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Nonlinear optomechanical measurement
of mechanical motion
G.A. Brawley1,*, M.R. Vanner1,2,*, P.E. Larsen3, S. Schmid3, A. Boisen3 & W.P. Bowen1

Precision measurement of nonlinear observables is an important goal in all facets of quantum

optics. This allows measurement-based non-classical state preparation, which has been

applied to great success in various physical systems, and provides a route for quantum

information processing with otherwise linear interactions. In cavity optomechanics much

progress has been made using linear interactions and measurement, but observation of

nonlinear mechanical degrees-of-freedom remains outstanding. Here we report the

observation of displacement-squared thermal motion of a micro-mechanical resonator by

exploiting the intrinsic nonlinearity of the radiation-pressure interaction. Using this

measurement we generate bimodal mechanical states of motion with separations and feature

sizes well below 100 pm. Future improvements to this approach will allow the preparation of

quantum superposition states, which can be used to experimentally explore collapse models

of the wavefunction and the potential for mechanical-resonator-based quantum information

and metrology applications.
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A
key tool in quantum optics is the use of measurement to

conditionally prepare quantum states. This technique,
often simply referred to as ‘conditioning’, has been

applied to generate non-Gaussian quantum states for confined
microwave fields1, travelling optical fields2,3 and superconducting
systems4. In addition, quantum measurements are of vital
importance to many quantum computation protocols5. In
cavity optomechanics, light circulating inside an optical
resonator is used to manipulate and measure the motion of a
mechanical element via the radiation-pressure interaction6. After
an optomechanical interaction performing a measurement on the
light can then be used to conditionally prepare mechanical states
of motion. This form of state preparation can be understood as a
combination of Bayesian inference, that is, updating our
knowledge of the system, and back-action (see Supplementary
Note 1 for an introduction). Subsequent measurements following
the conditioning step can be used to characterize the state
prepared. Such mechanical conditioning has been performed with
measurements of the mechanical position7–9, however, thus far,
conditioning has not been performed with a measurement of a
nonlinear mechanical degree of freedom. One exciting prospect is
to dispersively couple the optical field to the mechanical position
squared10, which could enable the detection of phonon number
jumps10,11 and thus demonstrate mechanical energy quantization.
Here we implement an alternative approach that instead utilises
the optical nonlinearity of the radiation-pressure coupling, as was
proposed in ref. 12. Such a position-squared measurement can
ultimately be used to prepare a mechanical superposition state13

as the measurement does not reveal the sign of the mechanical
position. Studying the dynamics of superposition states can be
used to test models of decoherence beyond standard quantum
mechanics12,14–19 and for the development of mechanical
quantum sensors.

For the optomechanical system of interest in this work, the
intracavity Hamiltonian in a frame rotating at the optical carrier
frequency is H/:¼oMbwbþ g0awa(bþ bw) where a(b) is the
optical (mechanical) annihilation operator, oM is the mechanical
angular frequency and g0 is the zero-point optomechanical
coupling rate. Quite generally, optomechanics experiments to-
date have focused on dynamics describable by a linearized model
of the radiation-pressure interaction6, where the photon number
operator is approximated by aya ’ N þ

ffiffiffiffi
N
p
ðay þ aÞ and N

is the mean intracavity photon number. In this approximation,
mechanical displacements give rise to displacements of the optical
phase quadrature leaving the optical amplitude quadrature
unchanged. Fundamentally, however, the radiation-pressure
interaction is nonlinear12,20, and generates mechanical position-
dependent rotations of the intracavity optical field. For small
changes in the mechanical position, the optical phase quadrature
changes linearly in proportion to the mechanical displacement,
and the optical amplitude quadrature reduces in proportion
to the mechanical displacement squared. By choosing
which optical quadrature to observe with homodyne detection,
one may selectively measure the mechanical displacement or
displacement-squared12. Since a displacement-squared measure-
ment does not distinguish between positive and negative
displacement, mechanical superposition states may be prepared
by measurement13. A necessary requirement for the optical
interaction to effect a direct measurement of the displacement-
squared is that the mechanical motion is negligible during the
intracavity photon lifetime, that is, operation in the bad-cavity
regime (k� oM, where k is the optical amplitude decay rate of
the cavity). This should be contrasted to other approaches
operating in the resolved sideband regime k� oMð Þ, where
cavity-averaged displacement-squared interactions have been
predicted to allow the observation of the mechanical phonon-

number10,11. In this work we observe optomechanical dynamics
arising from the nonlinearity of the radiation-pressure interaction
and, utilizing this nonlinearity, perform non-Gaussian state
generation by measurement of displacement-squared
mechanical motion.

In the bad-cavity regime, the intracavity field can be
approximated as a ’

ffiffiffiffi
N
p

= 1þ ilXMð Þþ x, where l¼
ffiffiffi
2
p

g0=k
quantifies the optomechanical interaction strength, x is the
intracavity noise term and XM¼ðbþ byÞ=

ffiffiffi
2
p

is the mechanical
displacement in units of the mechanical quantum noise
(Supplementary Note 2). Taylor expanding the intracavity field,
the time-dependent optical output quadratures are then

Xout
L ¼ Xin

L � 2
ffiffiffiffiffiffiffi
kN
p

1� l2X2
Mþ . . .

� �
; ð1Þ

Pout
L ¼ Pin

L � 2
ffiffiffiffiffiffiffi
kN
p

� lXMþ l3X3
M� . . .

� �
; ð2Þ

where XL¼ðaþ ayÞ=
ffiffiffi
2
p

, and PL¼iðay � aÞ=
ffiffiffi
2
p

. Conventionally,
experimental optomechanics have focused on the leading, linear
term in the expansion of the phase quadrature. In this linearized
picture, only a single spectral peak at the mechanical resonance
frequency is expected. Higher-order terms in mechanical
displacement, however, give rise to spectral peaks at the respective
multiples of the mechanical resonance frequency which are only
described by the full nonlinear optomechanical Hamiltonian.
Precision measurement of these higher-order terms enables the
conditional preparation of non-Gaussian states which, in a
quantum regime, produces highly non-classical states21.

Here we use the intrinsic nonlinearity of the radiation-pressure
interaction to effect a displacement-squared measurement of the
motion of a mechanical oscillator. We use this measurement to
conditionally prepare classical bimodal states of mechanical
motion from an initial room-temperature thermal state. Further
we theoretically show that this continuous measurement
approach, with the introduction of feed-back, may be extended
to a quantum regime, allowing preparation of macroscopic
quantum superposition states of mechanical motion.

Results
Optomechanical system. A schematic of our nonlinear opto-
mechanics experiment is shown in Fig. 1. We use a near-field
cavity optomechanical set-up22, where a mechanical SiN
nanostring oscillator23 is placed in close proximity to a 60-mm
diameter optical microsphere resonator and interacts with the
optical cavity field via the optical evanescent field (Fig. 1c). The
nanostring has dimensions 1,000� 10� 0.054 mm
(length�width� thickness) and a fundamental mechanical
resonance frequency of oM/2p¼ 100.2 kHz. From the known
dimensions and density we estimate an effective mass of
m¼ 0.86 ng. A continuous-wave fibre laser, operating at
1,559 nm, is locked on resonance with a whispering-gallery
mode of the microsphere. We measure an optical amplitude
decay rate of k/2p¼ 25.6 MHz and a mechanical linewidth of
g/2p¼ 0.7 Hz. An evanescent optomechanical coupling of
7.6 MHz/nm was determined (Methods section), corresponding
to a coupling rate of g0/2p¼ 75 Hz. We use B2mW of optical
drive power resulting in an intracavity photon number
N¼ 2.4� 104. A fibre-based Mach–Zehnder interferometer is
used to perform homodyne detection and thereby selectively
measure a quadrature of the optical output field.

Figure 2a,b show the observed homodyne noise power spectra
for both optical phase and amplitude quadratures at the
mechanical frequency and the second harmonic, respectively.
At oM (Fig. 2a) we observe a Lorentzian peak in the phase
quadrature from the thermal motion of the oscillator, which
corresponds to a root-mean-square (RMS) displacement of
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124 pm corresponding to a thermal occupation of �n ’ 108. The
thermal noise is resolved with 85 dB of signal relative to the
homodyne noise power when the signal is blocked, which
corresponds to an ideal displacement sensitivity of 1.3� 10� 15

m Hz� 1/2. In practice, the signal beam is not shot noise limited
due to cavity, acoustic and laser noise which raise the
measurement imprecision by roughly an order of magnitude.
By setting the interferometer phase to measure the optical
amplitude quadrature, the linear measurement of mechanical
motion is suppressed by B45 dB. At this quadrature, informa-
tion about the displacement-squared mechanical motion is
observed in a frequency band centred at 2oM (Fig. 2b). We
observe a Lorentzian peak with a linewidth of 1.5 Hz, which to
within the measurement uncertainty, is equal to twice the
linewidth at oM (Supplementary Note 3 and Supplementary
Fig. 1). The signal-to-noise at this frequency is 65 dB relative to
the homodyne noise, which corresponds to a calibrated ideal
displacement-squared sensitivity of 3.3� 10� 24 m2 Hz� 1/2.

Figure 2c shows the band power in the first and second
harmonics as a function of the interferometer phase. The powers
in each band are expected to follow sine and cosine squared
functions (fitted). The observed suppression of the linear
measurement allows an upper bound to be placed on the phase
instability of the cavity and interferometer locks of at most
5� 10� 3 rad. Figure 2d shows the observed relative noise powers
up to the fourth harmonic of the mechanical frequency. The
expected noise powers can be computed with the Isserlis–Wick
theorem (Supplementary Notes 3 and 11), which show excellent
agreement with experiment.
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Figure 1 | Concept and experimental apparatus. (a) The intrinsic optical

nonlinearity of an optomechanical interaction gives rise to rotations of the

optical field in phase-space that can be observed in both the phase (PL) and

amplitude (XL) quadratures. Conventionally this interaction is linearized in

the weak coupling regime, leading to optical phase quadrature

displacements only. Our optical set-up (b) can measure an arbitrary optical

quadrature of light from the optomechanical system using homodyne

interferometry and is capable of observing the higher-order terms in

displacement, described by equations (1 and 2). The optomechanical

system consists of a nanostring mechanical resonator evanescently coupled

to an optical microsphere resonator (c) (not shown to scale), which is

mounted in a high-vacuum chamber (o10� 6 mbar). The drive laser is

stabilised to the cavity resonance using the Pound Drever Hall technique.

Polarization control is not shown for clarity.
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Figure 2 | Observation of linear and quadratic motion of a mechanical oscillator. (a) Measurement of the optical phase quadrature (red trace) at the

mechanical frequency, oM, shows a Lorentzian mechanical displacement spectrum, which is strongly suppressed when measuring the optical amplitude

quadrature (blue trace). Sidebands appear in the amplitude quadrature measurement due to mix-up of low-frequency noise. (b) Measurement of the

optical amplitude quadrature at 2oM (blue trace), shows the Lorentzian mechanical displacement-squared noise, which is suppressed when measuring the

optical phase quadrature (red trace). Note the second flexural mode of the string, located within a few kHz of 2oM, is not transduced due to the positioning

of the microsphere. In a,b the optical shot noise is shown as a grey dashed line, using a measurement bandwidth of 20 Hz. (c) The optical noise power

measured over a 51-Hz bandwidth at oM (purple) and 2oM (yellow) as a function of the optical homodyne angle. (d) The relative observed powers in each

of the mechanical harmonics when measuring the optical phase (red) and amplitude quadratures (blue); bars, theory; dots, experimental data. Note the

error bars in the power measurements are smaller than the dot size.
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State preparation and read-out. Of primary interest in this work
is the lowest order nonlinear measurement term in the optical
amplitude quadrature, proportional to X2

M. To describe this
quantitatively we introduce the slowly varying quadratures of
motion, X and Y, defined via XM(t)¼X(t) cosoMtþY(t) sin oMt.
The mechanical displacement-squared signal can then be
written as:

X2
M ¼ 1

2 X2þY2ð Þþ 1
2 X2�Y2ð Þcos 2oMtð Þ

þ 1
2 XY þYXð Þsin 2oMtð Þ ð3Þ

where for later convenience, the displacement-squared
quadratures of motion are defined P¼ 1

2 X2�Y2ð Þ and
Q¼ 1

2 XY þYXð Þ. By inspection, it can be seen that the quadratic
measurement has spectral components both at DC and 2oM.
Higher-order terms in the expansion equations (1 and 2) can in
principle contribute to the signal at 2oM, however since
l2�n � 1, the quadratic term is the only term to contribute
substantial power at 2oM. Consequently, linear and quadratic
components of the measurement can be spectrally separated and
therefore, at an appropriate homodyne angle, measured
simultaneously.

To perform both state preparation and state reconstruction we
set a homodyne angle of p/4, which allows simultaneous high-
fidelity linear measurement (for state reconstruction) and
quadratic measurements (for state preparation). The photocur-
rent generated at the homodyne output is digitized into 4 second
blocks at a sample rate of 5� 106 s� 1, which are then filtered
numerically at oM and 2oM to obtain the respective quadratures
of motion in each frequency band as detailed in Supplementary
Note 4. For a large signal-to-noise ratio, the squares of each
quadrature of motion can be estimated from the measurements of
P and Q via the nonlinear transformations

X2 ’ ~X2
2o¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~P2þ ~Q2

p
þ ~P and Y2 ’ ~Y2

2o¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~P2þ ~Q2

p
� ~P,

where the tildes denote the (noise inclusive) measurement
outcomes of the respective quantity. These transformations allow
the recovery of a classical estimate of X2

M without knowledge of
the signal at DC. Figure 3a plots the ~X2

2o estimates thus obtained
from the 2oM signal against the cosine mechanical position
quadrature, ~X, obtained from the measurement at oM. A clear
quadratic relationship between the two measurements is
observed, validating the displacement-squared nature of the
2oM peak.

Conditioning based on the outcome of the quadratic measure-
ment can be used to prepare non-Gaussian states. In the most
basic approach, conditioning ~Q¼0 and ~P¼C, for some constant
C, will produce a bimodal state with a separation of 2

ffiffiffiffiffiffi
2C
p

.
However, to make more efficient use of the available data, we
additionally perform a mechanical phase rotation for each sample
in the measurement record. First, at each discrete sample we find
a rotation by a phase angle 2f such that the new rotated variable
~Q2f¼~Q cos 2fð Þ� ~P sin 2fð Þ is equal to zero. As a result,
in the frame rotated by the half angle, f, correlation
between the two mechanical quadratures ~X and ~Y is conditionally
eliminated. Second, we condition on a particular magnitude of
~P2f¼~P cos 2fð Þþ ~Q sin 2fð Þ (Methods section). This operation
localizes the phase-space distribution of the reconstructed state to
two small regions as shown in Fig. 3b, with a separation
dependent on the conditioning value. These states, although
classical, are evidently bimodal and non-Gaussian. Further details
of this protocol are contained in Supplementary Note 5 and
Supplementary Fig. 2. Extending this protocol to a regime where
the quadratic measurement rate dominates all decoherence
processes, a macroscopic quantum superposition state can be
generated. Indeed, as detailed later, a simulated state prepared in
this way is shown in Fig. 4b.

Comparison of effective coupling rates. At present, in opto- and
electro-mechanics, techniques towards measurement of nonlinear
observables of mechanical motion include coupling to two-level
systems24 and radiation-pressure interactions coupling to the
displacement-squared, such as the ‘membrane-in-the-middle’
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Figure 3 | Bimodal state preparation via nonlinear measurement. Using a

homodyne angle of p/4, a high-fidelity measurement of both linear and

quadratic motion of the mechanical oscillator at frequencies of oM and

2oM, respectively, is obtained. In a the quadratic measurement outcomes
~X2

2o

� �
obtained from the 2oM signal are plotted against the linear outcomes

~X
� �

obtained from the signal at oM. The histogram of ~X measurements

(above) is well described by a Gaussian thermal distribution with s.d.

sth¼ 124 pm, while the histogram of the ~X2
2o measurements (right) forms a

w2 distribution. Figures (b–d) show the phase-space distributions (and

associated histograms) of states conditionally prepared using data at 2oM

and obtained using a read-out at oM. The conditionally rotated read-out

data is decomposed into conjugate quadratures, labelled ~Xf and ~Yf. The

chosen quadratic conditioning values are (b) (2~P2f¼0.2), (c) (2~P2f¼0.8)

and (d) (2~P2f¼ 2.0). The same quadratic conditioning values are indicated

as overlay histograms in a. The histograms in b–d are normalized to their

peak value to more easily allow the width of the features to be compared

with the initial thermal state (orange dash–dot curve). The red curves

overlayed in the histograms in ~Xf are determined via numerical simulation,

with the signal-to-noise ratios for the linear and quadratic measurements as

fitting parameters.
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(MiM) approach10. In the latter approach, a mechanically
vibrating element is appropriately placed within an optical
standing wave in a cavity to give a displacement-squared
dispersive coupling of the form Hint/:¼m0awa(bþ bw)2, where
m0 is the zero-point quadratic coupling rate. This interaction,
when operating in the resolved sideband regime, in principle
allows for the observation of quantum jumps in the mechanical
phonon number. Experiments exhibiting this type of coupling
include dielectric membrane systems10,25,26, trapped cold
atoms27, trapped microspheres28 or double-disk structures29.
However it should be noted that in these systems, quadratic
coupling rates m0 are typically orders of magnitude smaller than
attainable linear coupling rates g0.

In contrast to a displacement-squared Hamiltonian coupling, the
scheme employed here gives an effective quadratic coupling rate of
g2

0=k (ref. 12), which should be compared with m0 defined above.
For the modest linear coupling achieved in the present work, we
have a g2

0 /2pk¼ 2.2� 10� 4 Hz. Crucially, since the coupling rate
in our scheme scales as g2

0 , substantial gains are possible by
improving g0. For instance, the coupling rate for a state-of-the-art
evanescently coupled nanostring-microcavity system as described
in ref. 30 is g2

0=2pk ’ 5�10� 2 Hz and for a state-of-
the-art electro-mechanical system31 is g2

0=2pk ’ 2�10� 1 Hz.
Furthermore, other optical systems with exceptional linear
coupling rates32 should have quadratic coupling rates using our
scheme as high as 160 Hz. In comparison, a state-of-the-art MiM
system as described in ref. 26 has a quadratic coupling rate of
m0/2p¼ 6.0� 10� 3 Hz. Thus a significantly larger effective
quadratic coupling is possible using our protocol. Noteably, the
quadratic measurement rate resulting from this fundamental

coupling may be boosted by a coherent optical drive, which
makes entering the quantum regime more feasible.

Requirements for non-classical behaviour. In all measurement-
based quantum state preparation schemes, the measurement rate
must dominate the sum of all decoherence process rates due to
coupling of the system to the environment. In MiM displace-
ment-squared coupling protocols, even in a zero-temperature
environment, this introduces the challenging requirement
of single-photon strong coupling (g0/k41)11. By contrast, our
scheme offers a route to relax this stringent criterion. In our
scheme, when state conditioning is performed with only the
quadratic motion component of the detected signal, decoherence
from the linearized radiation-pressure noise on the mechanics
precludes non-classical state generation outside of a single-
photon strong coupling regime, similar to MiM (Supplementary
Note 6). However, by including feed-back, this form of
decoherence can, in the limit of perfect detection efficiency, be
completely eliminated (Supplementary Note 7). This is because
the amplitude quadrature measurement records not only the X2

mechanical motion, but also the optical intracavity amplitude
fluctuations near the mechanical resonance frequency. Since these
fluctuations drive the linearized radiation pressure back-action on
the mechanics, suitable feed-back to the motion of the mechanical
oscillator can cancel this radiation-pressure noise. Additionally,
with this feed-back, the mechanical dynamics reduce to a similar
form as with the displacement-squared dispersive Hamiltonian
coupling. In the realistic case of imperfect detection efficiency Z,
the decoherence can be suppressed up to a factor of 1� Z. This
results in the coupling strength requirement g2

0=k
24 1� Zð Þ=2Z

to reach a quantum regime (see Supplementary Notes 7,9,10 and
Supplementary Figs 3–5 which quantify the effect of decoherence
arising from linear interactions). For example, with a detection
efficiency of Z¼ 0.98 the single-photon coupling rate need only
be one tenth of the strong coupling requirement. Additionally, the
quadratic measurement rate must dominate rethermalisation,
that is, 4ZNg4

0=k
34g �nþ 1=2ð Þ. Provided the coupling strength

criterion is satisfied, rethermalisation can be made insignificant
with only modest intracavity photon numbers in cryogenic
systems.

Based on these criteria, the quantum regime of our scheme can
be achieved with current atom-optomechanical systems. For
instance, quantum superposition states of motion could imme-
diately be implemented with the approach in ref. 33, provided the
detection efficiency exceeds 10%. Furthermore, solid-state
optomechanical devices have seen rapid gains in performance
over the past decade, with both optical and microwave systems
now operating within three orders of magnitude of the single-
photon strong coupling regime. For example, an effective
coupling rate of g0/k¼ 0.04 has recently been achieved in a
superconducting microwave optomechanical device34, and with
modest modifications, it is expected the system will approach the
strong coupling regime. When g0/k¼ 0.04, the generation of
quantum superposition states using our protocol requires
detection efficiency on the order of 99.7%. However, with a one
order of magnitude improvement in the coupling rate, the
required detection efficiency drops to 76%, such that in
combination with state of the art amplifiers35, non-classical
state generation using our protocol could be realised. A full list of
parameters is provided in Supplementary Table 1.

Technical limitations may also play a role in the implementa-
tion of our protocol in a quantum regime. For example,
fluctuations or offsets in the interferometer phase or cavity lock
will result in linear coupling to the environment, and therefore an
additional source of decoherence. Linear coupling can also be

a b

c d

+π−1

0

−π−1

Figure 4 | Open quantum system simulations. Figures (a,b) show the

conditional state evolution of the mechanical oscillator under continuous

measurement of the AC component of the X2 signal, as computed from a

master equation simulation. The initial state with �n¼1 is shown in a. As the

state evolves, negativity appears in the Wigner function. This is illustrated

in b at time t¼ 6.4� 2p/oM. This state may be compared with the

canonical cat-sate of cj i¼ 3=
ffiffiffi
2
p�� �
þ � 3=

ffiffiffi
2
p�� �� �

=
ffiffiffi
2
p

, shown in c. See

Supplementary Movie 1 for an animation of the Wigner function time

evolution at intermediate times. Figures (c,d) show the effect of phonon

number decoherence on an initial even cat state. Notably after tracing over

a strong phonon number measurement (d) negativity is still preserved in

the Wigner function. Further details of both the master equation simulation

and analysis of the decoherence processes are contained in the

Supplementary Information.
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introduced undesirably due to the presence of other mechanical
modes in the system, which mix via the optical nonlinearity with
the mode of interest. Indeed the sum beat between the two
mechanical modes in Fig. 2a is observed as the þ 4.3 kHz
peak in Fig. 2b. These additional linear decoherence channels are
expected to be negligible compared with the decoherence
due to linear radiation pressure back-action as detailed Supple-
mentary Note 8. The currently un-utilised DC component of the
homodyne signal constitutes an additional technical decoherence
channel. However, unlike the decoherence mechanisms
discussed above, this channel is nonlinear, carrying infor-
mation about phonon number rather than mechanical
position. This can be seen from the expansion of the quadratic
motion in terms of the creation and annihilation operators,
X2

M¼bybþ 1
2 þ 1

2 ðbbþ bybyÞ, and identifying the number opera-
tor n¼ bwb plus a constant as the DC part. As a result, loss of the
DC information generates phase diffusion on the mechanical
state. Somewhat strikingly, the non-classicality of states generated
by X2 measurement can in fact be quite robust against this form
of decoherence. In Supplementary Note 9, the effect of phonon-
number decoherence of an initial superposition state is analysed,
showing that Wigner function negativity is preserved even in the
presence of a complete loss of phonon number information to the
environment. This result is illustrated in Fig. 4c,d and in further
detail in Supplementary Fig. 6.

Quantum trajectory simulation. Finally, to elucidate the precise
effect of the combination of all identified decoherence processes
on the state conditioned via continuous quadratic measurement, a
master equation simulation of our system was performed. The
results for a particular trajectory are briefly summarized in the
Wigner functions presented in Fig. 4a,b. Shown in Fig. 4a is an
initial thermal state of the mechanical oscillator. After a period of
continuous measurement of the AC component of X2

M, and in the
presence of DC and thermal decoherence, this initially symmetric
Gaussian state evolves into a non-Gaussian bimodal quantum
state, exhibiting Wigner negativity near the origin, as shown in
Fig. 4b. See Supplementary Movie 1 for an animation of the
Wigner function time evolution. Notably, qualitatively similar
states have previously been shown to form in a different
system under continuous position-squared measurement and
conditioning13. The states prepared by our protocol exhibit many
of the properties of the canonical Schrödinger cat state of Fig. 4c
and are highly non-classical. As a result, even in the presence of
the identified decoherence mechanisms, we can conclude our
protocol can give rise to interesting non-classical states. We
would like to highlight that initialization of the mechanical
oscillator near its ground state is not required to generate
non-classical mechanical states. This insensitivity to initial
thermal occupation is because the continuous position-squared
measurement also serves to purify the state. Further details of our
simulation are found in Supplementary Note 10 and Supple-
mentary Figs 7 and 8.

Discussion
To summarize, by exploiting the nonlinearity inherent in the
radiation-pressure interaction, we report nonlinear measurement
of thermo-mechanical motion in an optomechanical system.
Utilising the measurement of displacement-squared motion, we
demonstrate the first measurement-based state preparation of
mechanical non-Gaussian states. Furthermore, we propose a
method using feed-back to extend this protocol to a quantum
regime without requiring single-photon strong coupling. Favour-
able scaling of the coupling rate in our approach makes realistic
the possibility of observing the displacement-squared fluctuations

at the level of the mechanical ground state in the near future.
With sufficiently high detection efficiency, this would allow for
mechanical quantum superposition state preparation. As a result,
this experiment paves the way for quantum non-Gaussian state
preparation of mechanical motion via measurement with
applicability to a number of other physical systems, such as cold
atoms33, atomic spin ensembles36, optomechanical systems32 and
superconducting microwave circuits31,34,37,38.

Methods
Linear calibration procedure. We determine the evanescent optomechanical
coupling by displacing the nanostring by a known distance using a piezoelectric
element and measuring the resulting frequency shift on the optical resonance. The
frequency shift is calibrated via modulation of known frequency applied to the
laser. We then establish the response of the homodyne by sweeping the laser
detuning over the optical resonance and measuring the slope of the phase response.
This parameter combined with the previously determined optomechanical
coupling rate gives the total response of the combined cavity interferometer system
(V nm� 1), allowing direct calibration of the time domain data (nm). We calibrate
the response of our spectrum analyser by applying a test tone of known amplitude,
which using the time domain calibration gives a spectral peak of known dis-
placement spectral density.

Quadratic calibration procedure. Frequency domain calibration of the quadratic
measurement is performed by ensuring the calibrated RMS displacement, obtained
from the linear measurement, which is consistent with the noise power of the 2oM

peak, in accordance with the Isserlis–Wick theorem. In the time domain, a simple
regression is used between the square of the linear measurement ~X

� �
and the

quadratic measurement ~X2
2o

� �
. We verify that these procedures are consistent, to

within known uncertainties, with one another and with the value of l2�n computed
from the independently measured system parameters.

State conditioning. From the continuously acquired data, estimates of the
quadratures at 2oM (oM) are obtained with the use of causal (acausal) decaying
exponential filters, to time separate the conditioning and read-out phases. From the
filtered data at each discrete time step, we rotate the vector ~P; ~Q

	 

by an angle 2f,

such that a new vector ~P2f; ~Q2f
	 


¼ ~P2 þ ~Q2
� �1

2; 0
n o

is obtained. The simulta-

neously acquired linear data ~X; ~Y
	 


is then rotated through the half angle, f, to
obtain ~Xf; ~Yf

	 

¼ ~X cos fð Þþ ~Y sin fð Þ; ~Y cos fð Þ� ~X sin fð Þ
	 


. For state pre-
paration, the rotated linear data is conditioned on the value of ~P2f , which is
proportional to 1

2
~Xf
� �2

. We choose a conditioning window four times smaller than
the quadratic measurement uncertainty. When the conditioning criterion is satis-
fied, the state is read-out using the rotated linear data ~Xf; ~Yf

	 

. All the data

presented here have been generated from three 4 s blocks of sampled homodyne
output.
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15. Diósi, L. Models for universal reduction of macroscopic quantum fluctuations.
Phys. Rev. A 40, 1165–1174 (1989).

16. Penrose, R. On gravity’s role in quantum state reduction. Class. Quantum
Gravity 28, 581–600 (1996).

17. Klecker, D. et al. Creating and verifying a quantum superposition in a micro-
optomechanical system. N. J. Phys. 10, 095020 (2008).

18. Romero-Isart, O. Quantum superposition of massive objects and collapse
models. Phys. Rev. A 84, 052121 (2011).

19. Blencowe, M. P. Effective field theory approach to gravitationally induced
decoherence. Phys. Rev. Lett. 111, 021302 (2013).

20. Børkje, K., Nunnenkamp, A., Teufel, J. D. & Girvin, S. M. Signatures of
nonlinear cavity optomechanics in the weak coupling regime. Phys. Rev. Lett.
111, 053603 (2013).

21. Hudson, R. L. When is the wigner quasi-probability density non-negative? Rep.
Math. Phys. 6, 249–252 (1974).

22. Anetsberger, G. et al. Near-field cavity optomechanics with nanomechanical
oscillators. Nat. Phys. 5, 909–914 (2009).

23. Schmid, S., Jensen, K. D., Nielsen, K. H. & Boisen, A. Damping mechanisms in
high-Q micro and nanomechanical string resonators. Phys. Rev. B 84, 165307
(2011).

24. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a
mechanical resonator. Nature 464, 697–703 (2010).

25. Sankey, J. C., Yang, C., Zwickl, B. M., Jayich, A. M. & Harris, J. G. E. Strong and
tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys. 6,
707–712 (2010).

26. Flowers-Jacobs, N. E. et al. Fiber-cavity-based optomechanical device. Appl.
Phys. Lett. 101, 221109 (2012).

27. Purdy, T. P. et al. Tunable cavity optomechanics with ultracold atoms. Phys.
Rev. Lett. 105, 133602 (2010).

28. Li, T., Kheifets, S. & Raizen, M. G. Millikelvin cooling of an optically trapped
microsphere in vacuum. Nat. Phys. 7, 527 (2011).

29. Lin, Q., Rosenberg, J., Jiang, X., Vahala, K. J. & Painter, O. Mechanical
oscillation and cooling actuated by the optical gradient force. Phys. Rev. Lett.
103, 103601 (2009).

30. Anetsberger, G. et al. Cavity optomechanics and cooling nanomechanical
oscillators using microresonator enhanced evanescent near-field coupling.
Comptes Rendus Phys. 12, 800–816 (2011).

31. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum
ground state. Nature 475, 359–363 (2011).

32. Safavi-Naeini, A. H. et al. Squeezed light from a silicon micromechanical
resonator. Nature 500, 185–189 (2013).

33. Brennecke, F., Ritter, S., Donner, T. & Esslinger, T. Cavity optomechanics with
a Bose-Einstein condensate. Science 322, 235–238 (2008).

34. Pirkkalainen, J.-M. et al. Cavity optomechanics mediated by a quantum
two-level system. Nat. Commun. 6, 6981 (2015).

35. Macklin, C. et al. A near quantum-limited Josephson traveling-wave parametric
amplifier. Science 350, 307–310 (2015).

36. Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light
and atomic ensembles. Rev. Mod. Phys. 82, 1041 (2010).

37. Hatridge, M. et al. Quantum back-action of an individual variable-strength
measurement. Science 339, 178–181 (2013).

38. Murch, K. W., Weber, S. J., Macklin, C. & Siddiqi, I. Observing single
quantum trajectories of a superconducting quantum bit. Nature 502, 211–214
(2013).

Acknowledgements
We would like to thank K.E. Khosla, G.J. Milburn and T.M. Stace for useful discussion.
This research was supported primarily by the ARC CoE for Engineered Quantum Sys-
tems (CE110001013). M.R.V. acknowledges support provided by an ARC Discovery
Project (DP140101638). P.E.L., S.S. and A.B. acknowledge funding from the Villum
Foundation VKR Centre of Excellence NAMEC (Contract No. 65286) and Young
Investigator Programme (Project No. VKR023125).

Author contributions
G.A.B. and M.R.V. contributed equally to this work. This quadratic measurement
research programme was conceived by M.R.V. with refinements from G.A.B. and W.P.B.
The optomechanical evanescent coupling set-up was designed by G.A.B. and W.P.B. with
later input from M.R.V. G.A.B. was the main driving force behind building the experi-
ment and performing the data analysis with important input from M.R.V. and W.P.B.
Micro-fabrication of the SiN nanostring mechanical resonators was performed by P.E.L.,
S.S. and A.B. This manuscript was written by M.R.V. and G.A.B. with important
contributions from W.P.B. Overall laboratory leadership was provided by W.P.B. and
substantial supervision for this project was performed by M.R.V.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Brawley, G. A. et al. Nonlinear optomechanical measurement of
mechanical motion. Nat. Commun. 7:10988 doi: 10.1038/ncomms10988 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10988 ARTICLE

NATURE COMMUNICATIONS | 7:10988 | DOI: 10.1038/ncomms10988 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Optomechanical system

	Figure™1Concept and experimental apparatus.(a) The intrinsic optical nonlinearity of an optomechanical interaction gives rise to rotations of the optical field in phase-space that can be observed in both the phase (PL) and amplitude (XL) quadratures. Conv
	Figure™2Observation of linear and quadratic motion of a mechanical oscillator.(a) Measurement of the optical phase quadrature (red trace) at the mechanical frequency, ohgrM, shows a Lorentzian mechanical displacement spectrum, which is strongly suppressed
	State preparation and read-out
	Comparison of effective coupling rates

	Figure™3Bimodal state preparation via nonlinear measurement.Using a homodyne angle of pgrsol4, a high-fidelity measurement of both linear and quadratic motion of the mechanical oscillator at frequencies of ohgrM and 2ohgrM, respectively, is obtained. In a
	Requirements for non-classical behaviour

	Figure™4Open quantum system simulations.Figures (a,b) show the conditional state evolution of the mechanical oscillator under continuous measurement of the AC component of the X2 signal, as computed from a master equation simulation. The initial state wit
	Quantum trajectory simulation

	Discussion
	Methods
	Linear calibration procedure
	Quadratic calibration procedure
	State conditioning

	DelégliseS.Reconstruction of non-classical cavity field states with snapshots of their decoherenceNature4555102008OurjoumtsevA.JeongH.Tualle-BrouriR.GrangierP.Generation of optical Schrodinger cats from photon number statesNature4487842007BimbardE.JainN.M
	We would like to thank K.E. Khosla, G.J. Milburn and T.M. Stace for useful discussion. This research was supported primarily by the ARC CoE for Engineered Quantum Systems (CE110001013). M.R.V. acknowledges support provided by an ARC Discovery Project (DP1
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information


