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Abstract

We develop a complementarity-constrained nonlinear optimization model for the 
time-dependent control of district heating networks. The main physical aspects of 
water and heat flow in these networks are governed by nonlinear and hyperbolic 1d 
partial differential equations. In addition, a pooling-type mixing model is required 
at the nodes of the network to treat the mixing of different water temperatures. This 
mixing model can be recast using suitable complementarity constraints. The result-
ing problem is a mathematical program with complementarity constraints subject 
to nonlinear partial differential equations describing the physics. In order to obtain 
a tractable problem, we apply suitable discretizations in space and time, resulting 
in a finite-dimensional optimization problem with complementarity constraints for 
which we develop a suitable reformulation with improved constraint regularity. 
Moreover, we propose an instantaneous control approach for the discretized prob-
lem, discuss practically relevant penalty formulations, and present preprocessing 
techniques that are used to simplify the mixing model at the nodes of the network. 
Finally, we use all these techniques to solve realistic instances. Our numerical results 
show the applicability of our techniques in practice.
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1 Introduction

Many countries in the world are striving to make a transition towards an energy 
system that is mainly based on using energy from renewable sources like wind and 
solar power, complemented by classical energy sources like gas, oil, coal, or waste 
incineration. The increasing use of highly fluctuating renewable energy sources 
leads to many challenging problems from the engineering, mathematical, and eco-
nomic point of view. A key to the success of this energy transition is the efficient 
and intelligent coupling of the energy resources and the optimal operation of the 
energy networks and energy storage. In this direction, district heating networks play 
an important role, since they can be used as energy storage, e.g., to balance fluctua-
tions at the electricity exchange. To this end, district heating networks need to be 
operated efficiently so that no unnecessary energy is used and, on the other hand, 
security of supply should not be compromised. This is a hard task since uncertain-
ties of the heat demand of households need to be considered and because the phys-
ics-based time delays in these networks make it difficult to react to changes in short 
periods of time.

To make the described intelligent use of district heating networks possible, one 
needs (i) a proper mathematical model of the network as well as fast and stable (ii) 
simulation and (iii) optimization techniques. In this paper, we develop a continuous 
optimization model for the short-term optimal operation of a district heating net-
work. To this end, we assume that the heat demand of the households is given and 
set up a nonlinear optimization model (NLP) for the control of the heat supply and 
the pressure control of the network. The building blocks of the entire model are non-
linear models of the households, where thermal energy is withdrawn, the network 
depot, in which the heat is supplied to the network and the pressure is controlled, 
and a model of the transport network itself.

The model of the transport network is governed by two main mathematical com-
ponents; a system of one-dimensional (1d) nonlinear hyperbolic partial differential 
equations (PDEs) to model the relations of mass flows, water pressure, and tempera-
ture in a pipe over time, and a system of algebraic equations that is used at every 
node of the network to model mass conservation, pressure continuity, and the mix-
ing of water temperatures. The last aspect is very challenging since these mixing 
models are genuinely nonsmooth due to their dependence on flow directions, which 
are part of the solution of the PDE and not known a priori. To avoid integer-valued 
variables, we develop a mixing model using complementarity constraints. In sum-
mary, we consider a PDE-constrained nonlinear mathematical program with com-
plementarity constraints (MPCC), which is a highly challenging class of optimiza-
tion problems; see, e.g., Luo et al. (1996).

Somehow surprisingly, there is not much literature about the mathemati-
cal optimization of district heating networks. A branch of applied publications 
focuses on specific case studies. For instance, in Pirouti et al. (2013), a case study 
for a simplified model of a district heating project in South Wales is carried out. 
The focus is more on an economic analysis than on mathematical and physical 
modeling or optimization techniques. The resulting problems are solved by a 
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linear solver invoked in a sequential linear programming approach. A more gen-
eral discussion about the technology and potentials of district heating networks 
is presented in Rezaie and Rosen (2012). In Schweiger et al. (2017), the authors 
discuss different discrete and continuous optimization problems. As in our contri-
bution, the authors start with a PDE-constrained optimization problem and apply 
the first-discretize-then-optimize approach yielding a finite-dimensional problem 
that is then solved. Energy storage or storage tanks combined with district heat-
ing networks are discussed in Colella et al. (2011), Verda and Colella (2011) and 
the impact of load variations and the integration of solar energy is considered in 
Hassine and Eicker (2013). The design of district heating networks for station-
ary mathematical models is carried out in Roland and Schmidt (2020), Bordin 
et al. (2016), as well as Dorfner and Hamacher (2014). In contrast to the mid- to 
long-term planning problems addressed in these papers, in Sandou et al. (2005), 
the authors consider a model predictive control (MPC) approach for computing 
a good operational control of a network for a given design. The resulting models 
are continuous nonlinear problems that need to be solved in every iteration of 
the MPC loop. A related approach is discussed in Verrilli et al. (2017), where an 
MPC control is computed for a district heating system with thermal energy stor-
age and flexible loads. Numerical simulation of district heating networks using 
a local time stepping method is studied in Borsche et al. (2018) and model order 
reduction techniques for the hyperbolic equations in district heating networks are 
discussed in Rein et al. (2019b) or Rein et al. (2018), Rein et al. (2019a). In the 
last two papers, however, no optimization tasks are considered.

As discussed above, a very important aspect of district heating network models 
is the mixing of different water temperatures at the nodes of the network. Since the 
models are similar, related literature can also be found in the field of optimization 
for gas transport networks; cf., e.g., van der Hoeven (2004), Schmidt et al. (2015), 
Geißler et al. (2018), Schmidt et al. (2016), Geißler et al. (2015), Hante and Schmidt 
(2019).

Our contribution is to consider the optimization of district heating networks at a 
great level of detail and physical accuracy; see Sect. 2 for our modeling approach 
that includes both 1d nonlinear PDEs and mixing models. In order to obtain tracta-
ble optimization problems, we present tailored discretizations of the PDEs in space 
and time in Sect. 3 and also provide different equivalent formulations for the nodal 
mixing conditions; see Sect. 4. In Sect. 5, we present problem-specific optimization 
techniques that enable us to solve instances on realistic networks with reasonable 
space and time discretizations. To be more specific, we set up an instantaneous con-
trol approach that can both be used stand-alone and as a procedure for computing 
initial values of good quality for the problem on the entire time horizon. Addition-
ally, we derive suitable penalty formulations of the problem that render the instances 
numerically more tractable. Moreover, we present an easy-but-useful preprocessing 
technique to decide flow directions in advance so that the amount of nonsmooth-
ness and the number of complementarity constraints for modeling the nodal mix-
ing conditions is reduced. The described techniques are then used to solve realistic 
instances in Sect. 6. Finally, we close the paper with a conclusion and some com-
ments on possible directions of future work in Sect. 7.
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2  Modeling

We use a connected and directed graph G = (V , A) to model the district heating net-
work. The network consists of

• a forward-flow part, which provides the consumers with hot water;
• consumers, that use the hot water for heating;
• a backward-flow part, which transports the cooled water back to the depot;
• and the depot, where the heating of the cooled water takes place.

See Fig. 1 for a schematic district heating network.
The nodes V = V

ff
∪ V

bf
 are the disjoint union of nodes V

ff
 of the forward-flow 

part and nodes V
bf

 of the backward-flow part of the network. The arcs A are divided 
into forward-flow arcs A

ff
 , backward-flow arcs A

bf
 , consumer arcs A

c
 , and the depot 

arc a
d
 of the district heating network provider. Therefore, A = A

ff
∪ A

bf
∪ A

c
∪ {a

d
} 

and we have

We optimize the district heating network in the time horizon T ∶= [0, T] with pre-
defined final time T > 0 . In what follows, we introduce mathematical models for 
the different parts of the network; namely pipes, nodes, consumers, and the depot 
of the network provider. After that, we introduce bounds for some of the quantities 
and state the objective function. To conclude this section, we summarize the parts to 
obtain a complete model of the entire district heating network.

2.1  Pipe modeling

We use the 1d Euler equations to model the physics of hot water flow in the pipe 
network (Borsche et  al. 2018; Rein et  al. 2018; Köcher 2000). In what follows, 

a = (u, v) ∈ Aff ⟹ u ∈ Vff, v ∈ Vff,

a = (u, v) ∈ Abf ⟹ u ∈ Vbf, v ∈ Vbf,

a = (u, v) ∈ Ac ⟹ u ∈ Vff, v ∈ Vbf,

ad = (u, v) ⟹ u ∈ Vbf, v ∈ Vff.

Fig. 1  A schematic district 
heating network: forward-flow 
arcs are plotted in solid black, 
backward-flow arcs in dashed 
blue, consumers in dotted violet, 
and the depot in dashed-dotted 
red
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we use x ∈ [0, L
a
] to denote the spatial coordinate, with L

a
 being the length of pipe 

a ∈ A
ff
∪ A

bf
 . The continuity equation then is given by

The 1d momentum equation for compressible fluids in cylindrical pipes has the form

see, e.g., (Schmidt et al. 2015; Mehrmann et al. 2018).
Here and in what follows, �

a
 , p

a
 , and v

a
 denote the density, pressure, and velocity of 

the water in pipe a . Furthermore, D
a
 is the diameter and h′

a
 is the slope of pipe a , which 

we assume to be constant. The gravitational acceleration is denoted by g. The friction 
factor �

a
 for turbulent flow is modeled by the flow-independent law of Nikuradse (see, 

e.g., Fügenschuh et al. 2015), i.e.,

where k
a
 is the roughness of the inner pipe wall. We are aware that there are also 

other empirical models of the friction factor for the turbulent case, which might also 
render � being dependent on x and t. Moreover, there is Hagen–Poiseuille’s exact 
law for laminar flow; see, e.g., Fügenschuh et al. (2015) and the references therein. 
For the ease of presentation, we restrict ourselves to the law of Nikuradse, which 
only depends on the data of the pipe. However, other models can in principle also 
be incorporated. For a list of all parameters and variables of the model see Table 1, 
where we also distinguish between directly controllable variables at the depot and 
physical state variables in the network.

In the considered setting it is well-known that incompressibility leads to constant 
velocity in the pipe. We briefly give the derivation here for completeness. Since we 
assume that the water is incompressible, i.e.,

see, e.g., Marsden and Chorin (1993) for details on fluid flow modeling, we can 
rewrite the continuity Eq. (1) as

(1)
��

a

�t
(x, t) +

�(�
a
v

a
)

�x
(x, t) = 0, a ∈ Aff ∪ Abf.

(2)

�(�ava)

�t
(x, t) +

�pa

�x
(x, t) +

�(�av2
a
)

�x
(x, t)

+ g�a(x, t)h�
a
+ �a

|va|va�a

2Da

(x, t) = 0, a ∈ Aff ∪ Abf;

�
a
=

(

2 log10

(

D
a

k
a

)

+ 1.138

)−2

, a ∈ Aff ∪ Abf,

(3)
��

a

�t
(x, t) + v

a
(x, t)

��
a

�x
(x, t) = 0, a ∈ Aff ∪ Abf;
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Table 1  Controllable variables at the depot (top), physical state variables in the network (mid), and given 
parameters (bottom) of the district heating network model

Symbol Explanation Unit

P
w
(t) Power production through waste incineration W

P
g
(t) Power production through gas combustion W

P
p
(t) Pumping power to increase the water pressure W

�
a
(x, t) Density of the water in pipe a kg m−3

v
a
(x, t) Flow velocity in pipe a m s

−1

pa(x, t) Pressure in pipe a Pa

T
a
(x, t) Water temperature in pipe a K

qa(x, t) Mass flow in pipe a ; qa = Aa�ava kg s−1

pu(t) Pressure at node u Pa

T
u
(t) (Mixed) water temperature at node u K

t Time coordinate; t ∈ T s

T Time horizon T ∶= [0, T] —

x Spatial coordinate in a pipe m

L
a

Length of pipe a m

D
a

Diameter of pipe a m

A
a Cross-sectional area of pipe a ; A

a
= �

(

D
a
∕2

)2
m

2

h
′

a
Slope of pipe a 1

�
a

Friction factor of pipe a 1

P
a
(t) Power consumption of the consumer at arc a W

k
a

Roughness of the inner wall of pipe a m

U
a

Heat transfer coefficient of the wall of pipe a W m
−2

K
−1

T
ff

a
Consumers’ minimum inlet water temperature K

T
bf Consumers’ outlet water temperature K

T
0

Surrounding temperature K

c
p

Specific heat capacity of water J kg−1 K−1

p
s

Stagnation pressure of the network Pa

�
P

Max. change in power over time at depot W s
−1

�
T

Max. change in outlet temperature over time at depot K s
−1

g Gravitational acceleration m s
−2

�
w

Cost coefficient for waste incineration €/W

�
g

Cost coefficient for gas combustion €/W

�
p

Cost coefficient for pumps €/W
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Since the density �
a
(x, t) is always positive, we can divide by it and obtain

Using these consequences of incompressibility, the momentum Eq. (2) simplifies to

and we thus obtain the simplified 1d system of incompressible Euler equations 

 that we use for setting up our optimization problem.
It should be noted that (4a) implies constant velocity in the pipe, i.e., 

v
a
(x, t) = v

a
(t) for all x ∈ [0, L

a
].

The thermal energy equation for each pipe a ∈ A
ff
∪ A

bf
 is given by

see Sandou et al. (2005); Borsche et al. (2018); Rein et al. (2018). In (5), T
a
 describes 

the water temperature, U
a
 is the heat transfer coefficient of the pipe’s wall, c

p
 is the 

specific heat capacity of water, and T
0
 is the temperature in the environment sur-

rounding the pipe.
To close the system, one finally needs initial and boundary conditions as well as 

an equation of state. In the literature one can find formulas for the density of water 

0 =
��

a

�t
(x, t) +

�(�
a
v

a
)

�x
(x, t)

=
��

a

�t
(x, t) + �

a

�v
a

�x
(x, t) + v

a

��
a

�x
(x, t)

= �
a

�v
a

�x
(x, t).

�v
a

�x
(x, t) = 0.

�(�
a
v

a
)

�t
(x, t) +

�(�
a
v

2

a
)

�x
(x, t)

= �
a

�v
a

�t
(x, t) + v

a

��
a

�t
(x, t) + (�

a
v

a
)
�v

a

�x
(x, t) + v

a

�(�
a
v

a
)

�x
(x, t)

= �
a

�v
a

�t
(x, t) + v

a

(

��
a

�t
(x, t) +

�(�
a
v

a
)

�x
(x, t)

)

= �
a

�v
a

�t
(x, t)

(4a)
�v

a

�x
(x, t) = 0, a ∈ Aff ∪ Abf,

(4b)

�a(x, t)
�va

�t
(x, t) +

�pa

�x
(x, t) + g�a(x, t)h�

a

+ �a

|va|va�a

2Da

(x, t) = 0, a ∈ Aff ∪ Abf,

(5)
�T

a

�t
(x, t) + v

a
(t)

�T
a

�x
(x, t) +

4U
a

cp�a
(x, t)D

a

(T
a
(x, t) − T0) = 0, a ∈ Aff ∪ Abf;
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depending on the temperature; see, e.g., Köcher (2000). Since we make the incom-
pressibility assumption (3), in the context of our optimization model, we assume as 
another simplification that the density of the water is constant, i.e., �

a
(x, t) = �.

This assumption allows us to rewrite the momentum Eq. (4b) as follows:

Since the right-hand side does not depend on the spatial coordinate x, the pressure 
pa(x, t) is linear in x. Thus, it holds that

In this subsection, we have presented a simplified model of the 1d compressible 
Euler equations for the description of the pipe flow. More sophisticated models, 
or even complete hierarchies of models for example those constructed in gas flow 
(Domschke et al. 2017), should be used for detailed simulation methods or the anal-
ysis of the flow. However, in the context of our optimization methods, already the 
discussed modeling level presents a mathematical and computational challenge.

2.2  Nodal coupling equations

In this subsection, we expand our network model by suitable coupling conditions on 
the nodes for mass flow, pressure, and temperature. These conditions are modeled by 
algebraic equations.

The mass balance equation for each node u ∈ V is described by

where qa = Aa�va denotes the mass flow of pipe a with cross-sectional area 
A

a
= �(D

a
∕2)2 . Here and in what follows, we use the standard �-notation, i.e., we 

define

and �(u) ∶= �
out(u) ∪ �

in(u) . Note that (7) implies that we have no in- and outflow to 
or from the network.

The pressure continuity equations for each node are given by 

 where pu(t) denotes the pressure at node u ; see Fig. 2 for an illustration.

�pa

�x
(x, t) = −�

�va

�t
(t) − g�h�

a
− �a

|va|va�

2Da

(t), a ∈ Aff ∪ Abf.

(6)
pa(La, t) − pa(0, t)

La

= −�
�va

�t
(t) − g�h�

a
− �a

|va|va�

2Da

(t), a ∈ Aff ∪ Abf.

(7)

∑

a∈�in(u)

qa(t) =
∑

a∈�out(u)

qa(t), u ∈ V , t ∈ T,

�
out(u) ∶= {a ∈ A ∶ ∃v with a = (u, v)},

�
in(u) ∶= {a ∈ A ∶ ∃v with a = (v, u)},

(8a)pu(t) = pa(0, t), u ∈ V , a ∈ �
out(u), t ∈ T,

(8b)pu(t) = pa(La, t), u ∈ V , a ∈ �
in(u), t ∈ T,
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We also need to introduce temperature mixing equations to describe the behav-
ior of the water temperature in the nodes, where water of different temperatures is 
mixed. Since the mixing model depends on the flow directions, we define the inflow 
and outflow arcs of a node u at a given time t ∈ T  as

The temperature mixing equations for each node are modeled as 

where T
u
(t)denotes the mixed water temperature at node u and where we use the 

notation

see, e.g., Schmidt et al. (2015, 2016); Hante and Schmidt (2019), where a similar 
model is considered for mixing effects in natural gas transport networks.

Equation (9a) can be derived from the conservation of energy if the specific heat 
capacities in (9) are independent of the water temperature. Since we consider the 
mixing of water only, the additional assumption that all heat capacities are the same 
is appropriate. Using this, (9) can be simplified to 

Obviously, the discussed mixing model is only defined at nodes u with inflow, i.e., if

I(u, t) ∶= {a ∈ �
in(u) ∶ v

a
(t) ≥ 0} ∪ {a ∈ �

out(u) ∶ v
a
(t) ≤ 0}, u ∈ V , t ∈ T,

O(u, t) ∶= {a ∈ �
in(u) ∶ v

a
(t) < 0} ∪ {a ∈ �

out(u) ∶ v
a
(t) > 0}, u ∈ V , t ∈ T.

(9a)Tu(t) =

∑
a∈I(u,t) �qa(t)�cp

Ta∶u(t)
∑

a∈I(u,t) �qa(t)�cp

, u ∈ V , t ∈ T,

(9b)T
u
(t) = T

a∶u
(t), u ∈ V , a ∈ O(u, t), t ∈ T,

T
a∶u

(t) ∶=

{

T
a
(0, t), u ∈ V , a ∈ �

out(u), t ∈ T,

T
a
(L

a
, t), u ∈ V , a ∈ �

in(u), t ∈ T;

(10a)Tu(t) =

∑
a∈I(u,t) �qa(t)�Ta∶u(t)
∑

a∈I(u,t) �qa(t)�
, u ∈ V , t ∈ T,

(10b)T
u
(t) = T

a∶u
(t), u ∈ V , a ∈ O(u, t), t ∈ T.

∑

a∈I(u,t)

|qa(t)| > 0.

Fig. 2  Pressure continuity at node u 
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Although zero flows in district heating networks are rather unusual (which also 
legitimates the assumption above) in typical situations, they might appear in special 
situations such as during maintenance works.

Note further that the mixing model in (10) cannot be used directly in an optimiza-
tion context because the sets I(u, t) and O(u, t) depend on the solution and are thus 
not known a priori. In Sects. 4.1 and 4.2, we present a reformulation of the mixing 
model that deals with this difficulty.

2.3  Consumer and depot models

Consumers at arcs a = (u, v) ∈ A
c
 are modeled by 

where P
a
(t) is the given power consumption of the consumer a ∈ A

c
 , T

bf is the 
contractually agreed temperature of the water that flows into the backward-flow 
network, and Tff

a
 is the minimum inlet water temperature of the consumer a ∈ A

c
 . 

Later in our numerical experiments, we will relax the equality constraint  (11c) to 
T

a∶v
(t) ∈ [Tbf − �, T

bf + �] for a small � > 0 , since this leads to a significantly 
improved convergence behavior of the tested solvers in our numerical experiments.

The depot at arc a = ad = (u, v) is modeled by 

(11a)v
a
(t) ≥ 0, t ∈ T,

(11b)Pa(t) = qa(t)cp

(

Ta∶u(t) − Ta∶v(t)
)

, t ∈ T,

(11c)T
a∶v

(t) = T
bf, t ∈ T,

(11d)T
a∶u

(t) ≥ T
ff

a
, t ∈ T,

(11e)pa∶v(t) ≤ pa∶u(t), t ∈ T,

(12a)v
a
(t) ≥ 0, t ∈ T,

(12b)pu(t) = p
s
, t ∈ T,

(12c)P
p
(t) =

qa(t)

�

(

pa∶v(t) − pa∶u(t)
)

, t ∈ T,

(12d)P
w
(t) + P

g
(t) = qa(t)cp

(

Ta∶v(t) − Ta∶u(t)
)

, t ∈ T,

(12e)
|
|
|
|

�P
w

�t
(t)
|
|
|
|

≤ �
P
, t ∈ T,
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where p
s
 is the so-called stagnation pressure of the network. Since all other physical 

and technical equations of the model are stated in pressure differences, the fixation 
of one pressure value leads to unique pressure values everywhere in the network, 
which is the reason for introducing the stagnation pressure. In our implementation, 
we however will allow a variation in an interval pu(t) ∈ [p

s
− �, p

s
+ �] instead; cf. 

the relaxation of the backward-flow temperature constraint (11c) above. The power 
to run the pumps to realize a pressure increase in the depot of the district heating 
network provider is denoted by P

p
(t) . A temperature gain is obtained by thermal 

power production in the depot. The corresponding Eq. (12d) is similar to the power 
consumption Eq.  (11b) for consumers, where P

w
(t) and P

g
(t) describe the thermal 

power produced by waste incineration and gas combustion, respectively. Finally, 
(12e) and (12f) bound the change over time of the power from waste incineration as 
well as the change over time of the depot’s outflow temperature.

2.4  Bounds, objective function, and model summary

The different variables of the network that are used in the model are subject to the 
following bounds for all t ∈ T  , 

 The objective function to minimize is given by

where �
w
 , �

g
 , and �

p
 are cost coefficients of the waste incineration, the gas combus-

tion, and the pumping power, respectively. Here, we assume that these cost coeffi-
cients are constant over time. However, time-dependent costs can also be considered 
in a similar manner. Note that, in principle, other methods of thermal power produc-
tion, e.g., power-to-heat, can be modeled in an analogous way.

In summary, we obtain the following nonlinear optimization problem with PDE 
constraints

(12f)
|
|
|
|

�T
a∶v

�t
(t)
|
|
|
|

≤ �
T
, t ∈ T,

(13a)pu(t) ∈ [p−

u
, p+

u
], Tu(t) ∈ [T−

u
, T+

u
], u ∈ V ,

(13b)Pw(t) ∈ [0, P
+

w
], Pg(t) ∈ [0, P

+

g
], Pp(t) ∈ [0, P

+

p
].

(14)∫
T

0

(

�wPw(�) + �gPg(�) + �pPp(�)
)

d�,
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Note that (15) is a nonsmooth and infinite-dimensional nonlinear optimization prob-
lem subject to PDEs and algebraic constraints. While the separate parts of the model 
such as the incompressible Euler equations or the mixing models at nodes are known 
in the literature, the novelty of the modeling discussed here is the combination of 
these aspects that leads to a highly accurate representation of the physical behavior.

Since we want to solve the presented model as an NLP, we apply a first-discre-
tize-then-optimize approach by using suitable finite difference discretizations of 
the differential equations. This will be discussed in the next section.

3  PDE discretization

In this section, we discuss the discretization in space and time via finite differ-
ence schemes.

3.1  Implicit Euler discretization in space and time

For the time discretization, we partition the time horizon T = [0, T] equidistantly 
in N + 1 ∈ ℕ time points

Thus, the length of the discretization intervals is Δt ∶= T∕N.
For the discretization in space of pipe a ∈ A

ff
∪ A

bf
 , we use M

a
+ 1 ∈ ℕ discre-

tization points

To obtain a large stability region for the method, we use an implicit Euler discretiza-
tion for the momentum Eq. (6), which leads to the difference equation

(15)

min (14)

s.t. Incompressible Euler equation: (6),

Thermal energy equation: (5),

Mass balance equation: (7),

Pressure continuity equations: (8),

Temperature mixing equations: (10),

Consumer constraints: (11),

Depot constraints: (12),

Bounds: (13).

t
i
∶=

iT

N
, i ∈ {0,… , N}.

x
a,k ∶=

kL
a

M
a

, k ∈ {0,… , M
a
}, and Δx

a
∶=

L
a

M
a

.
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for a ∈ A
ff
∪ A

bf
 and i ∈ {0,… , N − 1} . Note that in the context of a forward simu-

lation, to avoid the solution of (large) nonlinear systems, we could have also used 
an explicit integration scheme for the momentum equation. However, since we are 
using the discretization method within an optimization model, the implicit discre-
tization does not lead to increased costs anyway.

For the spatial semi-discretization of the thermal energy Eq.  (5) we use an 
implicit Euler discretization, yielding

for a ∈ A
ff
∪ A

bf
 and k ∈ {0,… , M

a
− 1} . Note that in the optimality conditions for 

the discretized optimization problem, which form a boundary value problem, there 
is no preferred space direction, so we will discuss an alternative approach based on 
central differences in the next section.

The time discretization of the space-discretized thermal energy equation is again 
done in an implicit way via

for a ∈ A
ff
∪ A

bf
 , k ∈ {0,… , M

a
− 1} , and i ∈ {0,… , N − 1} . The differential depot 

constraints (12e) and (12f) are discretized as

Discretizing the algebraic equations just means formulating them for each discretiza-
tion point in time. For example, the discretized version of the mass balance Eq. (7) 
reads

(16)

�
va(ti+1) − va(ti)

Δt
+

pa(La, ti+1) − pa(0, ti+1)

La

+ g�h�

a
+ �a

|va(ti+1)|va(ti+1)�

2Da

= 0

�T
a

�t
(x

a,k+1, t) + v
a
(t)

T
a
(x

a,k+1, t) − T
a
(x

a,k, t)

Δx
a

+
4U

a

cp�D
a

(T
a
(x

a,k+1, t) − T0) = 0

(17)

T
a
(x

a,k+1, t
i+1) − T

a
(x

a,k+1, t
i
)

Δt

+ v
a
(t

i+1)
T

a
(x

a,k+1, t
i+1) − T

a
(x

a,k, t
i+1)

Δx
a

+
4U

a

cp�D
a

(T
a
(x

a,k+1, t
i+1) − T0) = 0

|Pw(ti+1) − Pw(ti)|

Δt
≤ �

P
,

|T
a∶v

(t
i+1) − T

a∶v
(t

i
)|

Δt
≤ �

T
, i = 0,… , N − 1.

∑

a∈�in(u)

qa(ti) =
∑

a∈�out(u)

qa(ti), u ∈ V , i ∈ {0,… , N}.
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Finally, discretizing the objective function (14) with the trapezoidal rule, which is 
the appropriate discretization of the costs associated with the space-time discretiza-
tion that we have chosen, gives

3.2  A space discretization scheme based on central differences

Since in the discretized optimization problem there is no preferred space direction, in 
this section we present an alternative spatial discretization scheme using central differ-
ences. Later in our numerical results, we then compare this scheme with the implicit 
scheme of the last section.

Using the notation of Sect. 3.1, i.e., t
i
 , i ∈ {0,… , N} , for the discrete time points 

and x
a,k

 , k ∈ {0,… , M
a
} , for the discrete points in space, we obtain the following dis-

cretized system for i = 0,… , N − 1 and k = 1,… , M
a
− 1 that contains (16) and

Because the central difference scheme in (19) takes two spatial steps at a time, we 
are missing one equation in every timestep. Therefore, an additional discretization 
step is needed at the beginning or the end of the pipe, where we arbitrarily choose 
the end of the pipe:

Note that we do not discretize the continuity equation since it simply states that 
velocities only depend on time and not on space. Finally, the algebraic constraints 
and the objective function are discretized as in the last section.

4  Mixing models

As already mentioned in Sect. 2, the mixing model originally is not well-posed since it 
is based on arc sets that are not known a priori. To handle this issue, we present two dif-
ferent reformulations that we later compare numerically in Sect. 6.

(18)

Δt

2

N−1
∑

i=0

�w(Pw(ti) + Pw(ti+1)) + �g(Pg(ti) + Pg(ti+1)) + �p(Pp(ti) + Pp(ti+1)).

(19)

T
a
(x

a,k, t
i+1) − T

a
(x

a,k, t
i
)

Δt
+ v

a
(t

i+1)
T

a
(x

a,k+1, t
i+1) − T

a
(x

a,k−1, t
i+1)

2Δx

+
4U

a

cp�D
a

(

T
a
(x

a,k, t
i+1) − T0

)

= 0.

(20)

T
a
(x

a,M
a

, t
i+1) − T

a
(x

a,M
a

, t
i
)

Δt
+ v

a
(t

i+1)
T

a
(x

a,M
a

, t
i+1) − T

a
(x

a,M
a
−1, t

i+1)

Δx
a

+
4U

a

cp�D
a

(T
a
(x

a,M
a

, t
i+1) − T0) = 0.
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4.1  A complementarity-constrained temperature mixing model

The sets I(u, t) and O(u, t) used in the temperature mixing constraints  (10) of Prob-
lem (15) are not known a priori, which makes it difficult to use them in an optimization 
model. We resolve this problem by replacing them with nonsmooth max-constraints 
introduced in Hante and Schmidt (2019) for a similar setting in gas transport networks. 
The newly introduced variable

models the positive part of the mass flow qa(t) of arc a . This is equivalent to

The variable  �a(t) ∶= �a(t) − qa(t) thus models the negative part of the mass 
flow qa(t) . For each node u ∈ V  and all t ∈ T  , then the following implications are 
satisfied,

We can thus reformulate the temperature mixing Eq.  (10) at node u ∈ V  without 
explicitly using the sets I(u, t) and O(u, t) and obtain 

for all t ∈ T  . In Lemma  1 of Hante and Schmidt (2019), it is shown that Condi-
tion (21) is equivalent to the complementarity-constrained model

for u ∈ V  and a ∈ �(u) . This is a classical mathematical program with complemen-
tarity constraints (MPCC) formulation, since for all u ∈ V  , a ∈ �(u) , and t ∈ T  , the 
positive mass flow �

a
(t) or the negative mass flow �

a
(t) is equal to zero. Thus, �

a
(t) 

and �
a
(t) form a complementarity pair.

Using this constraint, we obtain the finite-dimensional MPCC model

(21)�a(t) ∶= max{0, qa(t)}, a ∈ Aff ∪ Abf,

�a(t) − qa(t) = max{0,−qa(t)}, a ∈ Aff ∪ Abf.

a ∈ I(u, t) ∩ �in(u) ⟹ �a(t) = qa(t), �a(t) = 0,

a ∈ O(u, t) ∩ �in(u) ⟹ �a(t) = 0, �a(t) = −qa(t),

a ∈ I(u, t) ∩ �out(u) ⟹ �a(t) = 0, �a(t) = −qa(t),

a ∈ O(u, t) ∩ �out(u) ⟹ �a(t) = qa(t), �a(t) = 0.

(22a)T
u
(t) =

∑

a∈�in(u) �a
(t)T

a∶u
(t) +

∑

a∈�out(u) �a
(t)T

a∶u
(t)

∑

a∈�in(u) �a
(t) +

∑

a∈�out(u) �a
(t)

,

(22b)0 = �
a
(t)(T

a∶u
(t) − T

u
(t)), a ∈ �out(u),

(22c)0 = �
a
(t)(T

a∶u
(t) − T

u
(t)), a ∈ �in(u),

(23)qa(t) = �a(t) − �a(t), �a(t) ≥ 0, �a(t) ≥ 0, �a(t)�a(t) = 0
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for optimizing the control of the district heating network, which is equivalent to a 
discretized version of the original problem (15).

In general, MPCCs are hard to solve, since they usually do not satisfy standard 
constraint qualifications of nonlinear optimization (Hoheisel et  al. 2013). To see 
this, consider the complementarity constraints (23). If �

a
(t) = �

a
(t) = 0 holds, i.e., if 

there is no flow, then the tangential cone of (24) restricted to the constraints (23) is 
nonconvex. In this case, the tangential cone cannot coincide with the linearized tan-
gential cone, because the latter cone is always convex. Thus, the Abadie constraint 
qualification (ACQ) is not satisfied; see, e.g., Bonnans et al. (2006) for some details 
on constraint qualifications.

4.2  A nonlinear programming based temperature mixing model

Some of our preliminary numerical experiments showed that the MPCC-based for-
mulation of the mixing model tends to be hard to solve for standard NLP solvers. 
For this reason, in this section we develop a reformulation for which we later dem-
onstrate that it has better numerical properties.

The thermal energy balance equation in the nodes given by

ensures that no thermal energy is added or lost in the mixing process. Assuming that 
the specific heat capacity c

p
 of water is constant, we can rewrite these equations as

However, only formulating the thermal energy balance is not sufficient to get a com-
plete mixing model, since multiple outflow arcs still could have different tempera-
tures after mixing. To prevent this, we explicitly include the temperature propaga-
tion equations at the nodes, which equate the temperatures of all outflow arcs with 
the mixed node temperature, 

(24)

min (18)

s.t. Discretized Euler equation: (16),

Discretized thermal energy equation: (17) or (19) and (20),

Discretized mass balance equation: (7),

Discretized pressure continuity equations: (8),

Discretized temperature mixing equations: (22),

Discretized MPCC max-reformulation: (23),

Discretized consumer constraints: (11),

Discretized depot constraints: (12),

Discretized bounds: (13)

∑

a∈�in(u)

qa(t)Ta∶u(t)cp =
∑

a∈�out(u)

qa(t)Ta∶u(t)cp, u ∈ V , t ∈ T

(25)

∑

a∈�in(u)

qa(t)Ta∶u(t) =
∑

a∈�out(u)

qa(t)Ta∶u(t), u ∈ V , t ∈ T.
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For a ∈ I(u, t) , these inequalities are always fulfilled independent of the absolute 
value of the temperature difference |T

a∶u
(t) − T

u
(t)| . For a ∈ O(u, t) , the inequalities 

are only satisfied if |T
a∶u

(t) − T
u
(t)| = 0 holds. See also Borsche et al. (2018), where 

a similar model is used in a simulation model with known flow directions. The fol-
lowing theorem shows that this reformulation is equivalent to the original one.

Theorem 1 Suppose that all nodes have a positive inflow, i.e.,

Then, the mixing model  (25)  and  (26) is an equivalent reformulation of the mixing 

Eq.  (10).

Proof Let u ∈ V  . We rewrite the mass balance Eq.  (7) using inflow- and outflow-
arcs and obtain

The same ideas applied to the thermal energy balance Eq. (25) lead to

We now assume that the mixing Eqs. (10) hold. Using (27), we obtain

(26a)v
a
(t)|T

a∶u
(t) − T

u
(t)| ≤ 0, u ∈ V , a ∈ �

out(u), t ∈ T,

(26b)v
a
(t)|T

a∶u
(t) − T

u
(t)| ≥ 0, u ∈ V , a ∈ �

in(u), t ∈ T.

∑

a∈I(u,t)

|qa(t)| > 0, u ∈ V .

(27)

0 =
∑

a∈�in(u)

qa(t) −
∑

a∈�out(u)

qa(t)

=

(
∑

a∈�in(u)∩I(u,t)

qa(t) −
∑

a∈�out(u)∩I(u,t)

qa(t)

)

+

(
∑

a∈�in(u)∩O(u,t)

qa(t) −
∑

a∈�out(u)∩O(u,t)

qa(t)

)

=
∑

a∈I(u,t)

|qa(t)| −
∑

a∈O(u,t)

|qa(t)|.

(28)

0 =
∑

a∈�in(u)

qa(t)Ta∶u(t) −
∑

a∈�out(u)

qa(t)Ta∶u(t)

=

(
∑

a∈�in(u)∩I(u,t)

qa(t)Ta∶u(t) −
∑

a∈�out(u)∩I(u,t)

qa(t)Ta∶u(t)

)

+

(
∑

a∈�in(u)∩O(u,t)

qa(t)Ta∶u(t) −
∑

a∈�out(u)∩O(u,t)

qa(t)Ta∶u(t)

)

=
∑

a∈I(u,t)

|qa(t)|Ta∶u(t) −
∑

a∈O(u,t)

|qa(t)|Ta∶u(t).
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which implies the thermal energy balance Eq. (25) by using (28).
Consider now an arc a ∈ �

out(u) . Then, the temperature propagation Eq. (26a) is 
satisfied by using (10b),

For an arc a ∈ �
in(u) , the temperature propagation Eq. (26b) is also fulfilled,

and hence, we have shown the first implication.
For the reverse implication, we assume that (25) and (26) hold. For a ∈ O(u, t) , 

because of (26), we have

Thus, |T
a∶u

(t) − T
u
(t)| = 0 holds, which implies (10b).

Then, we use the thermal energy balance Eq. (25) to prove (10a)

0 =

�
�

a∈I(u,t)

�qa(t)� −
�

a∈O(u,t)

�qa(t)�
�

Tu(t)

=

�
�

a∈I(u,t)

�qa(t)�
�

Tu(t) −

�
�

a∈O(u,t)

�qa(t)�Tu(t)

�

=

�
�

a∈I(u,t)

�qa(t)�
�∑

a∈I(u,t) �qa(t)�Ta∶u(t)
∑

a∈I(u,t) �qa(t)�
−

�

a∈O(u,t)

�qa(t)�Ta∶u(t)

=
�

a∈I(u,t)

�qa(t)�Ta∶u(t) −
�

a∈O(u,t)

�qa(t)�Ta∶u(t),

v
a
(t)|T

a∶u
(t) − T

u
(t)| = 0 if a ∈ O(u, t),

v
a
(t)

⏟⏟⏟

≤0

|T
a∶u

(t) − T
u
(t)|

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

≥0

≤ 0 if a ∈ I(u, t).

v
a
(t)|T

a∶u
(t) − T

u
(t)| = 0 if a ∈ O(u, t),

v
a
(t)

⏟⏟⏟

≥0

|T
a∶u

(t) − T
u
(t)|

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

≥0

≥ 0 if a ∈ I(u, t),

v
a
(t)

⏟⏟⏟
>0

|T
a∶u

(t) − T
u
(t)| ≤ 0 if a ∈ �out(u),

v
a
(t)

⏟⏟⏟
<0

|T
a∶u

(t) − T
u
(t)| ≥ 0 if a ∈ �in(u).
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Since

holds by assumption, the mixing Eq. (10a) follows.   ◻

By introducing a new variable ΔT
a,u

 for all u ∈ V and a ∈ �(u) one can rewrite (26) 
to also avoid absolute values in the equations: 

We have the following result.

0 =
�

a∈�in(u)

qa(t)Ta∶u(t) −
�

a∈�out(u)

qa(t)Ta∶u(t)

=
�

a∈I(u,t)

�qa(t)�Ta∶u(t) −
�

a∈O(u,t)

�qa(t)�Ta∶u(t)

=
�

a∈I(u,t)

�qa(t)�Ta∶u(t) −
�

a∈O(u,t)

�qa(t)�Tu(t)

=

�
�

a∈I(u,t)

�qa(t)�
�∑

a∈I(u,t) �qa(t)�Ta∶u(t)
∑

a∈I(u,t) �qa(t)�
−

�
�

a∈O(u,t)

�qa(t)�
�

Tu(t)

=

�
�

a∈I(u,t)

�qa(t)�
�∑

a∈I(u,t) �qa(t)�Ta∶u(t)
∑

a∈I(u,t) �qa(t)�
−

�
�

a∈I(u,t)

�qa(t)�
�

Tu(t)

=

�
�

a∈I(u,t)

�qa(t)�
��∑

a∈I(u,t) �qa(t)�Ta∶u(t)
∑

a∈I(u,t) �qa(t)�
− Tu(t)

�
.

∑

a∈I(u,t)

|qa(t)| > 0

(29a)v
a
(t)ΔT

a,u(t) ≤ 0, u ∈ V , a ∈ �
out(u),

(29b)ΔT
a,u
(t) ≥ T

a∶u
(t) − T

u
(t), u ∈ V , a ∈ �

out(u),

(29c)ΔT
a,u
(t) ≥ T

u
(t) − T

a∶u
(t), u ∈ V , a ∈ �

out(u),

(29d)v
a
(t)ΔT

a,u(t) ≥ 0, u ∈ V , a ∈ �
in(u),

(29e)ΔT
a,u(t) ≥ T

a∶u
(t) − T

u
(t), u ∈ V , a ∈ �

in(u),

(29f)ΔT
a,u(t) ≥ T

u
(t) − T

a∶u
(t), u ∈ V , a ∈ �

in(u).
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Theorem  2 System  (29) is feasible if and only if the temperature propagation 

Eq. (26) are feasible.

Proof It is easy to see that (29b) and (29c) are smooth and linear reformulations of

and (29e) and (29f) are smooth and linear reformulations of

Suppose now that (26) is feasible. Then,

satisfies (29).
Next, assume that (29) is feasible. For a node u ∈ V  and an outgoing arc 

a ∈ �
out(u) , we have v

a
(t)ΔT

a,u(t) ≤ 0 by (29a). Thus, either v
a
(t) ≤ 0 or ΔT

a,u(t) = 0 . 
In the first case, it follows that

In the second case, we obtain that

which implies T
a∶u

(t) = T
u
(t) . Hence, (26a) is fulfilled. The case of a node u ∈ V  

and an ingoing arc a ∈ �
in(u) can be handled analogously.   ◻

Using the reformulated constraints, we obtain the finite-dimensional NLP 
model

ΔT
a,u
(t) ≥ |T

a∶u
(t) − T

u
(t)|, u ∈ V , a ∈ �

out(u),

ΔT
a,u(t) ≥ |T

a∶u
(t) − T

u
(t)|, u ∈ V , a ∈ �

in(u).

ΔT
a,u(t) ∶= |T

a∶u
(t) − T

u
(t)|, u ∈ V , a ∈ �

out(u) ∪ �
in(u),

v
a
(t)|T

a∶u
(t) − T

u
(t)| ≤ 0.

0 ≤ |T
a∶u

(t) − T
u
(t)| ≤ ΔT

a,u(t) = 0,

Fig. 3  Illustration of the tangential cones (thick blue axes and shaded area) of the MPCC- (left) and 
NLP-based (right) mixing model
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for optimizing the control of the district heating network.
The temperature propagation Eq.  (29) still imply a complementarity structure 

similar to the complementarity constraints (23) of the MPCC-based mixing model. 
In particular, this means that for v

a
(t) = ΔT

a,u(t) = 0 , the tangential cone of (30) 
restricted to the constraints (29) is nonconvex. In this case, the ACQ is not satisfied, 
which was also the case for the formulation discussed in Sect. 4.1. Nevertheless, the 
reformulation presented in this section results in a larger tangential cone; see Fig. 3. 
Later, in Sect. 6, we will see that this gain in constraint regularity can lead to signifi-
cantly improved numerical results for some NLP solvers.

5  Optimization techniques

In this section, we present several optimization techniques that allow to solve the 
challenging problem presented and discussed in the last sections.

5.1  An instantaneous control approach

The discretizations described in Sect. 3 lead to finite-dimensional but typically very 
large NLPs or MPCCs. Since the solution of these problems is very hard in practice, 
in this section we develop an instantaneous control approach. Instantaneous con-
trol has been frequently used for challenging control problems; cf., e.g., Choi et al. 
(1993, 1999) for flow control, and in Altmüller et  al. (2010), Hinze (2002), Hun-
dhammer and Leugering (2001) for the control of linear wave equations, of wave 
equations in networks, or of vibrating string networks, respectively. An application 
to traffic flows can be found in Herty et al. (2007) as well as to mixed-integer nonlin-
ear gas transport networks models in Gugat et al. (2018), and for MPEC-type opti-
mal control problems in Antil et al. (2017).

The basic idea of instantaneous control is the following. Starting from the first time 
period of the discretization and with a given initial state, we only solve the control 

(30)

min (18)

s.t. Discretized Euler equation: (16),

Discretized thermal energy equation: (17) or (19) and (20),

Discretized mass balance equation: (7),

Discretized pressure continuity equations: (8),

Discretized thermal energy balance equation: (25),

Discretized temperature propagation equations: (29),

Discretized consumer constraints: (11),

Discretized depot constraints: (12),

Discretized bounds: (13)
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problem for this first time period of our discretized time horizon. We then apply the 
resulting control, move one time period forward in time, solve the control problem 
restricted to the second period, etc. In other words, we solve a series of quasi-stationary 
problems while moving forward in time.

This heuristic control approach can be used in two different ways. First, if success-
ful, i.e., if an overall feasible control is obtained, this resulting control can be applied 
directly in practice. However, this control typically will be far away from being optimal 
for the complete time horizon. Second, the resulting control can be used to initialize the 
full NLP (or MPCC) to obtain a feasible initial point, which usually helps significantly 
in solving the overall problem to (local) optimality.

Let us now formally describe the instantaneous control approach. To this end, we 
denote the fully discretized problem as 

where x = (x
i
)N
i=0

 and x
i
 contains all variables associated to the time point t

i
 . The 

super-indices E , I  stand for equality and inequality constraints. The constraints cE

i
 , 

c
I

i
 represent the constraints coupling the time points t

i−1
 and t

i
 and dE

i
 and dI

i
 couple 

all constraints that only depend on the single time point t
i
.

Restricted to the time period [t
i−1, t

i
] and for given x

i−1
= x̂

i−1
 , this problem can be 

formulated as 

With this problem at hand, the instantaneous control method can be described as in 
Algorithm 1. 

(31a)min
x

N
∑

i=1

fi(xi, xi−1)

(31b)s.t. c
E

i
(x

i
, x

i−1) = 0, i = 1,… , N,

(31c)c
I

i
(x

i
, x

i−1) ≥ 0, i = 1,… , N,

(31d)d
E

i
(x

i
) = 0, i = 1,… , N,

(31e)d
I

i
(x

i
) ≥ 0, i = 1,… , N,

(32a)min
xi

fi(xi, x̂i−1)

(32b)s.t. c
E

i
(x

i
, x̂

i−1) = 0, c
I

i
(x

i
, x̂

i−1) ≥ 0,

(32c)d
E

i
(x

i
) = 0, d

I

i
(x

i
) ≥ 0,
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Algorithm 1 Instantaneous Control Algorithm

Require: The original problem, a discretized time horizon {t0, . . . , tN}, a full
discretization of the problem, and initial conditions x0 = x̂0.

1: for i = 1, . . . , N do

2: Solve the problem (32) for time step i and variables xi−1 fixed to x̂i−1.

3: Denote the optimal solution by x̂i.

4: end for

Note that this approach is usually very fast in practice because the variables  x
i
 

in the NLP (32) can be reasonably initialized with the values  x̂
i−1

 . Note again that 
if Algorithm 1 is successful, i.e., if every problem in Line 2 is solved, the method 
results in an overall feasible control for the entire time horizon.

5.2  Penalty formulations

In this section, we consider the fully discretized version (31) of our problem. This 
problem is mainly governed by equality constraints from physics and has rather few 
controls. Thus, it contains only very few degrees of freedom, which renders the 
problem hard to solve in practice; see, e.g., (Schmidt et al. 2016), where the same 
phenomenon is discussed for the case of nonlinear gas network optimization models. 
One possible remedy in such situations is to consider the relaxed version 

Here, every equality constraint cE

i
 is equipped with a slack variable sE,c,+

i
 for the neg-

ative and a slack variable sE,c,−

i
 for the positive violation of the constraint. Obviously, 

inequality constraints only require slack variables for their negative violation and 
the constraints d are handled in the same way. The vector s in the objective func-
tion then denotes the vector of all slack variables used in the constraints and the 
matrix  W is a diagonal matrix with positive diagonal entries representing scaling 
factors for the respective slack variables. Obviously, a solution with s = 0 is also a 
solution of the original problem.

(33a)min
x,s≥0

N�

i=1

fi(xi, xi−1) + ‖Ws‖

(33b)s.t. c
E

i
(x

i
, x

i−1) + s
E,c,+

i
− s

E,c,−

i
= 0, i = 1,… , N,

(33c)c
I

i
(x

i
, x

i−1) + s
I,c,+

i
≥ 0, i = 1,… , N,

(33d)d
E

i
(x

i
) + s

E,d,+

i
− s

E,d,−

i
= 0, i = 1,… , N,

(33e)d
I

i
(x

i
) + s

I,d,+

i
≥ 0, i = 1,… , N.
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We also combine the penalty formulation with the instantaneous control approach 
described in the last section. In practice, it may happen that a sub-problem in the for-loop 
of Algorithm 1 cannot be solved to a feasible point. Thus, we also introduce a correspond-
ing penalty formulation in every iteration of the instantaneous control algorithm. If, in an 
iteration, the slack variables are too large, then we consider the constraint violations of 
the infeasible point (for the original problem) and increase the respective weights in W 
in order to penalize the violation of the most violated constraints even stronger. Then, the 
sub-problem is solved again and the process is repeated until the sub-problem is solved to 
feasibility (or a maximum number of re-iterations is reached). Finally note that it is often 
preferable in practice to not equip all constraints with slack variables but only a subset of 
constraints, e.g., all nonlinear constraints. See Joormann et al. (2015) for a detailed discus-
sion of relaxed penalty models in the related field of gas network optimization.

5.3  A preprocessing technique for fixing flow directions

Due to their complementarity structure, the temperature mixing equations of the 
MPCC-based mixing model as well as of the NLP-based mixing model usually 
lead to difficulties in the solution process. To avoid these difficulties, we first iden-
tify nodes with incident arcs on which the flow direction is known, which helps to 
reduce the hardness of the model. In addition to simplifying the mixing equations, 
one can also smoothen the friction term

in the momentum Eq. (6) if the sign of the velocity v
a
 is known a priori. This leads 

to a simple but powerful preprocessing strategy to identify arcs with fixed flow 
direction in Algorithm 2. The idea behind Algorithm 2 is to return the depot arc, all 
consumer arcs, and all arcs that are not contained in a cycle. Some arcs in cycles can 
also have a fixed flow direction as well. To detect such arcs, other algorithms would 
be needed, which we do not discuss. 

Algorithm 2 Flow Direction Presolve

Require: The graph G = (V,A) of the district heating network.
Ensure: Sets Apos and Aneg only containing arcs with fixed positive flow direction

or fixed negative flow direction, respectively.

1: Set Apos := Ac ∪ {ad} and Aneg := ∅.

2: Consider the undirected graph Ĝ = (V,A \ A pos).

3: Find all 2-edge-connected components of Ĝ.

4: Contract every 2-edge-connected component in Ĝ to a single node, yielding a

forest, because the bridge arcs are the only arcs that remain in Ĝ, so that all

flow directions in Ĝ are known.

5: Assign all arcs in Ĝ to the sets Apos or Aneg using depth-first search starting

in u and v for ad = (u, v).
6: return Apos and Aneg .

�
a

|v
a
|v

a
�

a

2D
a

(x, t)
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Given the result of Algorithm  2, the velocity v
a
 and mass flow  q

a
 of arcs  a 

in A
pos

 or A
neg

 can be bounded by zero from below or above, respectively.

Additionally, all friction terms in the momentum equations can be reformulated as

where, for better readability, we have omitted the dependence on x and t. In this way, 
the friction terms are smoothed for all arcs a ∈ A

pos
∪ A

neg
.

Consider now the MPCC-based mixing model. For arcs a ∈ A
pos

 , one can fix 
the variable for the negative part of the mass as �

a
 to 0 and for arcs a ∈ A

neg
 , one 

can fix the variable for positive part of the mass flow �
a
 to 0. The MPCC-based 

mixing Eq. (22a) then turns into

and (22b) and (22c) can be simplified to

This means that for a ∈ A
pos

 , Eq.  (22c) is not needed any more and for a ∈ A
neg

 , 
Eq. (22b) can be removed. Thus, every MPCC-mixing equation that contains an arc 
in A

pos
 or A

neg
 either gets simplified or is dropped. Moreover, the number of nonlin-

earities is reduced as well.
Similarly, for the NLP-based mixing model, we can simplify the temperature 

propagation Eq. (29) as

va ≥ 0, qa ≥ 0, a ∈ Apos,

va ≤ 0, qa ≤ 0, a ∈ Aneg.

�
a

|v
a
|v

a
�

a

2D
a

= 0, a ∈

(
Aff ∪ Abf

)
⧵
(
Apos ∪ Aneg

)
,

�
a

v
2
a
�

a

2D
a

= 0, a ∈

(
Aff ∪ Abf

)
∩ Apos,

−�
a

v
2
a
�

a

2D
a

= 0, a ∈

(
Aff ∪ Abf

)
∩ Apos,

T
u
(t) =

∑

a∈�in(u)⧵Aneg
�

a
(t)T

a∶u
(t) +

∑

a∈�out(u)⧵Apos
�

a
(t)T

a∶u
(t)

∑

a∈�in(u)⧵Aneg
�

a
(t) +

∑

a∈�out(u)⧵Apos
�

a
(t)

, t ∈ T,

0 = �
a
(t)(T

a∶u
(t) − T

u
(t)), a ∈ �out(u) ⧵

(

Apos ∪ Aneg

)

, t ∈ T,

0 = T
a∶u

(t) − T
u
(t), a ∈ �out(u) ∩ Apos, t ∈ T,

0 = �
a
(t)(T

a∶u
(t) − T

u
(t)), a ∈ �in(u) ⧵

(

Apos ∪ Aneg

)

, t ∈ T,

0 = T
a∶u

(t) − T
u
(t), a ∈ �in(u) ∩ Aneg, t ∈ T.



808 R. Krug et al.

1 3

Again, all equations in (29) that are defined on arcs in A
pos

 or A
neg

 either get simpli-
fied or dropped. The thermal energy balance Eq. (25) remains unchanged.

5.4  Initial conditions

Unfortunately, the exact state of a district heating network is usually not known 
in practice. However, our model requires reasonable initial conditions at t = 0 . To 
obtain such conditions, we compute a stationary solution of the network for the 
first time step. The stationary model we use is the same as our standard model 
at t = 0 , except that all time derivatives are zero. In this case, the Euler momen-
tum Eq. (6) becomes

and the thermal energy Eq. (5) becomes

All algebraic equations stay the same but are only considered at t = 0 . The solution 
of this stationary model is then used to identify the initial conditions.

Note that the proposed method to generate reasonable initial conditions via solving 
a stationary variant of the model can be replaced by any other initialization, if required. 
For instance, if the state of the network is known, e.g., via measurements or proper state 
estimations, this state can be used directly instead of the one computed here.

6  Numerical results

In this section, we present and discuss numerical results for the models and tech-
niques introduced in the previous sections. The models have been formulated using 
GAMS  25.1.2 (McCarl 2009). The resulting instances are solved using the solv-
ers Ipopt  3.12 (Wächter and Biegler 2006), KNITRO  10.3.0 (Byrd et  al. 2006), 

v
a
(t)ΔT

a,u(t) ≤ 0, u ∈ V , a ∈ �
out(u) ⧵

(

Apos ∪ Aneg

)

,

ΔT
a,u(t) ≥ T

a∶u
(t) − T

u
(t), u ∈ V , a ∈ �

out(u) ⧵
(

Apos ∪ Aneg

)

,

ΔT
a,u(t) ≥ T

u
(t) − T

a∶u
(t), u ∈ V , a ∈ �

out(u) ⧵
(

Apos ∪ Aneg

)

,

T
a∶u

(t) − T
u
(t) = 0, u ∈ V , a ∈ �

out(u) ∩ Apos,

v
a
(t)ΔT

a,u(t) ≥ 0, u ∈ V , a ∈ �
in(u) ⧵

(

Apos ∪ Aneg

)

,

ΔT
a,u(t) ≥ T

a∶u
(t) − T

u
(t), u ∈ V , a ∈ �

in(u) ⧵
(

Apos ∪ Aneg

)

,

ΔT
a,u(t) ≥ T

u
(t) − T

a∶u
(t), u ∈ V , a ∈ �

in(u) ⧵
(

Apos ∪ Aneg

)

,

T
a∶u

(t) − T
u
(t) = 0, u ∈ V , a ∈ �

in(u) ∩ Aneg.

pa(La, 0) − pa(0, 0)

La

= −g�h�

a
− �a

|va|va�

2Da

(0), a ∈ Aff ∪ Abf,

v
a
(0)

�T
a

�x
(x, 0) +

4U
a

cp�a
(x, 0)D

a

(T
a
(x, 0) − T0) = 0, a ∈ Aff ∪ Abf.
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CONOPT4 4.06 (Drud 1994, 1995, 1996), and SNOPT 7.2-12.1 (Gill et al. 2005). 
We apply our technique to two different realistic district heating networks; the so-
called AROMA network given in Fig. 4 and the so-called STREET network given in 
Fig. 5.

Fig. 4  The forward-flow part of the AROMA network

Fig. 5  The forward-flow part of the STREET network
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The AROMA network consists of 18 nodes, 24 arcs (1 depot, 5 consumers, and 
18 pipes), and one cycle each in the forward-flow and the backward-flow network. 
Its total pipe length is 7262.4 m . All parameters describing the AROMA  network 
are given in Tables 2, 3, 4. The STREET network is a part of a real-world district 
heating network with 162 nodes, 195 arcs (1 depot, 32 consumers, and 162 pipes), 
and has a total pipe length of 7627.106 m . Both networks contain a cycle. Thus, not 
all flow directions are known in advance. The preprocessing technique described in 
Sect. 5.3 can fix the flow directions for 6 out of the 18 pipes of the AROMA network 
and for 150 out of the 162 pipes for the STREET network. The larger number of 
fixations for the STREET network follows from the fact that it only contains a small 
cycle whereas the major part of the network is tree-shaped. Let us also note that we 
used the �

1
 norm throughout this section for the penalty terms in (33).

Table 2  Parameters of the pipes 
in the AROMA network

The pipes of the backward-flow part (bottom) are identical to the 
ones of the forward-flow part (top) but point in the opposite direction

Pipe a = (u, v) L
a
 (m) D

a
 (mm) U

a
 (W m

−2
K

−1) k
a
 (mm)

(F0, F1) 500.0 107 0.5 0.047

(F1, F2) 282.8 107 0.5 0.047

(F2, F3) 500.0 83 0.5 0.047

(F3, F4) 282.8 83 0.5 0.047

(F4, F5) 400.0 70 0.5 0.047

(F4, F7) 282.8 83 0.5 0.047

(F1, F6) 282.8 107 0.5 0.047

(F6, F7) 500.0 83 0.5 0.047

(F7, F8) 600.0 70 0.5 0.047

(R1, R0) 500.0 107 0.5 0.047

(R2, R1) 282.8 107 0.5 0.047

(R3, R2) 500.0 83 0.5 0.047

(R4, R3) 282.8 83 0.5 0.047

(R5, R4) 400.0 70 0.5 0.047

(R7, R4) 282.8 83 0.5 0.047

(R6, R1) 282.8 107 0.5 0.047

(R7, R6) 500.0 83 0.5 0.047

(R8, R7) 600.0 70 0.5 0.047

Table 3  Fraction of the demand 
of every consumer regarding the 
total amount of demand given 
in Fig. 6

Consumer a = (u, v) Consumer weight

(F2, R2) 0.11

(F3, R3) 0.34

(F5, R5) 0.08

(F6, R6) 0.38

(F8, R8) 0.08
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The remainder of this section is split up into two parts. In Sect.  6.1, we com-
pare different variants of our model (namely the MPCC- and the NLP-based mixing 
model as well as the two different discretization schemes for the PDEs) and different 
NLP solvers. In Sect. 6.2 we then discuss properties of optimized heat and flow con-
trols at the depot for the AROMA and the STREET network.

6.1  Comparison of model variants and NLP solvers

We now compare the performance of different NLP solvers applied to the two differ-
ent spatial discretization schemes (the implicit Euler and the scheme based on cen-
tral differences) as well as the two mixing models (the MPCC- and the NLP-based 
model). To this end, we consider the AROMA network with a time horizon of one 
day equipped with a time discretization using 30 minute intervals. The stepsize of 
the spatial discretization is 150 m.

The numerical results are given in Table 5.
The columns of the table contain the following information.

Mixing: The mixing model; MPCC-based (Sect. 4.1) or NLP-based (Sect. 4.2).
Discr.: The implicit Euler discretization (Sect. 3.1) or the discretization based on 
central differences (Sect. 3.2).
t (all): The overall solution time including the initial value computation using 
the instantaneous control approach (Sect. 5.1). All running times in the table are 
given in seconds.
t (NLP): The time to solve the NLP on the entire time horizon, which is initial-
ized with the solution of the instantaneous control approach.
t (IC): The time required to apply the instantaneous control approach.
#IC: The total number of instantaneous control steps including re-iterations 
applied if the scaled max-norm of all slack values exceeds the tolerance of 10

−2.

Table 4  Pressure and 
temperature bounds (above) and 
other parameters (below) of the 
AROMA network

Parameter Value

p
−

u
1 × 105 Pa (1 bar)

p
+

u
5 × 106 Pa (50 bar)

T
−

u
278.15 K (5◦C)

T
+

u
403.15 K (130◦C)

T
ff

a
348.15 K (75◦C)

T
bf 333.15 K (60◦C)

T
0

278.15 K (5◦C)

p
s

5 × 105 Pa (5 bar)

�
P 5.5 × 10−4 W h

−1

�
T 5 K s−1

�
w

0 €/W

�
g 1 × 10

−8€/W

�
p 2.5 × 10−8€/W



812 R. Krug et al.

1 3

Ta
b

le
 5

 
 N

um
er

ic
al

 r
es

ul
ts

 f
or

 a
ll

 c
om

bi
na

ti
on

 o
f 

m
od

el
 v

ar
ia

nt
s 

an
d 

N
L

P
 s

ol
ve

rs
 f

or
 th

e 
A
R
O
M
A

 n
et

w
or

k 
w

it
h 
Δ

t
=

1
8
0
0

s
 a

nd
 Δ

x
a
=

1
5
0

m

M
ix

in
g

D
is

rc
.

t (
al

l)
t (

N
L

P
)

t (
IC

)
#I

C
M

ea
n

M
ed

ia
n

M
in

.
M

ax
.

t (
st

at
)

#s
ta

t
O

bj
.

C
os

t

C
O
N
O
P
T
4

 

M
P

C
C

C
en

tr
. d

iff
.

82
.5

93
80

.7
31

1.
86

2
60

0.
03

1
0.

03
0

0.
02

8
0.

04
2

0.
29

5
4

97
.8

63
28

.3
18

M
P

C
C

Im
pl

. E
ul

er
16

.1
52

13
.7

42
2.

41
0

78
0.

03
1

0.
03

0
0.

02
7

0.
04

6
0.

20
0

3
27

5.
10

1
57

.2
91

N
L

P
C

en
tr

. d
iff

.
16

.7
32

14
.9

10
1.

82
2

60
0.

03
0

0.
03

0
0.

02
8

0.
04

3
0.

21
8

2
11

9.
03

6
26

.4
16

N
L

P
Im

pl
. E

ul
er

18
.8

28
16

.6
34

2.
19

4
72

0.
03

0
0.

02
9

0.
02

8
0.

04
1

0.
13

1
1

10
0.

81
2

27
.6

47

Ip
o
p
t 

M
P

C
C

C
en

tr
. d

iff
.

27
2.

99
3

26
1.

89
0

11
.1

03
56

0.
19

8
0.

16
6

0.
10

1
0.

95
4

2.
72

1
2

65
.4

05
23

.2
03

M
P

C
C

Im
pl

. E
ul

er
44

7.
74

6
43

1.
98

5
15

.7
61

79
0.

20
0

0.
14

8
0.

11
0

1.
13

5
2.

84
2

2
91

.0
31

49
.3

29

N
L

P
C

en
tr

. d
iff

.
32

6.
37

5
31

9.
46

8
6.

90
7

51
0.

13
5

0.
12

6
0.

08
7

0.
25

0
0.

26
2

1
62

.0
12

47
.1

53

N
L

P
Im

pl
. E

ul
er

24
2.

34
9

68
.5

33
17

3.
81

6
98

1.
77

4
0.

22
9

0.
11

6
62

.8
34

0.
31

3
1

19
8.

39
3

53
.8

42

K
N
IT
R
O

 

M
P

C
C

C
en

tr
. d

iff
.

93
3.

06
3

90
0.

25
4

32
.8

09
74

0.
44

3
0.

10
4

0.
04

6
22

.2
93

0.
14

2
1

42
.0

13
21

.0
18

M
P

C
C

Im
pl

. E
ul

er
92

5.
19

1
90

0.
28

9
24

.9
02

83
0.

30
0

0.
14

7
0.

07
2

6.
03

2
1.

52
7

1
—

18
.1

70

N
L

P
C

en
tr

. d
iff

.
61

.1
15

57
.6

36
3.

47
9

50
0.

07
0

0.
06

8
0.

04
4

0.
10

9
0.

05
6

1
44

.5
70

43
.9

87

N
L

P
Im

pl
. E

ul
er

38
.0

68
32

.1
02

5.
96

6
71

0.
08

4
0.

06
9

0.
04

8
0.

43
0

0.
18

7
1

—
57

.0
43

S
N
O
P
T

 

M
P

C
C

C
en

tr
. d

iff
.

25
.1

46
23

.6
21

1.
52

5
48

0.
03

2
0.

03
0

0.
02

6
0.

07
1

0.
11

6
2

51
.5

92
46

.9
23

M
P

C
C

Im
pl

. E
ul

er
24

.6
39

20
.8

52
3.

78
7

11
4

0.
03

3
0.

03
2

0.
02

5
0.

05
3

0.
13

8
2

19
5.

36
0

54
.7

98

N
L

P
C

en
tr

. d
iff

.
44

.6
61

42
.0

24
2.

63
7

71
0.

03
7

0.
03

5
0.

02
8

0.
06

0
0.

06
2

1
18

2.
36

3
55

.1
40

N
L

P
Im

pl
. E

ul
er

45
.7

69
43

.9
14

1.
85

5
53

0.
03

5
0.

03
3

0.
02

8
0.

07
2

0.
06

7
1

—
50

.3
11



813

1 3

Nonlinear optimization of district heating networks  

Mean, Median, Min. Max.: The mean, median, minimum, and maximum time of 
all (re-)iterations of the instantaneous control approach.
t (stat): The time required to compute the stationary solution that is used as an 
initial physical state (Sect. 5.4).
#stat: The required number of re-iterations for computing the stationary solution.
Obj.: The objective function value of the problem, which is the sum of the control 
costs and the scaled penalty terms. Here, “—” means that the final value of the 
max-norm of all scaled slack values exceeds the tolerance of 10

−2.
Cost: The control costs part of the objective function value; see (18).

If we first consider the overall time required to solve the problem (“t (all)”), we see 
that the results are highly heterogeneous w.r.t. the chosen NLP solver. The fastest 
approach (16.732s) is obtained by CONOPT4  applied to the MPCC-based mix-
ing model and the implicit Euler discretization. In contrast, KNITRO  applied to 
the MPCC-based mixing model and the discretization scheme based on central dif-
ferences takes 933.063s, which corresponds to a factor larger then 55. Since every 
solver gets exactly the same models to be solved, this strongly indicates the hardness 
of the district heating network optimization problems.

It also strongly depends on the chosen solver whether the MPCC- or the NLP-
based mixing model is used. For instance, KNITRO  performs very poor on the 
MPCC-based model and significantly benefits from the NLP-based reformulation. 
On the other hand, for SNOPT it is exactly the other way around (although the dif-
ference in solution times is not as drastic as for KNITRO). The choice of the dis-
cretization scheme for the PDEs does not influence the solution times significantly. 
However, it may influence how the solvers are able to reduce the penalty terms in 
the objective function; see, e.g., KNITRO, which is not able to reduce the penalty 
terms so that the max-norm of all scaled slack values is below 10

−2 if the implicit 
Euler scheme is used. A comparable behavior can also be seen in the instantaneous 
control approach: All solvers require more re-iterations to reduce the penalty terms 
for the implicit Euler discretization. The only exception is SNOPT  applied to the 
NLP-based mixing model.

As expected, the instantaneous control approach is solved very fast for all solv-
ers. The single iterations are all solved in less then a second on average. The only 
exception is Ipopt applied to the NLP-based mixing model and the implicit Euler 
discretization, where some convergence issues occur within the instantaneous 
control approach. The running times required to compute the stationary solution 
that we use as the initial physical state are in the same orders of magnitude as a 
single instantaneous control approach iteration but slightly longer, since no good 
initial point can be used by the NLP solvers.

Finally, let us also discuss the (local) optimal solutions obtained by the differ-
ent NLP solvers applied to the different model variants. The objective function 
of the overall NLP consists of two parts: the original control costs and the scaled 
penalty terms. Scaling the penalty terms is always an issue in practical physical 
applications for which different penalty terms have different physical units. Obvi-
ously, the applicability of the obtained depot control strongly depends on the size 
of the penalty part of the objective, since large slack values correspond to violated 
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physical or technical constraints. The table shows that different solvers find very 
different local optima of the problem. For instance, CONOPT4  is a rather fast 
solver but the obtained local optima also contain large slack values. Contrarily, 
KNITRO applied to the discretization based on central differences computes local 
optima with almost vanishing slack values. Compromising between the difference 

Fig. 6  Aggregated power consumption (dashed curve), power generated by waste incineration at the 
depot (solid curve), and pressure increase at the depot (dotted curve) for the AROMA network without 
(top) and with (bottom) waste incineration bound
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of the values in the last two columns (which is the size of the scaled penalty 
terms in the objective) and the solution times, KNITRO applied to the discretiza-
tion based on central differences and the NLP-based mixing model seems to be 
the best combination of model variant and NLP solver.

6.2  Optimized depot controls

We now present some exemplary optimal depot controls. In Fig. 6 (top), the control 
profile is given for the AROMA network and the “winner setting” discussed in the 
last section. For the given profiles, we first assume that the amount of power gen-
erated by waste incineration is unbounded. This leads to a control (solid line) that 
mainly follows the aggregated consumption of the households (dashed line). Due to 
the heat losses in the transport network, the generated power at the depot is slightly 
larger than the aggregated consumption. Since pressure losses are small in the net-
work, the pressure increase at the depot is almost negligible. The power control 
qualitatively changes if power generated by waste incineration is bounded; see the 
dashed-dotted line in Fig. 6 (bottom). Since aggregated power consumption is above 
this bound in some morning and evening hours, the optimized power control antici-
pates this and pre-heats the network in the hours before. This is obviously required 
because again simply following the aggregated consumption curve would result in 
hours where the power consumption would need to be curtailed. The same effect 
can be observed for the optimized depot control for the STREET network in Fig. 7. 
For the STREET network, our preliminary numerical experiments revealed that the 

Fig. 7  Aggregated power consumption (dashed curve), power generated by waste incineration at the 
depot (solid curve), and pressure increase at the depot (dotted curve) for the STREET  network with 
waste incineration bound (dashed-dotted line)
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NLP solver Ipopt applied to the NLP-based mixing model, the discretization scheme 
based on central differences as well as Δt = 1800 s and Δx

a
= 100 m delivers the 

best results; cf. also the respective discussion for the AROMA network in Sect. 6.1.
We now discuss the interplay between mass flow and water temperature on the 

example of the STREET  network. Considering the power constraints of the con-
sumers and the depot (11b) and (12d), we see that power consumption is mainly 
satisfied by the product of mass flow and temperature differences. Thus, to satisfy 
demand we can either increase the mass flow or the outlet temperature of the depot. 
These two values are shown in Fig. 8 for the entire time horizon. It can be seen that 
power consumption during night is mainly covered by high outlet temperatures at 
the depot. Here, this temperature is at its upper bound (403.15 K), which is obtained 
by waste incineration at the depot. Around 4 AM it is anticipated that in the morning 
hours high outlet temperatures will not be enough either due to the upper bound of 
the temperature or the upper bound on waste incineration. Thus, mass flows need to 
be increased, which then leads to outlet temperatures that can be decreased. During 
the remainder of the day it can be seen that mass flows and temperatures change in 
an opposed way—decreasing outlet temperatures require increased mass flows and 
vice versa.

Let us finally remark that the optimal control of the network is not unique due 
to the described interplay of mass flow and water temperature at the consumers. 
Throughout our numerical experiments we observed that larger mass flows can be 
replaced with larger temperature differences to satisfy demand and vice versa. How-
ever, for a fixed control at the depot, the remaining physical solution is unique.

Fig. 8  Outlet temperature and mass flow at the depot arc for the STREET network
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7  Conclusion

In this paper, we presented an accurate dynamic optimization model for the control 
of district heating networks. The model is mainly governed by the nonlinear partial 
differential equations for water and heat flow as well as by nodal mixing models 
for tracking different water temperatures in the network. This results in a PDE-con-
strained MPCC or NLP model, depending on the chosen option for the genuinely 
nonsmooth mixing models. After applying suitable discretizations for the PDEs, we 
obtain a finite-dimensional but large and highly nonlinear MPCC or NLP, for which 
we develop different optimization techniques that then allow us to solve realistic 
instances. The applicability of the discussed models and techniques is illustrated by 
a numerical case study on different networks.

The literature on mathematical optimization for district heating networks is not as 
mature as for other utility networks like gas or water networks. Thus, many research 
topics remain to be addressed. In our future work, we plan to consider adaptive tech-
niques as in Mehrmann et  al. (2018) that are based on model hierarchies for the 
physics model. Here, port-Hamiltonian modeling frameworks seem to be favorable. 
A first step in this direction is already done in Hauschild et al. (2020). In terms of 
the application, we think that the most urgent research topics are to develop math-
ematical optimization techniques for dealing with uncertainties (especially w.r.t. the 
consumption of the households) as well as the coupling of district heating networks 
with power networks.
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