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i. Introduction 

We consider the design of optimal controllers for the following nonlinear stochastic 

system: 

System S1 

The evolution of the "state ~ is described by 

~(t) = f(t,x(t), u(t), ~(t)) , te~,t~, (i) 

with measurements y(t) = g(t,x(t), ~(t)) , (2) 

controls u(t) = h(t,I(t)) e U , (3) 

and performance index J = E{cTx(tf)}. (4) 

Here x(t)eE n is an n-vector of "state" variables, and the initial "state" x(O)~X(O) 

with probability one, where X(O)CEn is a given convex, bounded set. The system 

noise, ~(t)eV w.p.l., and the measurement noise, n(t)eW w.p.l., are both vector 

stochastic processes and V~E r, W~Eq are given convex, bounded sets of possible 

values. U~___E m is a given set of admissible values for the controls u(t), which are 

vector-valued functions h(t,I(t)) of the set of information I(t) available to the 

controller at time t; l(t) is a specified subset of the a priori information I(O) and 

the measurements y(t), teEO,t ~. In the expression for the performance index, ceEn 

is a given vector, and the expectation is taken over all possible initial conditions 

x(O) and all possible realizations of the noise processes ~(t) and n(t). 

The control design problem is to find the function h(t,I(t)), teEO,tf 3 which minimizes 

the performance index J for specified information sets I(t), t~EO,tf j. 

Following Joffe and Sargent (1) , we appeal to the theory of ordinary differential 

equations with Lebesgue-measurable input functions in order to obtain a set of 

assumptions which guarantee the existence and uniqueness of solutions to equation 

(I) for given initial condition x(O), noise realization ~(t) and admissible control 

u(t), te EO,t~ :- 

(i) Each admissible control u(t) and each noise realization ~(t) is a measurable 

function of t on the interval EO,t~. 
I 

(ii) For each possible set of values x, u, ~, the function f(t, x, u, $) is a 

measurable function of t on the interval EO,tf] . 

(iii) For each t~[O,t~, f(t, x, u, ~) is continuous in x, u, and ~ for ~I] possible 
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values of these variables. 

(iv) There exists a function S(t), summable on FO,tf], and a function #(z), positive 

and continuous for z ~ O but not summable on IO,~), such that 

llf(t,x,u,~)ll ~ s(t)/~(IIxlI) 

for each possible t, x, u, and ~. 

(v) There exists a function M(t), surmnable on EO,tf], such that 

l(x-x')T(f(t,x,u,~) - f(t,x' ,u,~))l~ M(t). I Ix-x' I! 2 

for all possible t, x, x', u and ~. 

These conditions also ensure that the set X(tf) of states reachable w.p.l, with some 

possible initial condition, control and noise realization, is a bounded set. 

We note that by requiring ~(t) to be measurable in t we exclude the possibility that 

$(t), and hence also x(t), are Markov processes. Thus x(t) does not represent a state 

in the stochastic sense, but for a given realization of the system noise it has all 

the properties required of a state vector for a deterministic system. 

It is well known that systems with more general performance indices than (4) can often 

be put in the form of SI by adjoining extra state variables with appropriate defi~ 

nitions. These systems can therefore be treated, provided that the adjoined variables 

and functions also satisfy the above conditions. 

A variety of control problems can be posed for SI by suitable choice of the information 

sets l(t). For example this set may consist of just the current set of measurements 

y(t), or perhaps past measurements at a sequence of times or over a specified time 

interval. Feed-forward control policies are obtained if l(t) = I(0), t~[O,t~. 

Joffe and Sargent (1) considered the cases of feed-forward control, and feed-back control 

based on continuous exact measurement of the state x(t). They also considered sub- 

optimal controls based on the functional form; 

u(t) = h(t,x(t),~(t)) (5) 

where h(t,x,~) is a given heuristically derived function, and ~(t) is a vector of 

parameters which are chosen optimally. 

Their approach was to assume that the noise ~(t) and the initial state x(O) satisfy 

certain smallness conditions, and then to derive a deterministic model which predicts 

E{x(t)} for a specified control policy. In this paper we shall extend their treatment 

to deal with more general feed-back controls. 

2. A Modelling Theorem 

Suppose that we have a system as described in SI, and a mathematical model of this 

system which enables us to predict the performance index for any initial condition 

and any control law of the form of equation (3). More precisely, if Js(h) is the 

value of the system performance index, using the control function h(t,l(t)) with speci- 

fied l(t), te[O,t~ and initial condition x(O), and Jm(h) is the value of the model 

performance index using the same control function, information sets and initial con- 
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dition, then there exists a 6 ~ 0 such that 

!Js(h) - Jm(h) ~ ~ (6) 

for all possible h(.,.), l(t) and x(O). 

Now suppose that we have solved the control design problem for the system for a given 

specification of the l(t), obtaining the optimal system control function hs(t,l(t)) 

with corresponding performance index Js(hs). Similarly, we solve the design problem 

for the model with the same specification of the l(t), obtaining the optimal model 

control function hm(t,l(t)) with performance index Jm(hm). Then we have the following 

theorem: 

Theorem i 

If the system and model satisfy condition (6), and if hs(t,l(t)) and hm(t,I(t)) are 

the optimal system and model control laws respectively for specified information sets 

I(t), t~0,tf~, then 

IJs(hm) - Js(hs) l ~ 26, IJm(hm) - Js(hs) l ~ 38 (7) 

Proof 

From condition (6) we have 

iJs(hm) - Jm(hm) l ~ 8, IJs(hs) - Jm(hs) l ~ 6 (8) 

It follows from the triangle inequality that 

iJs(hm) - Jm(hm) + Jm(hs) - Js(hs) I ~ 26 

But from the optimality conditions Js(hs) ~ Js(hm) and Jm(hm) < Jm(hs ) , and hence 

iJs(hm) - Js(hs) l ~ 26, IJm(h s) - Jm(hm) I ~ 26 

To obtain the second inequality in (7), we n~e the first part and condition (8): 

iJm(hm) - Js(hs)l = IJm(hm) - Js(hm) + Js(hm) - Js(hs) I 

IJm(hm) - Js(hm) I + IJs(hm) - Js(hs) l < 38 

Q~.D. 

This theorem tells us that the model optimal control law applied to the system will 

produce a performance index within Ok] of the true optimal result, and that the optimal 

performance index Jm(hm) computed from the model is an O~] approximation to the true 

optimal value. 

It therefore remains to find good manageable models for nonlinear stochastic systems, 

and since J is an expected value it is worth looking for deterministic models for its 

prediction. 

3. Deterministic Models for Small-Noise Stochastic Systems 

If, in addition to the conditions listed in Section i, the second partial derivatives 

of f(t,x,u,~) and g(t,x,~) with respect to x, $, ~ exist, and are Lipschitz continuous 

on X(tf)~V and X(tf)xW respectively, then it is possible to use Taylor expansions to 

obtain the following models: 
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Model MI 

i*(t) = f(t,x*(t),u(t),~*(t)) , te[O,tf] 

y*(t) = g(t,x*(t),q*(t)) 

J* = cTx*(tf) 

where ~*(t) = E{~(t)} , ~*(t) = E{~(t)} 

(9) 

(~0) 

(11) 

(12) 

Model M2 

i*(t) = f(t,x*(t),u(t),~*(t))+Z(t) , t~O,t~ (13) 

y*(t) = g(t,x*(t),q*(t))+~(t) (! 4 ) 

J* = cTx*(tf) (15) 

where @ zk(t) = ½ trace [f~xP(t)+f~$Q(t)] (16) 

~k(t) = ½ trace [gkp(t)+g~ R(t)] (17) 

~(t) = fxP+Pf~ (18) 

Q(t) = E{~(t).6~T(t)] ) 

R(t) = E{dq(t).~T(t)] ) 
) (19) 

$*(t) = E{~(t)} 6~(t) = $(t)-~*(t) ) 

~*(t) = E{~(t)} ~n(t) = ~(t)-~*(t) ) ) 

We then have the following basic approximation theorem for Model M2: 

Theorem 2 

Suppose that, in addition to the assumptions stated previously for system SI, the 

fol~owing inequalities hold for some finite, positive constants A, B, C, e, and each 

t'e[O,t~ i 

~f E{[l~(t) ll3}dt ~ tfe 3 

~o tf E{Ij6$(t)jj211~(t,)II}dt ~ tfe 3 

f E{iI~(t) ll.ll6$(t,)Ii2}dt # tfs 3 

/f IIE{6~(t).~T(t,)}IIdt ~ tfe 3 
o 

E{]16q(t) I] 3} < B3~ 3 

E{II~x(O) 

E{JI~x(0) 

E{II~x(0) 

3} ~< A3e3 

2 ~$(t,)ll) < A2e 3 

6~(t')I12] - ~< As 3 

[IE{6x(O).6~T(t')}II W As 3 

E{]I~x(t) II. 6q(t) l] 2} 4 AB2e 3 

(20) 

IIE{~x(t)-6nT(t)}II ~ ABg3 E{II~x(t) jI2. ~n(t)II} < A2Be 3 

IIx*(O)-E{x(O)}]] ~ C~3 , IIP(O)-E{~x(O).~xT(o)}]! 4 C¢ 3 (21) 

where 6x(t) = x(t) - E{x(t)}. 

Then, for each admissible control u(t), t~[O,t~ and given initial conditions x*(O), 

P(O), there exists a unique solution to equations (13) - (19) of Model M2, and this 

t 
Notation Subscripts denote differentiation with respect to the variables concerned, 

and superscripts denote elements of vectors. Arguments of functions, where omitted, 
are (t,x*(t),u(t),$*(t)). 
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solution satisfies the inequalities: 

Ilx*(t)-E{x(t)}II ~ KI ~3 , IIP(t)-E{~x(t).~xT(t)}II ~ K2 e3 (22) 

IIy*(t)-E{y(t)}II @ K3 s3 , IJ*-JI $ KIS31Icll 

where K~, K 2 and K 3 are finite positive numbers. 

Joffe and Sargent (1) give the proof of this theorem without the results on y*(t)~ and 

on the assumption that C = O. However the required extension of their proof is immedi- 

ate and will not be given here. It is useful to note at this point that if C = 0 then 

K 1 and K 2 are both directly proportional to tf. 

We also note that if X(O) consists of a single point there is no uncertainty in the 

initial state and its covariance matrix is zero. We may therefore set x*(O) = x(O) 

and P(O) = O, so that C can be taken as zero; it also follows from (18) that P(t) = O 

for all t~[O~tf], thereby removing a matrix differential equation from the model and 

simplifying z(t). 

The same proof shows that Model M1 provides OEs 2] bounds for the quantities in (22), 

and again it is not necessary to generate P(t) in order to obtain x*(t). 

4. Optimal Controller Design 

If the information sets I(t), t~(O,t~ are empty the control is simply a function of 

time, and Theorem 1 applies with optimal control policies ha(t) and hm(t) for the 

system and model respectively. Model M2 satisfies condition (6) with ~ = KIE311cII, 

and it follows that the deterministic optimal control policy for Model M2 is within 

O[s~ of the true optimal policy for System SI. Similarly Model M1 approximates the 

true policy with an error of OEs2]. 

Theorem 2 does not apply as it stands to general feed-back control laws as given by 

equation (3). However, if the information sets I(t) are written in terms of the 

measurements y(t), which are in turn expressed in terms of x(t) through equation (2), 

then substitution of the resulting control law into equation (I) yields an equation 

of the same form as equation (i) with a given control policy u(t) substituted, and 

Theorem 1 then yields the general result that the optimal model control law is a 

suitable approximation to the true stochastic optimal law for any feed-hack control 

law as defined in equation (3). 

We note that the small-noise and smoothness assumptlons of Theorem 2 must now apply 

to the substituted form of equation (I), and hence to the combined stochastic pro- 

cesses $(t) and q(t). Because of the conditions already imposed on g(t,x,~), the 

smoothness conditions will be satisfied if f(t,x,u,~) is twice differentiable in u, 

and h(t,I(t)) is twice differentiable in its arguments, and all these second deri- 

vatives are Lipschitz continuous in the attainable domain of their arguments. Of 

course these strong smoothness assumptions may be unduly restrictive, and exclude 

control laws giving much more favourable performance. A further difficulty arises 

if the information set I(t) involves information at times other than the current time, 
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for the composite substituted equation then describes a generalized dynamical system 

falling outside the scope of the theory of differential equations used in Theorem 2. 

It turns out that these difficulties can be overcome, and a more general form of 

Theorem 2 obtained (2)," as will be shown in a separate paper. For the present dis- 

cussion however, we shall restrict ourselves to the subclass of smooth control functions 

satisfying the above conditions, with the information sets I(t), te(O~tfJ either empty 

or consisting only of current measurements y(t). 

4.1 Problems with Known Initial State 

In an important class of problems the initial state x(O) is known to good accuracy - 

for example in problems of optimum start-up of a process, or change of regime from 

one steadystate to another, or where the state variables can all be measured with 

negligible error. 

In such cases the smallness conditions concerning the initial state are satisfied with 

A = O, and we may set x*(O) = x(O), P(O) = O in Model M 2, satisfying (21) with C = O. 

The model then generates second-order estima~tes of expected quantities conditioned 

on the known initial state, and Theorems I and 2 show that the optimal model control 

law is a second-order approximation to the stochastic optimal control for the system 

for any feed-back control~law. 

However, we note that Model M2 is a deterministic system with given initial conditions, 

which generates for itself second-order approximations to the measurements y(t) for all 

te~O,tf]. Thus the optimal feed-forward policy based on the given initial state will 

be within a margin of O[s~ of the optimal result for any feed-back control law, and 

it follows that little advantage is to be gained from the use of measurements in a 

feed-back controller in such a situation. 

On the other hand, we noted in Section 3 that KI, and hence the error, is directly 

proportional to tf, so that the uncertainty grows with time. If the time interval 

of operation is large it may therefore be worth utilizing the extra information gained 

from measurements to compensate for this growth of uncertainty, and this brings us to 

the case where the initial state is no longer determined to high precision. 

4.2 Problems with Unknown Initial State 

We now consider the situation where we know only the expected value of the initial 

state with its corresponding covariance matrix, conditioned on the initial information 

available I(O). 

If we set x*(O) = m{x(O) II(O )} and P(O) = E{6x(O)~xT(O)II(O)}, then Model M2 generates 

approximations to the corresponding conditional expectations, and we obtain the same 

result for the optimal model and system control laws for a given specification of the 

information sets I(t). The design of the optimal feed~back control for the determinis- 

tic model is still much simpler than for the original stochastic system, but it is 

nevertheless a substantial problem, and it is worth seeking further insight. 

If the information sets I(t), te(O,tf] are empty, then the model control is simply a 
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feed-forward control policy, and the optimum policy for the given initial state is 

easily obtained by standard methods. With non-empty information sets it is clear that 

the optimal feed-back control must implicitly make use of the additional information 

to improve the estimate of the state, and it is of interest to examine the conjecture 

that an approximate form of Wonham's Separation Theorem (3) will apply to the nonlinear 

stochastic system. This would imply that the optimal controller can be split into an 

estimator, producing an estimate x*(t) of the state from the measurements, and an 

optimal feed-back controller based on continuous observation of the state, which uses 

x*(t) in place of the actual state. 

In this connection we have the following theorem: 

Theorem 3 

The performance of System SI is compared under the two control laws 

u(t) = h(t,x(t)) (23a) 

and u(t) = h(t,x*(t)) (23b) 

giving rise to states Xa(t) and xb(t) respectively, where x*(t)eX(tf) and h(t,x) are 

measurable functions of t on E0,tf~, and h(t,x) is Lipschitz continuous in x on X(tf). 

Then if the corresponding performance indices are Ja and Jb we have 
t 

E{llXa(t)-xb(t)II} ~ K~E{IlXb(T)-X*(T)II}dT 
(24) 

IJa-Jbl ~ KIlCllo~fE{I~ IXD(T)_X,(T) If}dr 

for all te~O,t~ and some Ke~0,=). 

Proof 

We compare performances with a given noise realization and initial state: 

~a(t) = f(t,Xa(t),h(t,xa(t)),~(t)) , xa(O) = Xo (25) 

~b(t) = f(t,Xb(t),h(t,x*(t)),~(t)) , xb(O) = Xo 

From the properties of f(t,x,u,~) and h(t,x) we have w.p.l. 

IIf(t,Xa,U,~)-f(t,Xb,U,~)II ~ Lx]!Xa-XbII, 

IIf(t,x,ua,~)-f(t,X,Ub,~)I I ~ LuIIUa-UblI, (26) 

I!h(t,Xa)-h(t,Xh)ll < LhIlXa-Xhll, 

for some finite, positive constants Lx, Lu, Lh. Then from (25) and (26): 

d I IXa(t)-xb(t)II ~ I]f(t,Xa(t),h(t,Xa(t)),$(t))-f(t'xb(t)'h(t'xb(t))'~(t))]l 
7t 

+ []f(t,xb(t ),h(t,xb(t)),$(t))-f(t,xb(t),h(t,x*(t)),~(t))l] 

(Lx+LuLh) I I Xa (t)-Xb (t)I 1 +eueh I Ixb(t)-x*(t) I I (27) 

Taking expectations of (27), noting that Ilxa(O)-xb(O)ll = O, and applying Halkin's 

"Generalized Gronwall Lemma ''(I) we obtain the first relation in (24) with 

K = LuLhexp(Lx+LuLh)tf < ~ 

and the second relation follows immediately from the definition of J. 

Q.E.D. 

Of course, Models MI and M2 can themselves be used as estimators, and with additional 

smoothness conditions we can, for example, prove the following: 
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Theorem 4 

The performance of System SI is compared under the control laws given in (23a) and 

(23b), where h(t,x) is measurable in t and has continuous derivatives with respect 

to x on ~,t~×X(tf), and x*(t) is the solution for Model M1 with u(t) given by (23b) 

and initial condition x*(O) = E{x(O) II(O)}. Then with the small-noise conditions of 

(20): t 

IIE{xa(t)-Xb(t)}II @ Klo~ IIE{xb(T)-x*(T)}lldT + K2 ~2 (28) 

for some finite K 1 and K2, where all expectations are conditioned on the initial 

information I~). 

Proof 

Write 8Xa (t) =Xa(t)-x* (t), 8Xb (t)=Xb (t)-x* (t) 

8~(t)=g(t)-$*(t), g*(t) = E{g(t) II(O)} 

Using (26) with a similar Lipschitz condition for g: 

I lf(t,x,u,g)-f(t,x,u,g*)II 4 LgIlg-g*II, (26') 

we obtain from (19) and (25) 

II6Xa(t) < (Lx+LuLh) II~Xa(t) + L~II6~(t)[l , 
dt 

[]6Xb(t) < ex[I~xb(t) II + e~ ~(t)II , 
dt 

and using the Generalized Gr0nwall Lemma these yield 

L t II6Xa(t) II ~ {ll~Xa(O) ll + ~f ll~(t) lldt)'exp(Lx+LuLh)t, 
o (29) 

II~Xb(t)[[ < {I[~Xb(0)[[ + e~ [l~(t)[Idt}.exp(ext ). 
o 

Taking expectations of (29) and using (20) we obtain 

E{II~Xa(t)[[} ~ KaS , Ka = (A+L~t).exp(Lx+LuLh)t , 
(30) 

E{II~Xb(t)[[} < Kbs , Kb = (A+L~t). 

Also from (20), (29) and (30), using the H~Ider inequality for both expectations and 

integrals, we can obtain 

E{ll~Xa(t) 11e} < K~c3 ' E{II~xb(t) II~} ~ K~s2 (31) 

o~fE{II6Xa(t) ll-II6~(t)II}dt < Ka ~2 , ~fE{II6Xb(t) II.ll~(t)II}dt < Kb s2 

Now from (25), expanding about the values t, x*(t), ~(t) we have 

~a(t) = f + (fx+fuhx).~Xa(t) + Va(t) , llVall < LaII~xa(t) II 2 

xb(t) = f + fx.~Xb(t) + vb(t) , IIVbll < LbII~Xb(t)II 2 

for some finite, positive La, L b . But we may now expand the derivatives fx, fu about 

the value ~*(t), and since the second derivatives fx$, fu~ are bounded there exists 

an L < ~ such that 

! {Xa(t) Xb(t)} = (fx fuhx){Xa(t) - xb(t)} + fuh~xb(t) + w(t) (32) 
dt 

where fx, fu, hx are evaluated for t, x*(t), ~*(t) - and hence are deterministic - and 

w(t) satisfies: 



828 

llw(t)il L ii Xa(t) ii2+fl6xb(t)ll +II Xa(t)I[IT  (t)IT+I[ Xb(t)i111  (t)li  (33) 

Taking expectations and then norms of (32) leads to 

llE{xa(t)-Xb(t)}ll ~ (Lx+LuLh) IIE{xa(t)-Xb(t)}II+LuLhIIE{~xb(t)}I!+E{Ilw(t)II}(34) 
dt 

and applying the Generalized Gronwall Lemma and using (33) and (31) finally yields 

(28) with K 1 = LuLhexp(Lx+LuLh)t and K 2 = {Ka+Kb+Ka2+Kb2}.Lexp(Lx+LuLh)tf 

Q.E.D. 

From the analogue of Theorem 2 for Model MI we note further that the integral on the 

right-hand side of (28) is O[e2]. A similar proof will show that Model M2 provides 

an O[c 3] error for I!E{xa(t)-Xb(t)}II and hence for the difference in performance 

indices. 

Theorem 3 is of interest since it does not depend on the form of the estimator and 

shows that the loss in performance of the "separated" controller depends only on the 

integral error of the estimate, allowing for example a poor estimate provided that 

the time over which it is used is short. Note however that the error also depends 

on the magnitude of the noise ~(t) since Xb(T) is the actual state, and in fact, 

Theorem 3 places quite strong conditions on both noise and estimate to ensure a small 

loss in performance. 

Condition (28) of Theorem 4 is weaker, but the small-noise conditions (20) in essence 

require that the uncertainty in the estimate of the initial state is small. This 

brings us back to the situation considered in Section 4.1, and indeed, since Models 

M1 and M2 as given in Section 3 simply predict states from the initial state estimate, 

without utilizing information from measurements, it is not surprising that we reach 

the same conclusion. However Theorem 4 is also of use if the state estimate is updated. 

Suppose, for example, that the state can be measured with negligible error at a sequence 

of times t o = O, tl, t 2, o o o and Model M1 is used for prediction of the state within 

these intervals, with x*(t k) = xb(tk) as initial condition. Then we may set A = O and 

note from (30) that K a and K b are 0[~. If the integral conditions in (20) apply over 

each subinterval ~k,tk+~, more careful integration of (34) then shows that 

liE{xa(tf)-Xb(tf)}II is O~2tfoA~, where At is the duration of the largest interval 

between measurements, Hence, as would be expected, the loss in performance can be 

reduced by increasing the frequency of measurement. 

If only noisy measurements are available, as in (2), then Model M1 or M2 can be used 

as a predictor in an estimator which makes use of these measurements. For example, 

if measurements y(tk), k = O, I, 2, . . . are available, then an estimator based on 

Model M2 is as follows: 

(i) Given estimates x*(tk-III(tk-l)), P(tk-IIl(tk-l)), these are used as initial 

conditions with equations (13) - (19) to generate predictions x*(tk!I(tk-l)), 

P(tkII(tk-l)). 

(ii) These predictions are updated using the measurements at t I by the equations: 

K(tk) = P(tklI(tk-l)).(g~)TEg~P(tkII(tk-l))(g~) T + R(tk)]-I 
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P(tk)l(tk)) = P(tkIl(tk-l)) - K(tk)g~P(tkll(tk-l)) (35) 

~(tkIl(tk)) = x*(tkll(tk-l) ) - K(tk)(y(tk) - y*(tk) ) 

where g~ is the partial derivative with respect to x of the right-hand side of equation 

(14); in the iterated form of the estimator it is the arithmetic mean of the values 

at tk-I and t k. 

The proof of Theorem 4 makes no use of the nature of the conditioning in the expec- 

tations, and hence the method of proof remains valid for the above estimator, the up- 

date of (35) serving to reduce the magnitude of the error due to the integral in (28). 

It is important to note that the update also reduces the variance of the state, and 

hence the variance of the performance index, so that feed-back increases the probability 

of the achieved performance being close to the expected optimal value. (2) 

The analogy with the extended Kalman filter (4) is obvious, and a similar estimator 

and corresponding theorem can be developed for the case of continuous measurements° 

The small-noise assumptions concerning the initial state are still restrictive, and 

in essence are made necessary by the fact that comparison is made between use of the 

estimator and continuous exact measurement of the state. What is really required 

is a comparison with the true optimal controller based on the same information sets, 

but since all the past information is available to the controller this inevitably 

leads us to consideration of a generalized dynamical system, which is outside the 

scope of the present paper. 

5. Conclusions 

Stochastic control problems for a rather general class of nonlinear systems have been 

considered in this paper. Deterministic models for the prediction of expected perfor- 

mance have been presented, and it has been shown that optimal controllers designed 

using the models are good approximations to the true optimal controllers for the sto- 

chastic system. Some results have been presented on the use of an estimator coupled 

with an optimal controller based on continuous observation of the state. 

The problems associated with the non-Markov nature of the system, and relaxation of 

the smoothness conditions imposed on the state and control laws will be the subject 

of a separate paper. 
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