2�

nonlinearity, typical of a degenerate parametric amplifier
�18�. This term is the sum of two contributions, which are
weighted by g+ and g−, respectively, and which represent the
coherent sum of the four-photon processes coupling the
states �gg ,n�→ �gg ,n±2� and depicted in Figs. 2�a� and 2�b�.
Finally, the amplitude �̄ is the ac Stark shift associated with
four-photon processes, where two cavity photons are virtu-
ally absorbed and then emitted along the transition �gg ,n�
→ �ee ,n−2�. This term is present in both patterns, and gives
rise to the ��3� nonlinearity typical of a Kerr medium.

The form of Hamiltonian �14� highlights how the two
patterns we considered, 
 and 
 /2 spaced, contribute to the
various nonlinear processes. We first notice that in presence
of only one atom �when, e.g., g�x2�=0� the terms �̄ and �̄

trivially vanish: these types of nonlinearities can be clearly
generated only when both atoms couple to the cavity mode.
Then, one observes that the two patterns give rise to different
nonlinear dynamics. In the 
-spaced pattern, for instance, all
terms in Eq. �14� contribute to determine the coherent dy-

namics of the cavity mode. While the linear shift �̄ can be set
to zero by properly choosing the detuning �c, on the other

hand the linear term scaling with ̄ is dominant, and one
reasonably expects that it will determine the cavity steady
state.

When the atoms are distributed in a 
 /2-spaced pattern,

the linear drive in Hamiltonian �14� vanishes, i.e., ̄=0,
while the only terms that contribute to the coherent dynamics
are at fourth order in the perturbative expansion. Two pos-
sible scenarios can be identified here. �i� When the laser
drive is much weaker than the cavity coupling, �≪g, then
��̄�≫ ��̄� and the dynamics will be basically equivalent to a
Kerr medium as in �21�, whereby in our case the Kerr non-
linearity emerges from the interaction of the cavity field with
the collective dipole of the atoms. �ii� When the laser drive is
much stronger than the cavity coupling, �≫g, then ��̄�≪ ��̄�
and the dynamics will be essentially equivalent to the one in
a ��2� medium. This is the case on which we focus in the rest
of this paper.

B. Realization of a �„2… medium

We now consider Hamiltonian �14� when the atoms are
localized at the antinodes of the cavity modes in a


 /2-spaced pattern, i.e., when ̄=0, and when �≫g, i.e.,

��̄�≫ ��̄�. Setting �c= �̄, the effective coherent dynamics of
the cavity mode is described by Hamiltonian Heff�H�, with

H� =
�̄

2
�a2 + a†2

� �19�

and �̄=�, where now

� = −
4�2g2

�3 . �20�

A master equation for the reduced density matrix ̺ of the
cavity mode can be derived from Eq. �6�, which takes the
form

�

�t
̺̃ = −

i

�
�H�,̺� + L�̺ + L̃�̺ �21�

where the superoperator L� is defined in Eq. �8�, while

L̃�̺ =
��

2
�2a̺a† − a†a̺ − ̺a†a� �22�

describes the damping of the cavity mode via spontaneous
emission, with ����g2

/�2.
When ���+��, Eq. �21� predicts that the energy of the

cavity mode increases exponentially as a function of time.
Clearly, this exponential increase is a good approximation
only for short times, when the number of photons inside the
cavity mode still warrants the validity of the perturbative
expansion, while for longer times the dynamics will be de-
termined by competition with other processes which we ne-
glected in the derivation.

When �+����, a steady-state solution exists, and the
corresponding stationary average photon number is

n0 	 �a†a�St =
1

2

�2

��
2 − �2 , �23�

where ��=��+�. In this case, the field quadrature

X�t� = a�t�e−i� + a†�t�ei� �24�

is squeezed for �=� /4, and its steady-state variance
��Xst

2 �= �X2�st− �X�st
2 takes the form

��Xst
2 � =

��

�� + �
. �25�

Hence, in this case the reduction of the noise of the quadra-
ture at steady state is such that ��Xst

2 ��
1
2 , since ����.

We now identify parameter regimes in which these dy-
namics can be found. The master equation �21� has been
determined by evaluating the coherent processes up to fourth
order, treating cavity decay at lowest order and spontaneous
emission at second order in the perturbative expansion. In
particular, by deriving the superoperators in Eqs. �8� and
�22�, we neglected dissipative scattering processes at higher
order in the expansion in � / ��� ,g / ���. This is valid provided
that g2

/ ����� ,� and when ����, which corresponds to the
condition
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� �
�2

���
, �26�

where we used Eq. �20�. For a dipole transition with line-
width � /2�=100 kHz, in a cavity with g /2�=2.7 MHz,
setting � /2�=10 MHz and ��� /2�=100 MHz, we find
��� /2��3 kHz and a negligible rate of spontaneous decay.
Appreciable squeezing could be observed for a cavity decay
rate of a few kilohertz, which is a demanding experimental
condition. We will focus on this parameter regime and check
numerically the correctness of the predictions of our analyti-
cal model.

C. Squeezing spectrum at the cavity output

Assuming that the system is in the regime where ����,
we evaluate the spectrum of squeezing of the field at the
cavity output, namely �18�,

Sout��� = 2 Re �
0

�

dt e−i�t��Xout�t�Xout�0��st

− �Xout�t��st�Xout�0��st� , �27�

where the subscript “st” indicates that the averages are per-
formed over the steady-state density matrix. In Eq. �27�
Xout�t� is the quadrature of the output field, defined as

Xout�t� = aout�t�e
−i� + aout

† �t�ei� �28�

with �=� /4 and where

aout�t� = 
�a�t� − ain�t� �29�

and ain�t� is the input noise, which is �-correlated,
�ain�t�ain

† �t���=��t− t��. Using the effective model in Eq. �21�
we find an analytical expression of the squeezing spectrum,

Sout��� = 1 −
4��

��� + ��2 + �2 , �30�

showing that a large reduction of the quadrature fluctuations
below the shot noise limit is achieved at �=0 when ����.

Figure 3 displays the spectrum of squeezing, comparing
the analytical prediction in Eq. �30� with the numerical result
obtained using Eq. �6� and hence including the full internal
dynamics of cavity and atoms, as well as the incoherent pro-
cesses due to cavity decay and atomic spontaneous emission
at all orders, as discussed in Appendix A. The spectra are
evaluated by setting �=� /2, and show that for this param-
eter regime the analytical model provides a good description
of the dynamics. We note, as expected, that spontaneous
emission tends to decrease the squeezing at the cavity output.
Figure 4 displays the spectra of squeezing for a larger value
of the cavity coupling strength with respect to the laser Rabi
frequency. Discrepancies between the analytical and the nu-
merical model arise from the contribution of the Kerr non-
linearity in Eq. �14�, which is not negligible for this param-
eter regime, since the laser Rabi frequency � and the cavity
coupling strength g are of the same order of magnitude.

Figure 5 displays the value of the squeezing spectrum at
�=0 as a function of the cavity decay rate �. The spectrum is

plotted for ���, when the analytical model described by
Eqs. �21� allows for a steady-state solution, and it clearly
shows that squeezing at the cavity output is very sensitive to
variations of �. On the other hand, the dependence on the
atomic linewidth � is comparatively weak, as one can see
from Fig. 6. The discrepancy between numerical and analyti-
cal models at lower values of � is due to the contribution of
incoherent scattering processes at higher order, which are
accounted for in the numerics and give rise to a very narrow
peak at �=0 in S���. This feature, however, does not appear
for shorter integration times, corresponding to the limit of
validity of our perturbative treatment.

Figures 7�a� and 7�b� display the spectrum of squeezing at
�=0 and the corresponding variance of the maximally
squeezed quadrature of the cavity field as a function of ��

=�+��. In Fig. 7�a� the upper curves are obtained for �
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FIG. 3. Squeezing spectrum of the field at the cavity output,
when the atoms are in a 
 /2 pattern. The dashed lines correspond to
the spectrum evaluated analytically from Eq. �30�, the solid lines to
the spectrum found from the numerical evaluation of the steady
state of Eq. �6� �see Appendix A�. The frequency is in units of �0

=�. The parameters are �=−1.25�105�0, �=1.25�104�0, g

=1.25�103�0, and �c=−24�0 ��c is chosen so as to compensate all
ac Stark shifts�. For the choice of these parameters, �=� /2. The
lower and upper curves have been evaluated for �=0 and ��

=�0 /2 ��=104�0�, respectively.
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FIG. 4. Same as in Fig. 3, where now �=100�0, g=1.25
�104�0, and �c=−24�102�0. For the choice of these parameters,
�=� /2 as in Fig. 3. Here, with respect to Fig. 3, we increase both
g and � such that the ratio �̄ /� between the strength of the Kerr
nonlinearity, Eq. �17�, and the nonlinear pumping strength � in-
creases. Therefore the discrepancy between analytical and numeri-
cal results is due only to the contribution of the Kerr nonlinearity,
which is not accounted for in the analytical model, Eq. �30�.
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=��=�� /2; the lower curves correspond to ��=0, ��=�.
Figure 7�b� shows that the variance of the quadrature is the
same for both ��=0 and ��=�, showing that spontaneous
emission in this regime only dissipates the squeezed field
along other channels, as predicted from the analytical model
of Eq. �21�.

IV. EFFECT OF THE ATOMIC MOTION

So far we have studied the dynamics of the cavity mode
neglecting the atomic kinetic energy on the cavity-mode dy-
namics. In this section we study the effect of fluctuations in
the atomic positions, when the system operates as an optical
parametric amplifier. We assume that the atoms are confined
by an external potential, which localizes them at the antin-
odes of the cavity standing wave in a 
 /2-spaced pattern, in
the regime in which the mechanical effects of the cavity field
on the atomic motion can be neglected. This situation could
be realized experimentally with the technology developed,
for instance, in �34–38�.

Denoting by x̄ j the atomic equilibrium positions, and by
q j =x j − x̄ j the displacements, we write the external potential
for small vibrations as

V�x1,x2� =
1

2
M�2�q1

2 + q2
2� , �31�

where � is the trapping frequency. The Heisenberg-Langevin
equation of motion for the atomic displacement q j is given
by �39�

q̈ j = − �2q j −
F�j�

M
+ ��t� , �32�

where ��t� is the quantum Langevin force, associated with
the spontaneous emission and the cavity decay processes,
and

F�j� =
�

�x j

Hat-cav �33�

is the mechanical force operator arising from the spatial gra-
dient of the atom-cavity interaction over the atomic wave
packet. These equations have to be solved together with the
Heisenberg-Langevin equations for the field, which depend
on the atomic motion through the functions cos kx j. We as-
sume that the atoms are well localized at the antinodes of the
cavity mode, namely, that �q=
�q j

2�≪
, and make a pertur-
bative expansion in the small parameter k�q. At second or-
der, the equations for the fields read
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FIG. 5. Value of the squeezing spectrum Sout��� at �=0, Sout�0�,
as a function of the cavity decay rate � in units of �0. The dashed
lines correspond to the value predicted from Eq. �30�, the solid lines
to the numerical result found from Eq. �6�. The parameters are g

=1.25�103�0, �=−1.25�105�0, �=1.25�104�0, and �c=−24�0.
For these parameters �=�0 /2. The lower and upper curves have
been evaluated for �=0 and ��=�0 /2 ��=104�0�, respectively.
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FIG. 6. Sout�0� as a function of the atomic spontaneous emission
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cavity decay rate �=�0 and �0 /2. The other parameters are as in
Fig. 5.
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FIG. 7. �a� Sout�0� as a function of the total effective dissipation
rate ��=�+�� in unit of �0 and �b� corresponding variance of the
squeezed quadrature of the cavity field. The numerical results are
displayed for �=��, �=0 �circles� and �=��=�� /2 �crosses�. The
dashed lines are obtained from the analytical model. The other pa-
rameters are g=1.25�103�0, �c=−24�0, �=−1.25�105�0, �

=1.25�104�0, and �=�0 /2.
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ȧ�t� = − i�a†�t� − ��� + i�� − �c��a�t� + ��t� + i
k2

2
�q1

2 + q2
2�

���a†�t� + �a�t�� + �q1
2 − q2

2�� , �34�

ȧ†�t� = i�a�t� − ��� − i�� − �c��a
†�t� + ��t� − i

k2

2
�q1

2 + q2
2�

���a�t� + �a†�t�� + �q1
2 − q2

2�� , �35�

with � defined in Eqs. �20�, =g� /�, �=2g2�, and ��t� is
the quantum Langevin term, ��t�=
2�ain�t�+
2��ain

at�t�.
Here ain

at�t� is the input noise term associated with atomic
spontaneous emission, which satisfies the relation

�ain
at�t�ain

at†�t���=��t− t��.
Even when the atoms are well localized around the anti-

nodes of the cavity mode, the systematic solution of these
coupled equations is rather complex. Here, we assume that
the external potential provides a steep confinement, such that
the effect of the coupling with the cavity mode can be ne-
glected in Eq. �32�. In this limit the solution of Eq. �32� reads

q j�t� � q j
�0� cos��t + � j� , �36�

where q
j

�0� and � j are determined by the initial conditions.
When the trap frequency is much larger than the effective
rates that determine the evolution of the field, �≫� ,��, we
can derive a secular equation for the cavity field by averag-
ing the equations for the cavity variables over a period T

=2� /� �40�. We insert Eq. �36� into the equations for the
field variables, Eqs. �34� and �35�, and integrate them over
the period T. With this procedure we find equations for the
operators ã�t� and �̃�t�, defined as

ã�t� =
1

T
�

t

t+T

d� a���, �̃�t� =
1

T
�

t

t+T

d� ���� . �37�

Here, the new noise operators satisfy the equation
��̃�t��̃†�t����2����t− t��, where the �-like correlation is to
be interpreted for the coarse-grained time scale. The corre-
sponding Heisenberg-Langevin equations read

ȧ̃�t� = − i�̃ã†�t� − �� + i��̃ − �c��ã�t� + �̃�t� , �38�

ȧ̃�t�† = i�̃ã�t� − �� − i��̃ − �c��ã
†�t� + �̃†�t� , �39�

while their derivation is discussed in Appendix B. Here,

�̃ = ��1 − k2q̄2
/2� ,

�̃ = ��1 − k2q̄2
/2� , �40�

and we have assumed that the oscillation amplitudes of the
two atoms are equal, q1

�0�=q2
�0�= q̄. The motion-induced ac

Stark shift can be compensated by properly tuning the laser

frequency, �̃c=��1−k2q̄2
/2�, and Eqs. �38� and �39� become

ȧ̃�t� = − i�̃ã†�t� − ��ã�t� + �̃�t� ,

ȧ̃�t� = i�̃ã�t� − ��ã†�t� + �̃†�t� . �41�

Correspondingly, at lowest order in kq̄ j, the spectrum of
squeezing is

Sout��� = 1 −
4��

��� + ��2 + �2�1 +
��2 − ��

2 − �2�
��� + ��2 + �2

k2q̄2

2
� ,

�42�

where the term proportional to k2q̄2 is the correction to Eq.
�30� due to small vibrations of the atoms at the equilibrium
positions. Small fluctuations hence reduce the bandwidth of
frequencies where the light is squeezed. The corresponding
spectrum, Eq. �42�, is displayed in Fig. 8 for kq̄=0.3 and
compared to the one of Eq. �30�, where atomic motion is
neglected, showing that the modification of the spectrum of
squeezing due to the motion is very small.

V. CONCLUSION

We have studied the dynamics and steady state of a me-
dium composed of two atomic dipoles confined inside a reso-
nator in an ordered structure. Depending on the relative po-
sition of the atoms inside the cavity mode, the linear
response can be suppressed, and by tuning the intensity of
the laser the system can operate as a Kerr medium or an
optical parametric amplifier, whereby the nonlinear response
emerges from the collective excitations of the atomic di-
poles. We have studied in detail the case in which the system
operates as an optical parametric amplifier, and investigated
the squeezing of the field at the cavity output by considering
the effects of atomic vibrations, when the atoms are confined
inside the resonator at the equilibrium positions of a steep
external potential, in a situation which can be experimentally
realized, for instance, in �34–38�.

A natural question emerging from recent studies on self-
organization of laser-cooled atoms in resonators �29–32� is
whether, in the absence of an external potential trapping the
atoms, the 
 /2-spaced pattern can be sustained by the me-
chanical forces of the potential generated by the scattered
field. In �33� a semiclassical and numerical analysis showed
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FIG. 8. Spectrum of squeezing of the field at the cavity output as
a function of � in units of �0, for the same parameters as in Fig. 3
and �=0. The solid curve corresponds to the spectrum of Eq. �41�
for kq̄=0.3. The dashed line corresponds to the spectrum of Eq. �30�
when atomic vibrations are neglected.
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that this configuration is expected to be stable for choices of
the parameters that are consistent with the operational re-
gime in which squeezed light can be observed. In this case,
one would hence have a self-organized pattern, which sus-
tains and is sustained by nonclassical light.

The results of this work provide an example of how non-
linearities emerge from the microscopic dynamics of a few
simple quantum systems. In this respect, two atoms in a reso-
nator can be considered the most basic realization of a non-
linear crystal, with, however, limited efficiencies. We conjec-
ture that by scaling up the number of atoms collective effects
can enhance the nonlinear properties, thus improving the sys-
tem response. Another interesting question is how the system
dynamics are modified when the quantum nature of the
atomic motion is relevant �41,42�, and in particular how the
correlation functions of the output field are affected by the
quantum properties of the medium. This study requires an
analysis of the spectrum of resonance fluorescence as in �43�,
which systematically accounts for the quantum state of the
atomic motion, and it will be the object of future investiga-
tions.
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APPENDIX A: EVALUATION OF THE SQUEEZING

SPECTRUM

Using Eq. �29�, we rewrite the squeezing spectrum in Eq.
�27� as

Sout��� = 1 + 4� Re �
0

�

dt e−i�t��a�t�,a�0��ste
−2i�/4

+ �a†�0�,a†�t��ste
2i�/4 + �a†�t�,a�0��st

+ �a†�0�,a�t��st� , �A1�

where

�a†�0�,a†�t��st = �a†�0�a†�t��st − �a†�0��st�a
†�t��st.

Equation �A1� can be expressed in terms of averages per-
formed over a density matrix by means of the relations
�A�t�A�0��st=TrAeLtA	st� and �A�0�A�t��st=TrAeLt	stA�,
where A is a generic operator, L is the Liouvillian defined in
Eq. �7� setting Hmec=0, and 	st is the steady-state density
matrix satisfying the relation L	st=0. Therefore the spectrum
of squeezing can be rewritten as

Sout
������ = 1 − 4� Re������TrX���	st�

2

+ TrX����L − i��−1�a	ste
−i� + 	sta

†ei���� .

�A2�

The numerical results in Sec. III C are based on the evalua-
tion of the spectrum of squeezing, as calculated from Eq.
�A2� using the Liouvillian of Eq. �6�.

APPENDIX B: DERIVATION OF THE SECULAR

EQUATIONS FOR FAST-VIBRATING ATOMS

After inserting Eq. �36� into Eqs. �34� and �35�, we obtain

Ȧ�t� = MA�t� + N�t� + �
j=1,2

k2q̄ j
2 cos2��t + � j�

��VA�t� + �− 1� jB� , �B1�

where

A�t� = � a�t�
a†�t�

� , �B2�

M = �− �� − i�� − �c� − i�

i� − �� + i�� − �c�
� , �B3�

N�t� = � ��t�
�†�t�

� , �B4�

V = � i�/2 i�/2

− i�/2 − i�/2
� , �B5�

and

B = �− i

i
� . �B6�

We indicate with

f̃�t� =
1

T
�

t

t+T

d� f��� �B7�

the time average of a variable f�t� over a period of oscillation
T=2� /� of the atomic motion. Since

�

�t
f̃�t� =

1

T
�f�t + T� − f�t�� =

� f̃

�t
,

we find

�

�t
Ã�t� = MÃ�t� + Ñ�t� + k2q̄2VÃ�t�

+ k2q̄2V

2 �
j=1,2

1

T
�

t

t+T

d� cos�2�� + 2� j�A��� ,

�B8�

where we have used the relation cos2�y�= 1
2 �1+cos�2y�� and

we have assumed that the two atoms have the same energy,
such that q̄1

2= q̄2
2= q̄2. We now identify the conditions under
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which we can neglect the second line of Eq. �B8�. Integrating
by parts the second line of Eq. �B8� and using Eqs. �B1� and
�B8�, we obtain

�

�t
Ã�t� = MÃ�t� + Ñ�t� + k2q̄2VÃ�t� + k2q̄2C�t� + k4q̄4D�t�

+ k4q̄4E , �B9�

where

C�t� =
V

4�
�

j
�sin�2�t + 2� j��MÃ�t� + Ñ�t��

−
1

T
�

t

t+T

d� sin�2�� + 2� j��MA��� + N����� ,

D�t� =
V2

8�T
�
j j�

�
t

t+T

d��sin�2�t + 2� j�cos�2�� + 2� j�
�

− 2 sin�2�� + 2� j�cos2��� + � j�
��A��� ,

E =
VB

8�
sin�2��2 − �1�� . �B10�

The terms k2q̄2C�t�+k4q̄4D�t� are negligible with respect to
k2q̄2V when ����� /8�≪ ��� /2 and ����−�c�� /8�≪ ��� /2,
which reduce to

� ≫
g2

���
, �B11�

� ≫
k2q̄2

8
�g2�

�2 � �B12�

when ��� and �� are of the same order of magnitude and �c

=��1−k2q̄2
/2�; see Eq. �40�. The term k4q̄4E in Eq. �B9� can

be neglected when k4q̄4��� /16�≪k2q̄2��� /2, that is,

� ≫
k2q̄2

16
�g�

�
� . �B13�

When conditions �B11�–�B13� are satisfied we approximate
Eq. �B8� with

�

�t
Ã�t� = MÃ�t� + Ñ�t� + k2q̄2VÃ�t� , �B14�

which then leads to Eqs. �38� and �39�. Finally, we show that
the averaged noise operators �̃�t� and �̃†�t�, which appear in

the term Ñ�t�, are � correlated. The only nonvanishing cor-
relation function is

��̃�t��̃†�t��� =
2��

T2 �
t

t+T

d��
t�

t�+T

d����� − ���

=�
2��

T2 �t� + T − t� for t� � t � t� + T ,

2��

T2 �t + T − t�� for t� − T � t � t�,

0 for t � t� + T or t � t� − T ,
�

�B15�

which is not zero only if the two integration intervals �t , t
+T� and �t� , t�+T� have finite overlap. Therefore, if f�t� var-

ies slowly over the time T, so that f̃�t�� f�t�, one has

�
−�

�

dt f�t���̃�t��̃†�t��� � 2��f�t�� , �B16�

that is, ��̃�t��̃†�t����2����t− t��.
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