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  Abstract 

 This paper studies the dynamic behavior of a dielectric elastomer balloon subject to a 

combination of pressure and voltage.  When the pressure and voltage are static, the balloon may 

reach a state of equilibrium.  We determine the stability of the state of equilibrium, and calculate 

the natural frequency of the small-amplitude oscillation around the state of equilibrium.  When 

the voltage is sinusoidal, the balloon resonates at multiple frequencies of excitation, giving rise 

to superharmonic, harmonic, and subharmonic responses.  When the frequency of excitation 

varies continuously, the oscillating amplitude of the balloon may jump, exhibiting hysteresis. 
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1. Introduction 

 Subject to a voltage through its thickness, a thin membrane of a dielectric elastomer 

reduces the thickness and expands the area.  The strain of the membrane induced by the voltage 

can be large, readily exceeding 100%.  This and related phenomena are being developed for 

applications as electromechanical transducers.1-7  Much of the existing literature on dielectric 

elastomers has focused on quasi-static deformation, where the effect of inertia is negligible.  In 

some of the potential applications, however, the elastomer deforms at high frequencies, up to 50 

kHz, and functions as vibration sources8,  high-speed pumps9-12, and acoustic equipment13-14 . 

  In a large-strain, high-frequency application, the elastomer may undergo nonlinear 

oscillation. While nonlinear oscillation has been studied in many areas of science and 

engineering,15,16 we are unaware of any theoretical analysis of nonlinear oscillation of dielectric 

elastomers.  To explore the subject, this paper studies an idealized system: a dielectric elastomer 

balloon of a spherical shape, subject to a combination of pressure and voltage. Dielectric 

elastomer balloons have been studied as pumps12 and loudspeakers13, as well as an element of a 

shell-like actuator. 17,18  

 The plan of this paper is as follows.  Section 2 derives the equation of motion by using 

the method of virtual work.  Section 3 describes the state of equilibrium when the pressure and 

voltage are static.  Section 4 studies the small-amplitude oscillation around the state of 

equilibrium, and discusses the stability of the state of equilibrium against small perturbation.  

Section 5 studies parametric excitation, where the pressure is static but the voltage is sinusoidal.  

Section 6 shows that, when the frequency of excitation is varied continuously, the oscillating 

amplitude of the balloon can jump, exhibiting hysteresis. 

 

2. Equation of motion 
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 Fig. 1 illustrates a spherical balloon, radius R and thickness H in the undeformed state.  

The membrane of the balloon is a dielectric elastomer, taken to be incompressible, of density ρ .  

The membrane is coated on both faces with compliant electrodes.  We will neglect any stress in 

the electrodes, but may add the mass of the electrodes to that of the membrane.   

 When the pressure inside the balloon exceeds the pressure outside by p and the two 

electrodes are subject to a voltage Φ , the balloon deforms to radius r and the two electrode gain 

charges Q+  and Q− .  Let λ  be the stretch of the membrane, namely, 

  
R

r=λ . (1) 

Let D  be the electric displacement in the membrane, namely,   

  
24 r

Q
D

π
= . (2) 

The balloon is taken to deform under an isothermal condition, and the fixed temperature will 

not be considered explicitly.  Consequently, the balloon is a thermodynamic system of two 

independent variables,  λ  and D.  We next formulate a model to evolve this system in time t.    

 The thermodynamics of the dielectric elastomer is characterized by the density of the 

Helmholtz free energy as a function of the two independent variables, ( )DW ,λ .  We will adopt 

the model of ideal dielectric elastomer.19  The model assumes that the elastomer is a network of 

long and flexible polymers with a low density of crosslinks, so that the crosslinks almost do not 

constrain the process of polarization.  Once the effect of crosslinks on polarization is neglected, 

the dielectric behavior of the elastomer is liquid-like, unaffected by deformation.  Consequently, 

the free-energy function of the dielectric elastomer is written as a sum of two parts: 

  ( ) ( )
ε

λλµλ
2

32
2

,
2

42 D
DW +−+= − . (3) 

The first part is the elastic energy, where µ  is the shear modulus.  For simplicity, we use the 

neo-Hookean model to describe the elasticity of the network; other models of elasticity may be 
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used.  The second part in (3) is the dielectric energy, where ε  is the permittivity.  For an ideal 

dielectric elastomer, the permittivity is taken to be a constant independent of deformation. 

 The model of ideal dielectric elastomers has been used almost exclusively in the literature 

to analyze devices.  However, recent experiments on VHB, the most studied dielectric elastomer, 

have shown that the permittivity may vary by a factor of 2 when the elastomer undergoes large 

deformation.18 See [20] for a review of thermodynamic models for dielectric elastomers.  While 

the general considerations in this paper are valid for arbitrary function ( )DW ,λ , we will use the 

function (3) in numerical calculations.   

 When the charge on the electrodes varies by Qδ , the applied voltage does work QδΦ .  

When the radius of the balloon varies by rδ , the pressure does work rpr δπ 24 , and the inertial 

force does work ( ) rdtrdHR δρπ 222 /4− .  We neglect any viscous force.  Thermodynamics dictates 

that, for arbitrary variation of the system, the variation of the free energy of the membrane 

should equal the work done by the voltage, the pressure, and the inertia, namely,  

  r
dt

rd
HRrprQWHR δρπδπδδπ

2

2
222 444 −+Φ= . (4)

 Inserting (1) and (2) into (4), and recalling that the balloon is a system of two 

independent variables, λ  and D , we obtain that 

  
( )

2

2
222,

dt

d
R

H

pR

H

DDW λρλλ
λ
λ −+Φ=

∂
∂

, (5) 

  
( ) 2, λλ

HD

DW Φ=
∂

∂
. (6) 

Equation (5) balances momentum, and (6) enforces electrostatic equilibrium.  For an ideal 

dielectric elastomer, (6) recovers the liquid-like dielectric behavior, ED ε= , where E is the 

electric field.  

 Inserting (3) into (5) and (6), and eliminating D , we obtain that 
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  ( ) 0,,
2

2

=Φ+ pg
dt

d λλ
.        (7) 

with 

  3225 222),,( λλλλλ Φ−−−=Φ − ppg . (8) 

Eq. (7) is the equation of motion that evolves the stretch of the balloon as a function of time, 

( )tλ .  This equation is consistent with that derived in Ref. [12].  In writing (7) and (8), we have 

normalized the time by µρ /R , the pressure by RH /µ , and the voltage by εµ /H . 

 

3. A balloon in a state of equilibrium under static pressure and voltage 

 When the two loading parameters, p  and Φ , are both static, the balloon may reach a 

state of equilibrium, of stretch eqλ .  In the state of equilibrium, the equation of motion, (7), 

reduces to 

  ( ) 0,, =Φpg eqλ . (9) 

This nonlinear algebraic equation determines eqλ  for given values of p  and Φ .   

 Fig. 2 plots (9) as pressure-stretch curves at several values of voltage.  When 0=Φ , the 

problem reduces to that of a pressurized balloon, a well known problem in the literature of 

nonlinear elasticity.21 As the balloon expands, the pressure first increases, reaches a peak, and 

then decreases.  The peak pressure corresponds to a critical state.  When the applied pressure is 

above the peak, the balloon cannot reach a state of equilibrium.  When the applied pressure is 

below the peak, corresponding to each value of the pressure are two values of the stretch.  The 

value of the stretch on the rising part of the curve corresponds to a stable state of equilibrium, 

and the value of the stretch on the descending part of the curve corresponds to a state of 

unstable equilibrium.   

 When 0≠Φ , charges of opposite signs are induced on the two electrodes.  The attraction 

between the electrodes causes the membrane of the balloon to reduce thickness and increase 
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area.  As shown in Fig. 2, the voltage lowers the critical pressure, and increases the stretch of any 

stable state of equilibrium.   

 Fig. 3 plots the condition of equilibrium (9) as voltage-stretch curves at several values of 

pressure.  When 0=p , as the balloon expands, the voltage first increases, reaches a peak, and 

then decreases.  This behavior is understood as follows.12, 22-26 The voltage induces a positive 

charge on one electrode, and negative charge on the other electrode.  The oppositely charged 

electrodes attract each other, so that the dielectric membrane reduces its thickness.  For a 

prescribed voltage, the reduction in the thickness of the membrane increases the electric field.  

This positive feedback leads to electromechanical instability, or pull-in instability.  The peak of 

the curve corresponds to the critical state.  The critical voltage is reduced in the presence of the 

pressure. 

 

4. Small-amplitude oscillation around a state of equilibrium           

 Consider a state of equilibrium, eqλ .  When the balloon is perturbed from this state of 

equilibrium, we write 

  ( ) ( )tt eq ∆+= λλ , (10) 

where ( )t∆  is the amplitude of perturbation, and is taken to be small.  We then expand the 

function ( )Φ,,pg λ  as a power series in ∆  around the equilibrium stretch eqλ . Consequently, to 

the leading order in ∆  , the equation of motion (7) becomes 

  ( ) 0
2

2

=Φλ
λ∂

∂∆+∆
,p,

g

dt

d
eq , (11) 

where the partial derivative 

( ) 226 62102
,, λλλ

λ
λ Φ−−+=
∂

Φ∂ − p
pg

  (12) 
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is evaluated at eqλλ ==== , and is a constant independent of time.  We may call this partial 

derivative the stiffness of the balloon.   

 When the stiffness is negative, the perturbation ( )t∆  will grow exponentially in time, and 

the state of equilibrium is unstable.  When the stiffness is positive, the balloon will oscillate 

around the state of equilibrium, and the state of equilibrium is stable.  Inspecting (11), we see 

that the natural frequency 0ω  of the small-amplitude oscillation around the stable state of 

equilibrium is determined by  

  ( )Φλ
λ∂

∂=ω ,p,
g

eq

2

0 . (13) 

 When p and Φ  are prescribed at static values, the equilibrium stretch eqλ  is determined 

by (9), and the natural frequency 0ω  is determined by (13).  To avoid solving the nonlinear 

algebraic equation (9), we rearrange (9) and (13) to express p and Φ  in terms of eqλ  and ω , 

namely, 

  2

0

2822

2

1
7 ωλ−λ+λ−=Φ −−−

eqeqeq , (14) 

  2

0

171 164 ωλ+λ−λ= −−−
eqeqeqp . (15) 

By varying eqλ , we plot this pair of equations in Fig. 4 as curves of constant 0ω  on the plane of 

( )Φ,p .  Each point on the curve labeled by 00 =ω  corresponds to a critical state of the balloon.  

The coordinates of the point gives the critical values of p and Φ .  When the pressure and voltage 

fall above this curve, the balloon cannot reach a state of equilibrium.  When the pressure and 

voltage fall below the curve, the balloon can reach a stable state of equilibrium, and the natural 

frequency of the small-amplitude oscillation around the state of equilibrium can be read from 

the diagram.  As indicated in Fig.4, the frequency is normalized by a group of parameters, 

ρµ /1−R .  These parameters are fixed for a given balloon.  However, a change in the static 

pressure or the static voltage will tune the natural fervency. 



 8 

 

5. Parametric excitation 

 When the pressure or the voltage varies with time, the dynamic behavior of the balloon 

can be very complex.  To illustrate the complexity, we prescribe a static pressure p and a 

sinusoidal voltage: 

  ( ) tt acdc ΩΦ+Φ=Φ sin , (16) 

where dcΦ  is the dc voltage, acΦ  is the amplitude of the ac voltage, and Ω  is the frequency of 

excitation.  The equation of motion (7) becomes 

( ) 0sin222 3225

2

2

=ΩΦ+Φ−−−+ − λλλλλ
tp

dt

d
acdc .  (17) 

The oscillatory voltage is a source of energy, and appears in a coefficient of the ordinary 

differential equation (17).  Phenomena of this type are known as parametric excitation.15,16  

The time-dependent stretch ( )tλ  can be obtained by solving (17) for any initial 

conditions. We set 1.0/ =HpR µ  and 1.0/ 22 =Φ Hdc µε .  Were these values of pressure and 

voltage static, the balloon could attain a state of equilibrium 029.1=eqλ , or oscillate around the 

state of equilibrium at the natural frequency 096.3/0 =µρω R .  We use this state of 

equilibrium as the initial conditions in our numerical simulations.  We then apply the oscillatory 

voltage with specific values of acΦ  and Ω .  Once the numerical solution of ( )tλ  attains a steady 

state of oscillation, we define the amplitude of oscillation as the half of the difference between 

the maximal and minimal values of the stretch.    

 Fig. 5 plots the amplitude of oscillation as a function of the frequency of excitation.  The 

balloon resonates most strongly when the frequency of excitation is around the natural 

frequency, 0ω≈Ω .  The balloon also resonates when the frequency of excitation is several times 

the natural frequency, for example, 02ω≈Ω , a response is known as subharmonic resonance.16    

In addition, the balloon resonates when the frequency of excitation is a fraction of the natural 
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frequency, for example, 2/0ω≈Ω , a response known as superharmonic resonance.  Resonance 

at multiple values of the frequency of excitation is common for parametric excitation.27,28 

Fig. 6 shows the numerical results of ( )tλ  for three values of the frequency of excitation, 

000 2,,,2/ ωωω≈Ω . Independent of the frequency of excitation Ω , the balloon always oscillates 

near the natural frequency 0ω , as defined by the small-amplitude oscillation around a state of 

equilibrium.  

Experimental data reported in the literature show that the frequency of the oscillation 

doubles, or is close to, that of the ac voltage.10,11 For example, in figure 70 of [11], 2/0ω≈Ω , 

while in figure 72 in [11], 0ω≈Ω . Our numerical results not only show superharmonic and 

harmonic resonance, but also show subharmonic resonance with 02ω≈≈≈≈Ω  . This discrepancy 

between the theory and the experiment need be resolved in future studies. 

 

6. Jump in oscillating amplitude when the frequency of excitation varies 

 To obtain other essential characteristics of the nonlinear oscillation, we study equation 

(17) by using the method of harmonic balance15,16. The time-dependent stretch is approximated 

as  

  ttbttat eq ωωλλ sin)(cos)()( ++=  (18)     

where eqλ  is the stretch in the state of equilibrium, a  and b  are time-dependent amplitudes, 

and ω  is the frequency of oscillation.  We assume that the amplitudes vary slowly with time.  

We use the truncated Fourier series, and neglect terms of high-frequencies, 2ω , 3ω , etc. 

               We are interested in the harmonic oscillation in a steady state, where a and b are 

constants, and the balloon oscillates at the frequency equal to the frequency of excitation, Ω=ω . 

With the method of harmonic balance, we substitute (18) into (17), set the coefficients of the 

constant, tΩcos  and tΩsin  to be zero, and neglect terms of higher frequencies. Then we obtain 



 10 

three nonlinear equations for eqλ ,  a  and b .  We solve these nonlinear equations for a  and b  

by using the Newton-Raphson method.  Fig.7 plots the oscillating amplitude of the balloon, 

22 ba + , as a function of the frequency of excitation Ω .  Upon increasing the frequency of 

excitation, the steady-state solution will start from point O, to A, to D, then jump to point E, 

then to F, and to O’.  However, upon decreasing the frequency of excitation, the steady-state will 

start from point O’, to F, to E and C.  Similar phenomena of hysteresis have been reported in 

many parametrically excited oscillators.16,29 

The above interpretations are better understood when we study how the amplitudes vary 

with time, )(ta  and )(tb . Since a and b are taken to vary with time slowly, 22 /dtad  and 

22 /dtbd  are neglected.  Taking second derivative of (18) with respect to t, we obtain that 

  tb
dt

da
t

dt

db
a

dt

d ωωωωωωλ
sin2cos2 22

2

2








 −−+






 +−= . (19) 

Substituting (19) into (17), setting ω=Ω , and equating the coefficients of )cos( tΩ  and )sin( tΩ  

to zero, we obtain that 

( ) ( )baG
dt

db
baF

dt

da
,,, == . (20) 

The two functions ( )baF ,  and ( )baG ,  are lengthy and are not listed here. Given initial values 

( )0a  and ( )0b , we can evolve (20) to obtain ( )ta  and ( )tb .   

 Fig. 8 shows the phase plane of ( )ba, . Steady-state solution 1, related to point A in Fig. 7, 

is a center point.  Steady-state solution 2, related to point B in Fig. 7, is a saddle point. Steady-

state solution 3, related to point C in Fig. 7, is a center point. Fig. 8 shows that the parametric 

response depends on the initial condition. For example, if the initial condition is close to the 

center point 1, ( )0a  = 0 and ( )0b  = 0.1, the final path will cycle around this center point. If the 

initial condition is close to the saddle point 2, however, the final path will not stay near the 

saddle point, but will follow either a larger cycle, say path (1), or a small cycle, say path (2). 
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 The stability analysis of steady-state solution is as follows. With the infinitesimal 

perturbation for the steady-state solution, let 

  ( ) ( ) ( ) ( )tbtbtata βα +=+= 00 , ,  (21) 

where 0a  and 0b  are the steady-state solution, and ( )tα  and ( )tβ  are infinitesimal perturbation. 

Substituting (21) into (20), keeping the linear term for α  and β , we obtain  

  
























∂
∂

∂
∂

∂
∂

∂
∂

=
















β
α

β

α

b

G

a

G
b

F

a

F

dt

d
dt

d

. (22) 

The partial derivatives of the functions ( )baF ,  and ( )baG ,  are evaluated at the steady-state 

solution ( )00 ,ba .  The steady-state solution is stable when the eigenvalues of the matrix in (22) 

have negative real parts.  This analysis produces results indicated on the phase plane.  

 

7.  Concluding remarks 

 We describe a dielectric elastomer balloon with an equation of motion of one degree of 

freedom.  When the pressure and the voltage are static, the balloon may reach a state of 

equilibrium.  We study the stability of the state of equilibrium against small perturbation, and 

calculate the natural frequency of the small-amplitude oscillation around the state of 

equilibrium.  The natural frequency is tunable by varying the pressure or the voltage.  When the 

pressure is static but the voltage is sinusoidal, the balloon resonates at multiple values of the 

frequency of excitation, giving rise to superharmonic, harmonic and subharmonic responses.  

Furthermore, when the frequency of excitation is changed continuously, the oscillating 

amplitude of the balloon may jump at certain values of the frequency of excitation, exhibiting 

hysteresis.  We hope to further analyze the nonlinear dynamic behavior by using models of 

many degrees of freedom, including dissipation due to viscosity and leakage.  We also hope that 

future experiments will ascertain the theoretical predictions. 
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Fig. 1. An dielectric elastomer balloon deforms under a pressure and a voltage.   
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Fig. 2.  Subject to a static pressure and voltage, the balloon may reach a state of 

equilibrium.  The pressure is plotted as a function of the equilibrium stretch at several values of 

the voltage. 
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Fig. 3.  The voltage is plotted as a function of the equilibrium stretch at several values of the 

pressure. 
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Fig.4.  Plotted on the plane of ( )Φ,p  are curves of constant natural frequency.  The curve labeled 

by 00 =ω  corresponds to the critical conditions.  Above this curve, the balloon cannot reach a 

state of equilibrium.  Below the curve, the balloon can reach a stable state of equilibrium.  In this 

region, each point ( )Φ,p  corresponds to a state of stable equilibrium, and the balloon can 

oscillate around the state at the natural frequency 0ω . 
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Fig.5. Excited by a sinusoidal voltage, the balloon resonates at several values of the frequency of 

excitation Ω .  The oscillating amplitude of the balloon is plotted as a function of the frequency 

of excitation for HpR µ/ = 0.1 and 22 / Hdc µεΦ = 0.1, at selected values of dcac ΦΦ / . 
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Fig.6. Superharmonic, harmonic, and subharmonic responses ( HpR µ/ = 0.1, 22 / Hdc µεΦ = 0.1, 

and dcac ΦΦ / = 0.1). 
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Fig. 7. Steady-state solutions when HpR µ/ = 0.1, 22 / Hdc µεΦ = 0.1, and 

1.0/ ====dcac ΦΦ . 
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Fig. 8 Phase plane of a and b when µρ /R⋅⋅⋅⋅Ω =2.4, HpR µ/ = 0.1, 22 / Hdc µεΦ = 0.1, and 

1.0/ ====dcac ΦΦ . 
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