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In a variety of biomedical engineering applications, cavitation occurs in soft tissue,

a viscoelastic medium. The present objective is to understand the basic physics of

bubble dynamics in soft tissue. To gain insights into this problem, theoretical and

numerical models are developed to study the Rayleigh collapse and subsequent oscil-

lations of a gas bubble in a viscoelastic material. To account for liquid compressibility

and thus accurately model large-amplitude oscillations, the Keller-Miksis equation

for spherical bubble dynamics is used. The most basic linear viscoelastic model that

includes stress relaxation, viscosity, and elasticity (Zener, or standard linear solid) is

considered for soft tissue, thereby adding two ordinary differential equations for the

stresses. The present study seeks to advance past studies on cavitation in tissue by

determining the basic effects of relaxation and elasticity on the bubble dynamics for

situations in which compressibility is important. Numerical solutions show a clear

dependence of the oscillations on the viscoelastic properties and compressibility.

The perturbation analysis (method of multiple scales) accurately predicts the bub-

ble response given the relevant constraints and can thus be used to investigate the

underlying physics. A third-order expansion of the radius is necessary to accurately

represent the dynamics. Key quantities of interest such as the oscillation frequency

and damping, minimum radius, and collapse time can be predicted theoretically. The

damping does not always monotonically decrease with decreasing elasticity: there

exists a finite non-zero elasticity for which the damping is minimum; this value falls

within the range of reported tissue elasticities. Also, the oscillation period generally

changes with time over the first few cycles due to the nonlinearity of the system,

before reaching an equilibrium value. The analytical expressions for the key bubble

dynamics quantities and insights gained from the analysis may prove valuable in

the development and optimization of certain biomedical applications. C© 2013 AIP

Publishing LLC. [http://dx.doi.org/10.1063/1.4817673]

I. INTRODUCTION

Cavitation plays an important role in a wide range of biomedical applications. To improve

diagnostic ultrasound, attempts have been made to develop effective and safe contrast agents.1 In

therapeutic ultrasound, the destructive properties of cavitation are exploited to break kidney and

gall stones (shock-wave lithotripsy2) or ablate pathogenic tissue (histotripsy3). In impact- and blast-

induced traumatic brain injury, it has been suggested that cavitation inflicts mechanical damage.4

Regardless of the specific area, cavitation in biomedical settings takes place in biological liquids or

soft tissue, neither of which behaves as a Newtonian fluid. The challenge in studying cavitation in soft
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tissue lies in the viscoelastic, compressible, and multiphase nature of the problem. Direct simulations

of the compressible equations of motion have been performed to study single-bubble dynamics

in biomedical applications, many of which have been restricted to inviscid5–8 and Newtonian9

simulations. The few direct simulations in a viscoelastic medium are based on Maxwell fluids, none

in which compressibility is included, preventing accurate studies of large-amplitude oscillations.

Foteinopoulou and Laso10 conducted finite element simulations of a bubble in a Phan-Thien-Tanner

fluid and showed that oscillation amplitudes increased with increasing Deborah number. Lind and

Phillips considered the collapse of a spherical bubble in a Maxwell fluid11 and non-spherical collapse

of a two-dimensional bubble in a weakly compressible upper-convected Maxwell fluid12 using a

boundary element method. Their results suggest that viscoelasticity has the ability to prevent jet

formation and is likely to mitigate cavitation damage.

Useful insights into cavitation dynamics can be gained through the Rayleigh-Plesset equation,13

a second-order nonlinear ordinary differential equation that describes the response of a single

spherical bubble in an infinite and incompressible liquid subjected to a far-field pressure change.

Subsequent extensions to the Rayleigh-Plesset equation have been developed to include compress-

ibility, thermal and mass transfer effects, and non-spherical perturbations.14 To distinguish between

small-amplitude oscillations and violent collapse dominated by nonlinearity that is expected to be a

substantial source of damage to the surroundings, Flynn15, 16 developed the idea of an inertial cav-

itation threshold. Past studies of bubble dynamics in viscoelastic media based on Rayleigh-Plesset

approaches have primarily focused on polymeric liquids governed by Maxwell-like constitutive

models.17–20

In the biomedical context, Allen and Roy21, 22 studied forced bubble oscillations in incompress-

ible linear and nonlinear Maxwell fluids. They found significant differences between the viscoelastic

and Newtonian cases and that subharmonic excitations at specific fluid parameters lead to a discrete

group modulation of the radial excursion. Khismatullin and Nadim23 investigated oscillations of a

microbubble encapsulated in a viscoelastic shell in a slightly compressible viscoelastic liquid. They

showed that the resonance frequency for the encapsulated microbubble depends on viscous damping

and differs from the undamped natural frequency. Jimenez-Fernandez and Crespo24 found that the

influence of the rheological fluid properties on the pressure thresholds for inertial cavitation in an

Oldroyd fluid were closely related. Yang and Church25 implemented the Kelvin-Voigt model into

the (compressible) Keller-Miksis equation to investigate forced bubble oscillations. They observed

that elasticity increases the threshold pressure for inertial cavitation, and subharmonic signals may

only be detectable in certain ranges of radius and pressure amplitude. This model was further used to

investigate cavitation-induced bioeffects in contrast-enhanced ultrasound.26 Brujan27, 28 considered

compressible bubble dynamics in Maxwell and Jeffreys media and concluded that relaxation and

retardation have little effects for Reynolds numbers beyond a certain value. Naude and Mendez29

conducted Rayleigh-Plesset simulations with thermal diffusion in an upper-convected Maxwell

liquid to show that chaotic behavior is observed beyond a certain Deborah number.

The present study seeks to advance these past studies on cavitation in tissue by determining the

basic effects of relaxation and elasticity on the bubble dynamics for large-amplitude oscillations.

For this purpose, a Zener viscoelastic model is considered in this work, which accounts for both

creep and stress relaxation, in conjunction with liquid compressibility. A combined analytical and

numerical approach is used to predict spherical bubble dynamics in a tissue-like medium following

a Rayleigh collapse. The problem setup and governing equations are listed in Sec. II, followed by

the theoretical analysis and numerical results in Sec. III. The article concludes with a summary and

future directions.

II. PROBLEM SETUP AND EQUATIONS OF MOTION

A. Problem setup: Rayleigh collapse

The goal of the present study is to understand how elasticity and relaxation affect the dynamics of

bubbles in a viscoelastic media in situations when compressibility is significant. Thus, a conceptually

simple problem is considered, Rayleigh collapse,30 i.e., the collapse of a bubble starting at its
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maximum radius caused by the pressure difference between the surroundings and the interior. Here,

a single bubble in an infinite homogeneous medium is considered. Historically, the problem is usually

set up by instantaneously increasing the pressure of the surroundings by a value pA.13 The focus of

the present work lies in this problem. Another means of perturbing the flow is to vary the initial

radius about its equilibrium, which in turn modifies the bubble pressure (see Sec. III C). Contrary

to problems in which the bubble is driven by an external harmonic pressure field, Rayleigh collapse

has the advantage of having no time scale associated with the far-field pressure, thus reducing the

parameter space.

B. Bubble dynamics: The Keller-Miksis equation

The dynamics of a single spherical gas bubble in an infinite body of compressible viscoelastic

material are considered based on the Keller-Miksis equation31–33

(

1 −
Ṙ

c∞

)

R R̈ +
3

2

(

1 −
1

3

Ṙ

c∞

)

Ṙ2 =
(

1 +
Ṙ

c∞

) pB − p∞ − pA

(

t + R
c∞

)

ρ∞
+

R

ρ∞c∞
ṗB, (1)

where R(t) is the radius of the bubble, the dot denotes the time derivative, c∞ and ρ∞ are the

sound speed and density of the surrounding medium, p∞ is the constant far-field pressure, and

pA(t + R/c∞) ≈ pA(t) + (R/c∞) ṗA is the time-varying far-field component. In the incompressible

limit c∞ → ∞, Eq. (1) reduces to the well-known Rayleigh-Plesset equation for bubble dynamics in

an incompressible medium. The Keller-Miksis equation provides a mechanism for acoustic radiation

important in large-amplitude oscillations (e.g., inertial cavitation) relevant to the problems under

consideration, but is still based on the idea that the near-field is incompressible.31 The equation is

valid to first order in the Mach number.

Since Rayleigh collapse is considered, pA is a constant step increase in pressure. The pressure

on the liquid side of the interface pB is given by balancing the normal stresses across the interface

pB = pi −
2σ

R
+ 3

∫ ∞

R

τrr (r )

r
dr, pi = pGo

(

Ro

R

)3γ

, pGo = p∞ +
2σ

Ro

, (2)

where σ is the surface tension, τ rr is rr-component of the viscous stress tensor (traceless, as discussed

in Allen and Roy22), pi is the internal pressure, Ro is the initial radius, pGo is the initial partial pressure

of non-condensible gas (air) in the bubble, and the polytropic index is γ = 1.4 assuming adiabatic

behavior. Although vapor pressure could be included as a constant in Eq. (2), it is neglected here.

Surface tension and non-condensible gas are included, but their dependence is not explored.

C. Tissue constitutive model and properties: The Zener viscoelastic model

To close the system (1) and (2), a constitutive relation between the stresses τ rr and strains

γrr (r ) =
∫ t

0

∂u

∂r
dt ′ = −

2

3

R3 − R3
o

r3
, (3)

is needed. Although its microstructure is typically heterogeneous,34 tissue here is assumed to ef-

fectively behave as a homogeneous viscoelastic whole, with uniform and constant macroscopic

properties. Tissue exhibits viscosity μ, shear modulus G (which will be referred to as elasticity

henceforth) in the form of a restoring force, and relaxation λ, i.e., it takes a finite time to recover its

initial configuration after applying a displacement.34 Given that the goal is to understand the basic

effects of these viscoelastic properties on the bubble dynamics, a linear Zener35 (or standard linear

solid) model is considered to represent tissue for simplicity, based on the following generalized

relationship:

λ
∂τrr

∂t
+ τrr = 2Gγrr + 2μ

∂γrr

∂t
. (4)

The Zener model is the simplest model of a viscoelastic solid that predicts both creep and stress

relaxation. Such models have been used to model various soft tissues,36 although not in the context of
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TABLE I. Different limits of the linear viscoelastic model Eq. (4).

Model Properties Equation

Kelvin-Voigt λ = 0 τrr = 2Gγrr + 2μγ̇rr

Maxwell G = 0 λτ̇rr + τrr = 2μγ̇rr

Zener . . . λτ̇rr + τrr = 2Gγrr + 2μγ̇rr

cavitation. As shown in Table I, an appropriate definition of the coefficients reduces Eq. (4) to other

known viscoelastic models: Kelvin-Voigt is recovered if λ → 0. When G = 0, the Maxwell model

is obtained; Oldroyd-like models have also been considered in the past for cavitation in polymeric

solutions.27

In the Zener model (Fig. 1), μ, λ, and G are apparent properties that are not independent of each

other, as evidenced by expressing these parameters in terms of a spring (G2) in series with a dashpot

(η), in parallel with another spring (G1) In Eq. (4), these coefficients correspond to λ = η/G2, G

= G1, and μ = η

G2
(G1 + G2). The quantities λ and μ/G1 are characteristic times that correspond

to relaxation for constant strain and constant stress, respectively.34 To be physical, all spring and

damping coefficients must be positive, which set a constraint on G2

G2 =
μ

λ
− G1 > 0, or

μ

λ
> G. (5)

Equation (5) must be satisfied for a physically meaningful result, and it will be shown that this

constraint naturally assists the analysis in Secs. II E and III B. Failing to meet this constraint, e.g., by

independently selecting μ, G, and λ, may lead to unexpected behavior, some of which is described

in the Appendix. For instance, a negative G2 may be achieved with an incorrect set of parameters,

thus leading to never-ending oscillations despite obvious damping mechanisms.

For relevance to biomedical applications, material properties representative of soft tissue are

considered. Large variations in these properties are found in the literature. The acoustic properties of

tissue (sound speed, density) are taken to be equal to those of water since they are similar for a wide

range of tissues.37, 38 The surface tension for blood and air is taken from Apfel and Holland39 and the

viscosity from Yang and Church.25 The elasticity of tissue is assumed to span G = 0 − 10 MPa,40, 41

with upper values corresponding to atherosclerotic tissue.42 A wide range of relaxation times have

been reported,43, 44 which usually depend on the loading; mathematically meaningful relaxation

times, satisfying Eq. (5), are considered. The amplitude of the instantaneous pressure increase is

fixed at pA = 3.4 MPa to correspond to the pressure ratio driving the collapse of a vapor-filled bubble.

The dimensionless parameters are constructed using the density of the surrounding medium

(ρ∞ = 1060 kg/m3), characteristic initial radius (Ro = 5 μm), and velocity co =
√

p∞/ρ∞ chosen

such that the non-dimensional ambient pressure is unity. Thus, the characteristic time is approxi-

mately the collapse time. The relevant dimensionless parameters are listed in Table II. The present

focus is to understand how the Cauchy number (inertia vs. elasticity) and Deborah number (relax-

ation vs. inertia) affect the bubble dynamics; thus, the bubble response is computed as these numbers

are varied. All the other non-dimensional parameters are held constant: C (compressibility), Weber

number (surface tension vs. inertia) and Reynolds number (viscous forces vs. inertia), and the gas

constant.

FIG. 1. Spring-dashpot schematic for the Zener model. Springs are denoted by spring constants Gi, and the dashpot by

damping coefficient η.
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TABLE II. Properties of the surrounding medium (representative of soft tissue) used in the present work. The bubble response

is evaluated as Ca and De are varied, with De/Ca < 1/Re; all other non-dimensional parameters are held constant unless

otherwise mentioned.

Property Nominal value Dimensionless expression/value (Parameter)

Ambient pressure patm = 1 atm 1 = patm/ρ∞c2
o = 1.0

Pressure increase pA = 3.4 MPa pR = pA/ρ∞c2
o = 34

Sound speed c = 1540 m/s C = c/co = 160

Surface tension σ = 0.056 N/m W e = Roρ∞c2
o/σ = 9.0 (Weber number)

Viscosity μ = 0.015 Pa s Re = Roρ∞co/μ = 3.0 (Reynolds number)

Elasticity G = 0 − 10 MPa Ca = ρ∞c2
o/G > 0.01 (Cauchy number)

Relaxation time λ ≤ 0.5 μs De = λco/Ro ≤ 1 (Deborah number)

The present Zener model is arguably the simplest fluid and solid viscoelastic model, as it

combines a Hookean solid with a Newtonian fluid. More sophisticated models of relevance to

soft tissue mechanics include frequency-dependent coefficients, finite deformation, and nonlinear

viscoelasticity.34 Although adding compressibility to more accurately represented large-amplitude

dynamics constitutes one of the advances of this work, it should be noted that large strains may

require finite-strain analysis45 and/or nonlinear viscoelasticity,46 as opposed to the linear models used

here. Furthermore, large-amplitude oscillations are prone to non-spherical perturbation growth.47

While all potentially interesting, these research questions fall beyond the scope of the present study.

D. Coupling of the constitutive relation to the bubble dynamics

The constitutive relation is coupled to the Keller-Miksis equation through Eq. (2). To provide

closure, Eq. (4) is integrated from R to infinity. For constant properties and using Leibniz’ rule,

λς̇ + ς + λ
Ṙ

R
τrr |R =

1

3

[

−
4

3
G

(

1 −
R3

o

R3

)

− 4μ
Ṙ

R

]

, where ς =
∫ ∞

R

τrr (r, t)

r
dr. (6)

Since the stress at the bubble wall τ rr|R is required in Eq. (6), an additional equation for this quantity

must be provided by evaluating Eq. (4) at r = R

λτ̇rr |R + τrr |R = −
4

3
G

(

1 −
R3

o

R3

)

− 4μ
Ṙ

R
. (7)

In the limit λ → 0 and G → 0, the stress is purely viscous, such that the Keller-Miksis equation in

a Newtonian fluid is recovered by substituting the strains from Eq. (3) into the stresses in Eq. (4),

which themselves are then inserted into the bubble pressure Eq. (2).

Equations (1)–(2) and (6)–(7) form a closed system of three coupled nonlinear ordinary differ-

ential equations that describe the compressible dynamics of a spherical bubble in a linear viscoelastic

medium exhibiting viscosity, elasticity, and stress relaxation. The present modeling approach extends

other past studies of bubble dynamics in tissue, in which elasticity was neglected,21, 27 compressibility

ignored,21 and relaxation omitted.25

E. The final non-dimensional equations

The Keller-Miksis can then be written in non-dimensional form
(

1 −
Ṙ

C

)

R R̈ +
3

2

(

1 −
1

3

Ṙ

C

)

Ṙ2 =
(

1 +
Ṙ

C

) [(

1 +
2

W e

)

1

R3γ
−

2

W eR
+ 3ς − 1 − pR

]

−
Ṙ

C

[(

1 +
2

W e

)

3γ

R3γ
−

2

W eR

]

+ 3
R

C
ς̇ , (8)
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with constitutive relations

Deτ̇rr |R + τrr |R = −
4

3Ca

(

1 −
1

R3

)

−
4

Re

Ṙ

R
, (9)

Deς̇ + ς + De
Ṙ

R
τrr |R = −

4

9Ca

(

1 −
1

R3

)

−
4

3Re

Ṙ

R
, (10)

and De/Ca < 1/Re.

Given that Re = 3.0 is constant, the ratio De/Ca can never be greater than 0.33. For

De = 0 (Kelvin-Voigt or Newtonian models), there is no need to solve Eqs. (9) and (10). In light of

the subsequent analysis, it is expected that De/Ca is a key parameter. This coupling can be made

more evident by writing the stresses as

τrr |R = τe + τm, where τe = −
4

3Ca

(

1 −
1

R3

)

, (11)

ς = ςe + ςm, where ςe = −
4

9Ca

(

1 −
1

R3

)

, (12)

where e stands for elasticity and m for Maxwell, since without elasticity the Maxwell model is

recovered. With this new definition of the stresses, the constitutive relations become

Deτ̇m + τm = 4
De

Ca

Ṙ

R4
−

4

Re

Ṙ

R
, (13)

Deς̇m + ςm + De
Ṙ

R
τm =

4

3

(

De

Ca
−

1

Re

)

Ṙ

R
. (14)

III. ANALYSIS AND RESULTS

Equations (8)–(10) constitute the system that is integrated numerically, and Eqs. (8), (13), and

(14) form the basis for the analysis. All of the results have a non-dimensional pressure ratio of pR

= 34 and sound speed C = 160, Weber number W e = 9.0 and Reynolds number Re = 3.0, unless

otherwise stated.

A. Numerical solution to the equations

Exact solutions to the Rayleigh-Plesset and Keller-Miksis equations are generally difficult to

obtain. Instead, a numerical solution to the system of equations (8)–(10) is obtained using a fifth-

order accurate Cash-Karp Runge-Kutta method with adaptive stepsize control48 to precisely capture

violent bubble collapse by dynamically adjusting the time step. The equations can readily be solved

numerically for a wide range of parameters. Sample numerical results are shown in this section to

highlight important features of the bubble response specifically regarding elasticity, relaxation, and

compressibility, which are explained in Sec. III B.

First, the dependence of the bubble dynamics on elasticity is shown in Fig. 2. Due to the problem

setup and the final stress state, the final equilibrium radius increases with elasticity. One might

expect that increasing the elasticity restricts the oscillations and therefore amplifies the damping.

This behavior is indeed observed when comparing the solutions with the largest and intermediate

elasticities, as the damping is higher and oscillation amplitude smaller for the case with larger G

(i.e., smallest Ca). However, a counter-intuitive feature is observed as elasticity is decreased further:

the oscillations for the case with lowest elasticity have higher damping, leading to a non-monotonic

behavior of damping with elasticity. This observation can be quantified by considering the time

elapsed at each rebound (Fig. 2, right): the intermediate elasticity exhibits the longest rebounds,

such that the bubble dynamics persist for a longer time.
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FIG. 2. Numerical solutions showing the dependence of the bubble oscillations on elasticity (De = 0.001, pR = 34,

C = 160, and Re = 3.0). (Left) History of the bubble radius: Ca → ∞ (Maxwell; dashed), Ca = 0.10 (solid), and Ca = 0.01

(dotted); decay curves (dashed-dotted). (Right) Time to achieve a given rebound number: Ca → ∞ (Maxwell; dots),

Ca = 0.10 (circles), and Ca = 0.01 (crosses).

Next, the dependence of the bubble dynamics on relaxation is illustrated in Fig. 3. In this

case, the equilibrium radius remains constant with De. The oscillation period and damping decrease

with increasing Deborah number, consistent with past findings.10 Although difficult to discern here,

the frequency varies with time, first increasing before reaching a steady state. This behavior is

not completely unexpected, due to the nonlinearity of the system, and will be confirmed through

analysis.

Finally, the dependence of the bubble dynamics on compressibility and viscosity is highlighted

in Fig. 4. The two main modes of damping are expected to be compressible and viscous. At high

elasticity (small Ca), compressibility has a significant effect and dominates the damping (Fig. 4,

left). On the other hand, at low elasticity (large Ca), viscous effects become more important (Fig. 4,

right).

B. Multiple scales perturbation analysis

To explain the physics underlying the phenomena observed above and give a quantitative

estimate of the oscillations behavior in general, the system of equations (8), (13), and (14) is

analyzed. Although a linear perturbation analysis is expected to yield accurate results for small-

amplitude and weakly nonlinear oscillations, it cannot capture the frequency-amplitude interaction
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FIG. 3. Numerical solutions showing the history of the bubble radius for different relaxation times (Ca = 1.0, pR = 34,

C = 160, and Re = 3.0): De = 0.00 (Kelvin-Voigt; solid), De = 0.01 (dashed), and De = 0.10 (dotted).
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FIG. 4. Effects of the compressibility and viscosity at a fixed Ca (pR = 34 and De = 0). (Left) History of the bubble radius

at Ca = 0.01. (Right) History of bubble radius at Ca = 10. Numerical results with C = 160 and Re = 3.0 (compressible and

viscous: solid), C → ∞ and Re = 3.0 (incompressible and viscous: dashed), and C = 160 and Re → ∞ (compressible and

inviscid: dotted).

of highly nonlinear systems,49 thus requiring a higher-order approach. Here, the multiple scales

perturbation method is used, valid since the bubble oscillates about an equilibrium radius smaller than

its initial value. The idea is to expand the radius as a function of several independent scales instead

of a single one.50 The Rayleigh-Plesset equation has been studied previously using this method,

but not with the present setup or constitutive models.21, 22, 51–53 In another approach, Prosperetti54, 55

used the method of averaging to examine the transient and steady-state response of a bubble. All of

these studies were based on small-amplitude harmonic forcing in Newtonian or Maxwell fluids and

hence oscillations about the initial (equilibrium) radius.

The governing equations are written into a first-order system, ẋ = f(x), where

x = (R, Ṙ, τm, ςm)T . There exists only one equilibrium point x0 = (R f , 0, 0, 0)T for this system,

where the final equilibrium radius Rf is obtained through the following equation:

(

1 +
2

W e

)

1

R f
3γ

−
2

W eR f

+ τe, f − pR − 1 = 0, where τe, f = −
4

3Ca

(

1 −
1

R3
f

)

. (15)

Thus, for a given gas and surface tension, Rf is a function of the amplitude of the driving pressure

and elasticity, but does not depend on compressibility, viscosity, or relaxation. As shown in Fig. 5,

Rf increases with increasing elasticity. This behavior is not surprising since a stiffer material (higher
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FIG. 5. Final (equilibrium) radius Rf as a function of elasticity (De = 0.001, pR = 34, C = 160, and Re = 3.0). The dots

correspond to the Cauchy numbers under consideration in Fig. 2.
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elasticity) is expected to exhibit a lesser response to a given pressure change. Since the bubble and

surrounding medium, initially in mechanical equilibrium, are subjected to a step increase in pressure,

the final stress state has been increased by pR from the initial state in this Rayleigh collapse, thus

leading to a smaller final radius Rf. It follows that the equilibrium radius for the Maxwell component

of the stress is zero. In the limit G → 0, Eq. (15) reduces to the classical result.13

The Jacobian matrix of the first-order system is evaluated at the equilibrium point A = ∇f(x0)

to obtain the eigenvalues

(Deλ + 1)

{

Deλ3 +
[

1 +
ω2

N R f De

C
+

4

C R f

(

1

Re
−

De

Ca

)]

λ2

+

[

ω2
N

(

R f

C
− De

)

+
4

R2
f

(

1

Re
−

De

Ca

)

]

λ + ω2
N

}

= 0, (16)

where

ωN =
1

R f

√

(

1 +
2

W e

)

3γ

R
3γ

f

−
2

W eR f

+
4

Ca R3
f

(17)

is the bubble natural frequency. Compared to the standard result (e.g., Minnaert56 frequency), an

extra term accounting for elasticity is added. The elasticity affects the natural frequency explicitly

through Ca and implicitly through Rf, such that the overall effect is not trivial. The inclusion of the

two additional differential equations for the stresses due to relaxation complicates the solution by

adding two eigenvalues. Clearly, one is −1/De. In the cubic polynomial, there is one real negative

root and two complex roots; the real part of the complex roots are found to be negative numerically

provided De/Ca < 1/Re, which means the nonlinear system is always asymptotically stable in the

physically allowable regime.

When De ≪ 1/Re, the time derivative of stresses in Eqs. (9) and (10) is negligible compared to

the rest of the terms. A linear analysis is sufficient to obtain the asymptotic solution. As De increases,

due to the strong coupling between the governing equation and constitutive relations, the full system

becomes highly nonlinear and a simple linear analysis fails. Fig. 6 shows the failure of the linear

theory by comparing such an approach with the corresponding numerical solution. Clearly, both

the frequency and damping coefficient obtained from the linear analysis are incorrect. In nonlinear

systems, the amplitude and phase of the oscillations may depend upon each other.49 As a result, the

frequency may vary with time, such that higher-order terms in the perturbation analysis are required.

Such shifts in the frequency build up over time and lead to significant discrepancies.

The method of multiple scales50 produces an approximate solution that captures the time-

varying frequency and agrees well with the numerical solution. First, the solution is expanded about

0 1 2 3 4
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FIG. 6. Failure of the linear analysis for the Zener model (De = 1, Ca = 101, pR = 34, C = 160, and Re = 3.0): numerical

results (solid), linear perturbation analysis (dashed).
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the (final) equilibrium conditions,

R(t) = R f + x(t), τm = τm, f + y(t), ςm = ςm, f + z(t). (18)

Since Eq. (15) is the only equilibrium point of the system, τm, f and ςm, f are zero. The equations for

x, y, and z yield, up to third order

ẍ + β ẋ + ω2
N x = f1(x, ẋ, z, ż), ẏ +

1

De
y = f2(x, ẋ), ż +

1

De
z = f3(x, ẋ, y), (19)

where ωN is given in Eq. (17) and β is defined as

β =
ω2

N R f

C
+

4

C R f De

(

1

Re
−

De

Ca

)

(20)

and f1, f2, and f3 are given as

f1 = −
3

2R f

ẋ2 −
2ω2

N

C
xẋ + α1x2 −

R f ω
2
N

C2
ẋ2 +

β2

C
xẋ +

3

2R2
f

x ẋ2 −
1

R f C
ẋ3 +

2α1

C
ẋx2 + α2x3

−
2ω2

N

C2
x ẋ2 −

ω2
N

C3
ẋ3 +

β3

C2
x ẋ2 +

β4

C
ẋx2 +

3

R f

z +
3

C
ż −

3

R2
f

xz +
6

R f C
ẋz +

6

R f C2
ẋ2z

+
3

C2
ẋ ż +

3

R3
f

x2z −
6

R2
f C

xẋz +
3

C3
ẋ2 ż, (21a)

f2 = 4

(

1

Ca R3
f

−
1

ReDe

)

ẋ

R f

− 4

(

4

Ca R3
f

−
1

ReDe

)

x ẋ

R2
f

+ 4

(

10

Ca R3
f

−
1

ReDe

)

x2 ẋ

R3
f

, (21b)

f3 =−
ẋ y

R f

+
x ẋ y

R2
f

+
4

3

(

1

Ca
−

1

ReDe

)

ẋ

R f

−
4

3

(

3

4Ca
−

1

ReDe

)

x ẋ

R2
f

+
4

3

(

1

Ca
−

1

ReDe

)

x2 ẋ

R3
f

.

(21c)

The terms with β3 and β4 end up being neglected based on subsequent assumptions. The constants

in the functions f1, f2, and f3 are

α1 =
1

R3
f

[

9γ (γ + 1)

2

(

1 +
2

W e

)

1

R
3γ

f

−
4

W eR f

+
12

Ca R3
f

]

, (22a)

α2 =
1

R4
f

[

−
9γ 2 + 18γ + 11

2

(

1 +
2

W e

)

1

R
3γ

f

+
6

W eR f

−
76

3Ca R3
f

]

, (22b)

β2 =
4

3

1

R2
f Ca

(

1 +
8

R3
f

)

. (22c)

Next, the small parameter ǫ is defined: x = ǫu, y = ǫv, and z = ǫw, which directly implies

y, z ∼ O(ǫ2). To facilitate the analysis, two additional assumptions are made: 1/Re ∼ ǫ, and

1/C ∼ ǫ2. Equivalently, y and z are of order ẋ/Re, ẋ De/Ca, a result that will be used later. The

Reynolds number assumption allows the stresses to be carried over to the higher-order equations,

and the sound speed assumption permits the simplification of certain higher-order terms. These

assumptions are discussed in greater detail in Sec. III B 4. For the parameter range of interest,

these assumptions are good, as validated by the results. From the model constraint De/Ca < 1/Re,

De/Ca ∼ O(ǫ) or less, such that the terms involving De/Ca and 1/Re are second order at the earliest.

Equation (19) can then be re-written

ü + ω2
N u = ǫ

(

α1u2 −
3

2R f

u̇2 +
3

R f

z

)

+ ǫ2

(

−β1u̇ + α2u3 +
3

2R f
2

uu̇2 −
3

R f
2

uz

)

, (23)
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where β → β1 for small 1/ReDe, with

β1 =
ω2

N R f

C
−

4

CaC R f

. (24)

According to the method of multiple scales, u is expanded as follows:

u(t) = u0(T0, T1, T2) + ǫu1(T0, T1, T2) + ǫ2u2(T0, T1, T2), (25)

where Tn = ǫnt for n = 0, 1, 2, and the appropriate derivatives are defined. Terms up to ǫ2 are

retained for u, i.e., R is expanded to order ǫ3, and the stresses are treated accordingly. The first and

second time derivatives are defined as

d

dt
=

∑

n=0

ǫn Dn = D0 + ǫD1 + ǫ2 D2, (26)

d2

dt2
= D2

0 + 2ǫD0 D1 + ǫ2(D2
1 + 2D0 D2), (27)

where Dn � ∂
∂Tn

. The stresses are expanded in a fashion similar to u; only the leading term is

required. After substituting Eq. (25) into Eq. (23), the same-order terms can be collected.

� For O(ǫ),

D2
0u0 + ω2

N u0 = 0. (28)

Thus, u0 is harmonic with no damping

u0 = A0(T1, T2) exp(iωN T0) + cc, (29)

where cc is the complex conjugate of the preceding term and A0 is a complex function that

may depend on T1 and T2 in general. As seen below, A0 is calculated by requiring u1 and u2 to

be periodic in T0. To carry out the analysis appropriately, it is essential to keep this first-order

equation in the form of Eq. (28).
� For O(ǫ2),

D2
0u1 + ω2

N u1 = − 2D0 D1u0 + α1u2
0 −

3

2R f

(D0u0)2

= − 2iωN D1A0 exp(iωN T0) + α1[A2
0 exp(i2ωN T0) + A0Ā0]

−
3ω2

N

2R f

[A0Ā0 − A2
0 exp(i2ωN T0)] + cc, (30)

where Ā0 denotes the complex conjugate of A0. This solution is obtained by substituting u0

into Eq. (30). Any particular solution to the above equation has a secular term containing the

factor exp (iωNT0) unless D1A0 = 0. Therefore, A0 must be independent of T1, such that u1

can be expressed as

u1 = A1 exp(iωN T0) + B1 + cc, (31)

where A1 = −
A2

0

3

(

α1

ω2
N

+
3

2R f

)

, B1 = A0Ā0

(

α1

ω2
N

−
3

2R f

)

.

� For O(ǫ3),

D2
0u2+ ω2

N u2 = −D2
1u0 − 2D0 D1u1 − 2D0 D2u0 + β1 D0u0 + 2α1u0u1

−
3

R f

(D0u0) [(D1u0) + (D0u1)] + α2u3
0 +

3

2R2
f

u0(D0u0)2 +
3

R f

w1 (32)

and

D0w1 +
1

De
w1 = −

4

3DeReR f

(D0u0 − λD2
0u0). (33)
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The solution to Eq. (33) can be written as

w1 = (C1r + iC1i )A0 exp(iωN T0) + cc + D1(T1, T2) exp(−T0/De), (34)

where

C1r =
4

3

1

R f

(

De

Ca
−

1

ReR f

)

ω2
N De

1 + ω2
N De2

, C1i =
C1r

ωN De
. (35)

Substituting Eqs. (28), (30), and (34) into Eq. (32) yields

D2
0u2 + ω2

N u2 = A2 exp(iωN T0) + c1A
3
0 exp(3iωN T0) + cc +

3D1

R f

exp(−T0/De), (36)

where the coefficient of the secular term for u2 is

A2 = −2iωN (D2A0) − β1(iωN )A0 +
3

R f

(C1r + iC1i )A0 + B2A
2
0Ā0, (37)

with

B2 = 2α1

(

A1

A2
0

+ 2
B1

A0Ā0

)

+ 3α2 +
3ω2

N

2R f

−
6ω2

NA1

A2
0 R f

,

and c1 is a constant of the higher order term. The secular term in Eq. (36) can be set to zero

and separated into real and imaginary parts by introducing

A0 = A0a(T2) exp[iA0θ (T2)]. (38)

The real and imaginary parts are given by the following differential equations:

− 2ωN

∂A0a

∂T2

+
(

−β1ωN +
3C1i

R f

)

A0a = 0,

(39)

2ωNA0a

∂A0θ

∂T2

+ 3C1rA0a + B2A
3
0a = 0,

whose solutions Aoa and Aoθ are

A0a = F1 exp(E1T2), A0θ = −
3C1r

2ωN

T2 −
B2F

2
1

4E1ωN

exp(2E1T2) + F2, (40)

where

E1 = −
β1

2
+

3C1i

2ωN R f

, (41)

and F1 and F2 are constants determined by the initial conditions

R(0) = 1, Ṙ(0) = −pR/C. (42)

1. Oscillations characteristics: Damping and frequency

From the above analysis, the leading term of the damping can be expressed as a linear combi-

nation of a compressible contribution βc and a viscous component βv

βtot = βc + βv =
R f ω

2
N

2C
+

2

R f

(

1

ReR f

−
De

Ca

)

1

1 + ω2
N De2

. (43)

Both components depend on elasticity. However, relaxation only affects the viscous term weakly,

and decreases monotonically with increasing Ca. The compressible component can be broken up

into thermal, interfacial tension, and elastic contributions,25 i.e.,

βc =
R f ω

2
N

2C
=

[

3γ

2

(

1 +
2

W e

)

1

R
3γ

f

−
1

W eR f

+
2

Ca R3
f

]

1

R f C
. (44)
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FIG. 7. Dependence of the damping coefficient on De and Ca (pR = 34, C = 160, and Re = 3.0). The physical regime

indicates that the constraint De/Ca < 1/Re is met. (Left) Contour plots. (Right) Representative line plot holding De = 0.001

constant: β tot (solid), βv (dotted), βc (dashed-dotted).

Although seemingly unstable, surface tension never dominates the thermal term. The damping in

Eq. (44) acts only if compressibility is present. For sufficiently large Reynolds number, the viscous

damping is negligible. Furthermore, due to the physical constraint between Re, De, and Ca, a

large Reynolds implies a small relaxation time for a fixed elasticity, such that relaxation effects no

longer matter, which is consistent with Brujan.28 Equation (43) only includes first-order effects;

higher-order terms are needed to represent the damping accurately, but cannot be written as readily.

The dependence of the damping coefficient Eq. (43) on Ca and De is shown in Fig. 7. The

boundary of the model constraint (De/Ca < 1/Re) is highlighted by a line, to show the physically

appropriate phase space region. For a fixed Ca, the damping decreases monotonically with increasing

De. For a fixed De, the damping is non-monotonic with respect to Ca (Fig. 7). As expected, the viscous

and compressible components add up to the total damping. These observations offer a quantitative

explanation of the behavior shown in Fig. 4. Specifically, at small Ca (large elasticity), βc dominates

the damping, as expected from the constitutive relation where the viscous contribution becomes

negligible. At higher Ca (smaller elasticity), βv becomes more important than compressibility. The

viscous term of the damping coefficient increases with decreasing elasticity (i.e., as Ca increases),

while the compressibility component follows the inverse trend, i.e., βc decreases with increasing

Cauchy number, since Rf is bounded; this is expected given that Rf decreases with decreasing

elasticity (Fig. 5). Since the compressible component decreases before the viscous term increases

(as a function of Ca), the damping coefficient has a minimum for a finite non-zero elasticity, which

falls in the range of reported tissue elasticities.25 This result explains why the intermediate value of

Ca results in less damping in Fig. 2.

The oscillatory component of the solution consists of simple harmonic motion and a time-

dependent term that decays exponentially with time, as observed in the leading term

exp

{

iωN

[

T0 +
2

R f

(

1

ReR f

−
De

Ca

)

De

1 + ω2
N De2

T2 −
F2

1

4E1ω
2
N

B2(T2) exp(2E1T2)

]

}

. (45)

The multiple scales analysis adds two terms that depend on relaxation to the frequency obtained

from linear analysis: a constant and an exponential decay (E1 < 0). For small De, the interaction

between frequency and amplitude (nonlinearity) is weak; as De approaches zero, the frequency from

the linear solution is recovered. The first additional term in Eq. (45), small in the cases of interest,

simply indicates that bubbles oscillate faster when relaxation is present. The second additional term

is time-dependent and introduces relaxation, i.e., the time it takes for the surroundings to recover. It

takes a few cycles for the frequency to reach a steady-state value, in which case the frequency goes
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as

ωss = ωN +
ωN De

1 + ω2
N De2

2

R f

(

1

ReR f

−
De

Ca

)

. (46)

The dependence of ωss on Ca and De is shown in Figs. 8 and 9. The dependence on Ca is strong

and, similarly to β, non-monotonic. Viscosity and compressibility weakly affect ωss. The minimum

is also due to the dependence of the equilibrium radius on the elasticity in Eq. (15). There is always

a maximum in the graph of frequency as a function of De, as expected from Eq. (45). However, the

ωss variations with De are relatively small.

To assess the accuracy of the analysis, Fig. 10 provides a comparison between the numerical

solution and the multiple scales results for the Zener model with various De and Ca. The damping,

time-dependent frequency (Fig. 6) and nonlinearities are well captured, thus validating this approach.

Furthermore, it is clear that the present third-order expansion is required to represent the time-varying

oscillation period, and that the assumptions made during the analysis are valid. Subharmonics appear

in the analytical result at the peaks. The predicted frequency clearly increases with time.

In summary, the method of multiple scales has been used successfully to provide an analytical

solution for the oscillations of a bubble in a Zener viscoelastic medium. Equations (43) and (45) give

a good approximation of the damping and frequency, thus providing accurate predictions of bubble

oscillations for known viscoelastic properties, which can be useful in a biomedical setting, e.g., to
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(Left) ωss vs. Ca. De = 0 (Kelvin-Voigt; solid), De = 0.01 (dashed), De = 1 (dotted). (Right) ωss vs. De. Ca → ∞ (Maxwell;

solid), Ca = 1 (dashed), Ca = 0.5 (dotted).

Downloaded 30 Sep 2013 to 131.215.71.79. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



083101-15 C. Hua and E. Johnsen Phys. Fluids 25, 083101 (2013)

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Dimensionless Time t*c/R
0

D
im

en
si

o
n
le

ss
 R

ad
iu

s 
R

/R
0

Ca = 0.01, De = 0.001

Ca = 0.10, De = 0.01

Ca = 101, De = 1

0 2 4 6 8 10 12 14 16
21

22

23

24

25

26

27

28

Number of Cycles

D
im

en
si

o
n

le
ss

 F
re

q
u

en
cy

FIG. 10. Validation of the theoretical results against the numerical solution (pR = 34, C = 160, and Re = 3.0). (Left) History

of the bubble radius for different Ca and De. From top to bottom: Ca = 0.01 and De = 0.001, Ca = 0.10 and De = 0.01, and

Ca → ∞ and De = 1 (Maxwell); thick solid: numerical solution; dashed: multiple scales; thin solid: decay curve. (Right)

Frequency at the steady state vs. number of cycles for a single run with the Zener model (De = 1, Ca = 101). Numerical

solution: solid; theory: stars.

determine how long bubbles oscillate in a given application. The restrictions of the present analysis

lie in the assumptions that 1/Re and 1/C both be small (order ǫ). While the mathematical approach

is sound even for large-amplitude oscillations, a linear constitutive model may not be appropriate

for large strains.

2. Collapse properties: Minimum radius and collapse time

The minimum radius, achieved at the first collapse, is an important quantity with respect to

potential damage caused by bubble collapse, since it directly relates to the maximum pressure (for

an adiabatic process, pR3γ = constant) and thus shock emission. From this quantity, one can compute

the collapse time, which can readily be measured acoustically in experiments. Two approaches are

followed to predict the minimum radius and the collapse time: one based on direct integration of

the Rayleigh-Plesset equation (with no compressibility), and one based on the linear analysis for the

Keller-Miksis equation. To simplify the analysis, De = 0 in this section.

Direct integration of Eq. (1) for the Rayleigh collapse problem can be done by setting

C, Re → ∞ (incompressible and inviscid).13 While restrictive, these assumptions are still ex-

pected to produce a reasonable result. Both compressibility and viscosity have their largest effect

near collapse, and the time over which the high velocities are generated is short; since both effects

depend on velocity, the collapse time is not expected to be affected significantly, though the minimum

radius may be. The results confirm these hypotheses.

Since pR is constant and De = 0, Eq. (1) can be integrated by multiplying through by 2R2 Ṙ and

forming appropriate time derivatives. After integration, application of the initial conditions Ṙ(0) = 0

and R(0) = 1 yields the velocity of the bubble wall

Ṙ2 =
2

3(γ − 1)

(

1 +
2

W e

) (

1

R3
−

1

R3γ

)

−
2

W e

(

1

R
−

1

R3

)

−
2

3

(

1 + pR +
4

3Ca

) (

1 −
1

R3

)

+
8

3Ca

ln R

R3
, (47)

which is equivalent to the result shown in Brennen,13 with two additional terms for elasticity. The

minimum bubble radius is obtained by setting Ṙ = 0 above and solving for the corresponding radius

Rmin.
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By re-arranging Eq. (47), it follows that

tc =
∫ Rmin

1

[

2
(

1 + 2
W e

)

3(1 − γ )
(x−3γ − x−3) −

2

W e
(x−1 − x−3) − ζ (1 − x−3) +

8

3Ca

ln(x)

x3

]−1/2

dx,

(48)

where ζ = 2
3
(1 + pR + 4

3Ca
). This integral can be evaluated numerically to find the collapse time tc

since Rmin is known.

The second approach is based on linear analysis, valid for sufficiently small oscillations. To first

order,

R(t) = c1 exp(−βtot t) cos(ωt) + c2 exp(−βtot t) sin(ωt), (49)

where ω =
√

β2
tot − ω2

N . The collapse time is computed by setting the time derivative of the expres-

sion above to zero to obtain

tc =
1

β − (1 − R f )
ω2

N C

pR

+
π

ω
. (50)

This time is then substituted into the radius to obtain

Rmin = R f + e−βtc

{

(1 − R f ) cos(ωtc) +
[

β

ω
(1 − R f ) −

pR

Cω
sin(ωtc)

]

}

. (51)

The two approaches to predict the minimum radius and collapse time are compared to the

numerical results with and without damping as a function of elasticity in Figs. 11 and 12. Since

direct integration only holds in the limits C, Re → ∞, the results from Eqs. (47) and (48) match

the incompressible and inviscid solution very well. However, there is a discrepancy between the

latter and the full compressible simulation. This discrepancy increases with smaller radius (here:

with decreasing elasticity). Linear analysis account for both compressibility and viscosity, and thus

matches the full simulation well as long as the oscillations are not too large, after which the solution

deviates significantly. As explained above, the discrepancy for the collapse time is relatively small,

but is larger for the minimum radius. The collapse time and minimum radius both clearly depend on

elasticity, whose effect is to “soften” the collapse. While tc exhibits non-monotonic behavior with

Cauchy number consistent with the damping coefficient (Sec. III B 1), Rmin decreases monotonically

with increasing Cauchy number. Both of these quantities are important to biomedical applications,

as they quantify the violence of the collapse.

The minimum radius can be used as a measure of nonlinearity of the bubble oscillation in this

problem, e.g., as an inertial cavitation threshold.15, 16 For instance, the critical radius at which the
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FIG. 11. Minimum radius at the first collapse as a function of elasticity (pR = 34). (Left) Numerical results with

C = 160 and Re = 3.0 (dashed-dotted); numerical results with C → ∞ and Re → ∞ (dashed); Eq. (47) with C,

Re → ∞ (solid); Eq. (51) with C = 160 and Re = 3.0 (dotted). (Right) Dependence on relaxation.
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FIG. 12. Collapse time (for the first collapse) as a function of elasticity (pR = 34). (Left) Numerical results with C = 160

and Re = 3.0 (dashed-dotted); numerical results with C → ∞ and Re → ∞ (dashed); Eq. (48) with C, Re → ∞ (solid);

Eq. (50) with C = 160 and Re = 3.0 (dotted). (Right) Dependence on relaxation.

linear solution deviates from the full solution can be used to define the region in which linear analysis

is expected to be accurate. Here, it appears that such a critical radius is R ∼ 0.5. In other words, if

Rmin � 0.5, one expects linear analysis to hold, and if Rmin � 0.5, a more sophisticated approach,

e.g., multiple scales, is required.

3. Special cases: Kelvin-Voigt and Maxwell models

Since Kelvin-Voigt and Maxwell models are arguably the simplest viscoelastic models, they

are briefly discussed here. To get an appreciation for the differences with the Zener model, Fig. 13

compares these three models by considering the numerical solution.

In the limit De → 0, the Kelvin-Voigt model is recovered. In this case, the constitutive relation

no longer takes the form of two differential equations, such that simple linear perturbation analysis

describes the solution very well for all Ca. The first-order equation simply takes the form of a

damped harmonic oscillator with the bubble natural frequency and damping coefficient

ωN =
1

R f

√

√

√

√

√

(

1 + 2
W e

)

3γ

R
3γ

f

− 2
W eR f

+ 4

Ca R3
f

1 + 4
ReC R f

, βtot =
R f ω

2
N

2C
+

2

R f

1
(

ReR f + 4
C

) . (52)
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FIG. 13. History of the bubble radius for different constitutive models (pR = 34, C = 160, and Re = 3.0). Solid: Zener

(Ca = 1.01 and De = 0.1); dotted: Maxwell (Ca = 0.0 and De = 0.1); dashed: Kelvin-Voigt (Ca = 1.01 and De = 0.0).
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FIG. 14. Error in the steady-state frequency. (Left) Dependence on Reynolds number (Ca = 0.10, De = 0.01, and pR = 34).

(Right) Dependence on pressure amplitude (Ca = 0.10, De = 0.01, and Re = 3.0).

If β2
tot < ω2

N , the solution is oscillatory at frequency ω =
√

β2
tot − ω2

N with damping coefficient

β tot. If β2
tot > ω2

N , the system is overdamped, i.e., no oscillations occur. The corrections due to the

coupling between viscous and compressible effects are readily included here. They are not present

in the multiple scales analysis because of the Reynolds number assumption. Overall, the damping

occurs more rapidly in Kelvin-Voigt than Zener for a fixed Ca (Fig. 13).

In the limit Ca → ∞, the Maxwell model is recovered, which results in larger oscillations (and

more damping) for a fixed De (Fig. 13). Furthermore, the equilibrium radius is different since there

is no elasticity. For this model, there is no constraint on De and Re. The multiple scales analysis

is still required due to the nonlinearity of the system and the two additional ordinary differential

equations for the stresses. Thus, Eqs. (43) and (45) still hold, but Ca → ∞ and Rf is fixed.

4. Range of validity of the multiple scales analysis

Two key assumptions are made in the analysis: 1/Re ∼ ǫ and 1/C ∼ ǫ2; given that C = 160,

the latter is not further discussed. Another assumption is that the oscillations are not too large, such

that the dependence on pR is of interest as well. As a measure of the validity of the present analysis,

the discrepancy in the frequency achieved at steady-state ωss calculated from the analytical solution

and the numerical solution is computed and shown in Fig. 14 as a function of both 1/Re and pR. This

quantity is relatively easy to compute (e.g., as opposed to the damping coefficient), can readily be

used across the whole parameter range, and exhibits noticeable errors even for a small discrepancy.

For fixed values of Ca and De, the error increases with pressure amplitude, but remains small

(∼1%) even at high driving pressures. In such situations, it is more likely that a linear constitutive

model no longer holds.

The dependence of the error on the Reynolds number is much more dramatic. As the Reynolds

number is decreased even by a little, the error grows significantly. However, for the present value of

Re = 3.0 (based on the viscosity of blood and the characteristic time and size), the analysis agrees

well with the numerical solution and the error is small (∼1%) despite 1/Re not being exceedingly

small, thus validating the assumption 1/Re ∼ ǫ. Based on these results, it is evident that this analysis

may not be accurate for much smaller bubbles or more viscous media. Given the scope of this work,

the dependence of the error on the other parameters (surface tension, compressibility) is not relevant.

C. Cavitation-bubble collapse

As described in Sec. II A, Rayleigh collapse is usually set up by perturbing the ambient pressure

p∞ by a positive change pA. This effect is O(1) and thus affects the final radius Rf. Another means

by which collapse is achieved is by increasing the equilibrium radius (i.e., decreasing the interior

pressure), so that Eq. (1) is disturbed through the gas pressure term ∼(Ro/R)3γ ; this perturbation
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affects all equations of order higher than O(1). In practice, a nucleus or small bubble subjected

to a transient tension would grow to some maximum radius. At that stage, the ambient pressure

is essentially atmospheric, but the interior pressure is small, thus causing collapse. The resulting

dynamics are different from those observed in Sec. III because the overall stress state is different.

Since the surrounding pressure is atmospheric during the bubble collapse (pA = 0), the bubble

eventually recovers its equilibrium radius. Although not included here to prevent redundancies, the

analysis holds with trivial corrections. It can be shown that the damping coefficient and frequency

increase monotonically with increasing elasticity because the final radius no longer depends on

elasticity. However, comparisons with the results above would be misleading, because the growth

depends on the material properties, such that, for a prescribed tension, the maximum radius will be

different for different properties, thus making comparisons for the collapse difficult. An additional

time scale related to growth would be introduced, further complicating the problem.

IV. CONCLUSIONS

The objective of the present study is to understand the basic physics of bubble dynamics in

soft tissue. Theoretical and numerical models are developed to investigate the Rayleigh collapse and

subsequent oscillations of a spherical gas bubble in tissue-like medium. This material is assumed to

follow a linear Zener viscoelastic model that includes viscosity, elasticity, and stress relaxation. In

addition to numerical integration of the equations, the method of multiple scales is used to predict

the bubble response, specifically with respect to elasticity and relaxation in conditions under which

compressibility is a factor.

The theory accurately predicts the bubble response given the relevant constraints for the problem

under consideration, and can thus be used to investigate the underlying physics. The main observation

is that the viscoelastic properties and compressibility strongly affect the dynamics. The key specific

results are summarized below:

� Due to the nonlinearity of the system of equations, a third-order expansion of the radius about

the final radius is necessary in general to accurately represent the dynamics.
� The final equilibrium radius is a function of the elasticity because of the stress field in this

problem setup (Rayleigh collapse). It does not depend on relaxation, viscosity, or compress-

ibility.
� The damping consists of the sum of viscous and compressible terms that exhibit opposite

behavior with varying elasticity: the viscous contribution increases with decreasing elasticity,

while the compressible component decreases with decreasing elasticity. Thus, compressible

damping dominates at large elasticity and viscous at low elasticity. Because of the different

behavior of each component, the total damping does not monotonically decrease with decreas-

ing elasticity, but has a minimum for a finite non-zero elasticity in a range corresponding to

reported tissue elasticities.
� Relaxation affects the damping purely through the viscous component, which decreases mono-

tonically with increasing relaxation time.
� Due to the nonlinearity of the system, the oscillation frequency changes with time: it first

increases before reaching a plateau. This time-dependence can only be captured with a third-

order expansion.
� The minimum radius and collapse time, both quantities of interest with respect to potential

damage due to bubble collapse, can be predicted using two different approaches, for sufficiently

small amplitudes. Deviations at larger amplitudes are purely due to either compressibility and

viscous effects with the first approach, or amplitude size for the second. A criterion

(Rmin � 0.5) is proposed for the range of validity of the linear analysis based on the pre-

dicted minimum radius.

The knowledge acquired in the present study may be useful for a variety of biomedical engi-

neering applications that either rely on oscillating bubbles to achieve a given outcome or in which

cavitation must be prevented, e.g., to determine how long bubbles keep oscillating and how violent

a collapse is. The Zener model is arguably the simplest fluid and solid viscoelastic model, as it
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FIG. 15. History of the bubble radius for unphysical parameters in the Zener model (De/Ca > 1/Re, pR = 34, C = 160, and

Re = 3.0). (Left) De/Ca = 0 (Maxwell; dotted), De/Ca = 1 > 1/Re (thin solid), De/Ca = 10 ≫ 1/Re (thick solid), De/Ca

= 0 (Kelvin-Voigt; dashed). (Right) Marginal stability regions in phase space.

combines a Hookean solid with a Newtonian fluid. More sophisticated models for tissue include

frequency-dependent coefficients, finite-strain analysis, and nonlinear viscoelasticity. Furthermore,

large-amplitude oscillations are prone to non-spherical perturbation growth. To address these issues,

current efforts focus on including more realistic constitutive relations (hyperelasticity, nonlinear

viscoelasticity), and analytical (Rayleigh-Plesset extensions, non-spherical perturbation analysis)

and computational (direct simulations of the full compressible equations of motion) methods.

APPENDIX: ADDITIONAL REMARKS ON CONSTITUTIVE MODELING

In Eq. (4), independent values of Re, De, and Ca may be selected, but a choice leading to

De/Ca > 1/Re produces a negative spring constant, which of course is unphysical. Nevertheless,

the resulting behavior is interesting from a mathematical viewpoint. Fig. 15 (left) shows responses

for various De that violate this constraint. When De/Ca ≫ 1/Re, the solution lies between two

limits: the solution initially follows the behavior in a purely Newtonian fluid before relaxing back to

the Kelvin-Voigt solution; as De is decreased, the solution tends to the Kelvin-Voigt solution more

rapidly. For these solutions, the oscillations eventually damp out. For De/Ca � 1/Re, a boundary layer

behavior is evident: after relaxing to the Kelvin-Voigt solution, the oscillations never decay beyond

a certain point. Various time-marching schemes were used, such that this instability is unlikely to be

numerical. The basic stability theorem states that if the linearized system is asymptotically stable,

so is the full system. Thus, the original system is asymptotically stable outside the shaded region. If

the linearized system is not asymptotically stable, the nonlinear terms in the original system must

be investigated. In Eq. (16), the real part of the complex eigenvalue is positive for an intermediate

range of De (region 2 in Fig. 15, right), which indicates that this region is not asymptotically stable.

The curve of marginal stability is obtained by varying both Ca and De. As shown in Fig. 15 (right),

the system is asymptotically stable outside the shaded region (regions 1 and 3) and unstable inside

(region 2). For the unstable mode, instead of evolving in the unstable manifold, the steady-state

solution is such that Rss(t) = Rss(t + T) where T is the period of the oscillation. Thus, the dynamics

converge to a limit cycle in the phase diagram, from which it is concluded that a Hopf bifurcation

occurs when varying De. The solution never diverges, presumably due to the action of higher-order

nonlinear terms.
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