|   |   |   |  |  | END<br>DATT<br>FILMED<br>3 82<br>DTIG |  |
|---|---|---|--|--|---------------------------------------|--|
|   |   |   |  |  |                                       |  |
|   |   |   |  |  |                                       |  |
|   |   |   |  |  |                                       |  |
|   | _ | _ |  |  |                                       |  |
| Ī |   |   |  |  |                                       |  |





MRC Technical Summary Report #2277

NONLINEAR PARABOLIC EQUATIONS INVOLVING MEASURES AS INITIAL CONDITIONS

Haim Brezis and Avner Friedman

Mathematics Research Center University of Wisconsin-Madison 610 Walnut Street Madison, Wisconsin 53706

September 1981

(Received September 1, 1981)



Sponsored by

U. S. Army Research Office P. O. Box 12211 Research Triangle Park North Carolina 27709



# Approved for public release Distribution unlimited

and

-----

National Science Foundation Washington, DC 20550

32 92 02 026

#### UNIVERSITY OF WISCONSIN-MADISON MATHEMATICS RESEARCH CENTER

### NONLINEAR PARABOLIC EQUATIONS INVOLVING MEASURES AS INITIAL CONDITIONS

Haim Brezis and Avner Friedman

Technical Summary Report #2277

September 1981

ABSTRACT We first consider the Cauchy problem, for certain a quations)  $u_{+} = \Delta u + |u|^{p-1} u = 0$  on  $\Omega \times (0,T)$ (1)Swith a boundary condition and the initial condition.  $u(x,0) = \delta(x)$  on  $\Omega$ (2) where  $\Omega = \mathbb{R}^n$  is domain containing 0,  $\Omega , <math>0 < T < \infty$  and  $\delta(x)$  is the Dirac mass at 0. We prove that a solution of (+1) - (+1) = (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) + (+1) +only if 0 . When <math>0 we actually prove a more generalexistence and uniqueness result in which (2) is replaced by  $u(x,0) = u_n(x)$  on  $\Omega$ (3) D Marchell

where u<sub>0</sub> is a <u>measure</u>.

Next, we discuss the Cauchy problem for

 $u_{+} - \Delta(|u|^{m-1}u) = 0$  on  $\Omega \times (0,T)$ (4)where  $0 < m < \infty$ , with a boundary condition and the initial condition (3). We prove that a solution of (4) - (2) exists if and only if  $m > \frac{n-2}{n}$ . When  $m > \frac{n-2}{2}$  we actually prove existence for the problem (4) - (3).

AMS(MOS) Subject Classifications: 35K15, 35K55

Key Words: Nonlinear parabolic equations; Measures as initial conditions; Nonexistence; Boundary layer; Removable singularities; Porous media equation; Regularizing semigroups; Compact semigroups. Work Unit Number 1 - Applied Analysis

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, The second author is partially supported by the National Science Foundation under Grant No. MCS 7915171.

Vanc - m-

#### SIGNIFICANCE AND EXPLANATION

Nonlinear evolution equations of the form

 $u_{+} = \Delta u + |u|^{p-1} u = 0 \text{ on } \mathbf{R}^{n} \times (0, T)$ 

or

$$u_t - \Delta(|u|^{m-1}u) = 0 \text{ on } \mathbb{R}^n \times (0,T)$$

arise in a large variety of problems in physics and mechanics. This paper deals with the question of <u>existence</u> (and uniqueness) when the initial data is a measure, for example a Dirac mass. Physically this corresponds to the <u>important case</u> when the initial temperature (or initial density etc. ..) is <u>extremely high near one point</u>. The main novelty of this paper is to show that a solution exists only under some severe restrictions on the parameter p (or m); namely p must be less than  $\frac{n+2}{n}$  (m >  $\frac{n-2}{n}$ ). For example, one c striking conclusion reached is the fact that the equation

(1)  $\begin{cases} u_{t} - \Delta u + u^{3} = 0 \text{ in } \mathbb{R}^{n} \times (0, T) \\ u(x, 0) = \delta(x) \\ \geqslant \sigma \tau = \end{cases}$ 

possesses no solution in any dimension  $n \ge 1$  and on any time interval (0,T). This result pinpoints the <u>sharp contrast</u> between linear and nonlinear equations from the point of view of existence. It also implies that <u>linearization is meaningless</u> for equations of the type (1) ever - small time interval.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the authors of this report.

- - B -

# NONLINEAR PARABOLIC EQUATIONS INVOLVING MEASURES AS INITIAL CONDITIONS

Haim Brezis and Avner Friedman

## 1. Introduction

In this paper we first consider the Cauchy problem for the nonlinear parabolic equation

(1) 
$$u_t - \Delta u + |u|^{p-1} u = 0 \text{ on } \Omega \times (0,T)$$

with a boundary condition and the initial condition

(2) 
$$u(x,0) = \delta(x)$$
 on  $\Omega$ 

 $u(x,0) = v_{(x)} \quad \dots$  **R**<sup>n</sup> is a domain containing 0, 0 \infty, 0 < T <  $\infty$  and  $\delta(x) \int_{U_{\infty} \cup U_{\infty} \cup U_{\infty}$ where  $\Omega$ denotes the Dirac mass at 0 ... Distribution

We prove that a solution of (1) - (2) exists <u>if and only if</u> 0 . In particular the equation

$$u_{t} - \Delta u + u^{3} = 0 \quad \text{on} \quad \Omega \times (0, T)$$
$$u(x, 0) = \delta(x) \quad \text{on} \quad \Omega$$

Availability Corre

ar.c., o.,

DIIG

COPY NSPECTED

DIST

has no solution in any dimension n > 1. We derive the nonexistence claim from a statement about "removable singularities"; we show that there is a <u>local</u> obstruction to the existence of a solution of (1) - (2) when  $p \ge \frac{n+2}{n}$ no matter what conditions we impose on the boundary  $\partial\Omega$ . When 0we actually prove a more general existence and uniqueness result in which (2) is replaced by

$$(3) u(x,0) = u_0(x) in \Omega$$

where  $u_0(x)$  is a <u>measure</u>.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. The second author is partially supported by the National Science Foundation under Grant No. MCS 7915171.

Next we discuss the Cauchy problem for the equation

(4) 
$$u_{\perp} - \Delta(|u|^{m-1}u) = 0 \text{ on } \Omega \times (0,T)$$

where m > 0, with a boundary condition and the initial condition (2). We prove that a solution of (4) - (2) exists <u>if and only if</u>  $m > \frac{n-2}{n}$  (any m > 0when n = 1 or 2). We actually prove an existence result for (4) - (3) when  $m > \frac{n-2}{n}$ .

The solvability of (4) - (3) when  $u_0$  is a measure has been considered by various authors. If  $\Omega = \mathbb{R}^n$ ,  $u_0(x) = \delta(x)$  and  $m > \frac{n-2}{n}$ , an explicit solution of (4) - (3) was given by Barenblatt [4] (see also Pattle [21]). If  $\Omega = \mathbb{R}^n$ , m > 1,  $u_0 > 0$  is a bounded measure, existence and uniqueness was obtained by M. Pierre [23], even for more general nonlinearities  $\phi(u)$  - not just  $|u|^{m-1}u$  [the case n = 1 had been treated earlier by S. Kamin [18]). The <u>non existence</u> aspect seems however to be new. Non existence results for (1) - (2) (or (4) - (2)) are somewhat surprizing in view of the following facts:

- i) solutions of (1) (3) [or (4) (3)] are known to exist for any  $u_0 \in L^{1}(\Omega)$  under no restriction on p > 0 (or m > 0)
- ii) a priori estimates do not "distinguish" between L<sup>1</sup> functions and measures.

This apparent contradiction will be explained in Sections 3 and 4.

Existence and <u>non existence</u> results for <u>elliptic</u> equations of the form  $-\Delta u + |u|^{p-1}u = f$  on  $\Omega$ 

where f is a <u>measure</u> have been obtained by Bamberger [2], Benilan-Brezis [6] and Brezis-Veron [12]. Our approach borrows some ideas from these papers. The results concerning equation (1) are presented in Section 2, 3 and 4.

In Section 2 we prove non existence and removable singularities for (1) - (2) when  $p \ge \frac{n+2}{n}$ .

In Section 3 we prove existence and uniqueness of a solution of (1) - (3) when  $p < \frac{n+2}{n}$ .

In Section 4 we assume  $p \ge \frac{n+2}{n}$  and we study the limiting behavior of a sequence  $u_j$  of solutions of (1) corresponding to a sequence of smooth initial data  $u_{0j} + \delta$ . We exhibit a <u>boundary layer</u> phenomenon <u>at t = 0</u>; in the process of passing to the limit <u>one loses the natural initial condition</u>.

In Section 5 we discuss the properties of equation (4).



2. Non existence and removable singularities for equation (1) when  $p \ge \frac{n+2}{n}$ . Let  $\Omega \subset \mathbb{R}^n$  be any open set with  $0 \in \Omega$ . Assume  $p \ge \frac{n+2}{n}$ .

Definition. A solution of (1) is a function  $u(x,t) \in L^p_{loc}(\Omega \times (0,T))$  such that (1) holds in the sense of distributions i.e.

 $-\iint u\phi_{\pm} dxdt - \iint u\Delta\phi dxdt + \iint |u|^{p-1}u \phi dxdt = 0 \quad \forall \phi \in \mathcal{D}(\Omega \times (0,T)) \quad .$ 

The main results of Section 2 are the following

Theorem 1. There is no solution of (1) such that

ess 
$$\lim_{t \to 0} \int u(x,t)\phi(x)dx = \phi(0) \quad \forall \phi \in C_{C}(\Omega)^{(1)}$$

Theorem 1 is an immediate consequence of

Theorem 2. Assume u is a solution of (1) such that

(5) ess 
$$\lim_{t \to 0} \int u(x,t)\phi(x)dx = 0 \quad \forall \phi \in C_{C}(\Omega \setminus \{0\})$$

Then  $u \in c^{2,1}(\Omega \times [0,T))^{(2)}$  and u(x,0) = 0 on  $\Omega$ .

<u>Remark 1</u>. Theorem 2 implies in particular the following. Let u be a classical solution of (1) on  $\Omega \times (0,T)$ . Assume that u is continuous on  $\Omega \times [0,T)$  except possibly at the point (x,t) = (0,0) and that u(x,0) = 0 on  $\Omega \setminus \{0\}$ . <u>Conclusion</u>: u has <u>no singularity</u> at (0,0).

Note the <u>sharp contrast</u> with the behavior of solutions of <u>linear</u> parabolic equations. For example the fundamental solution E(x,t) of the heat equation satisfies:

i)  $E_{+} - \Delta E = 0$  in  $\mathbb{R}^{n} \times (0,T)$ 

ii) E(x,t) is smooth on  $\mathbb{R}^n \times [0,T)$  except at the point (x,t) = (0,0)and E(x,0) = 0 for  $x \neq 0$ 

(1)  $C_{c}(\Omega)$  denotes the space of all continuous functions with compact support in  $\Omega$ . (2)

 $c^{2,1}$  denotes the space of all continuous functions u(x,t) having continuous derivatives  $u_t$ ,  $u_{x_i}$ ,  $u_{x_ix_4}$ .

-4-

iii) E has a singularity at (0,0).

<u>Remark 2</u>. In Theorem 2 one may replace condition (5) by the weaker condition (5') ess lim  $\int u(x,t)\phi(x)dx = 0 \quad \forall \phi \in \mathcal{D}(\Omega \setminus \{0\})$ 

provided  $u \ge 0$  (because, in that case, (5) <==> (5')). However if u changes sign we don't know whether the conclusion of Theorem 2 is still valid under the assumption (5').

The proof of Theorem 2 is divided into 6 steps. In what follows u denotes a solution of (1) satisfying (5).

Step 1. We have  $u \in C^{2,1}(\Omega \times (0,T))$ .

<u>Proof</u>. We shall use a parabolic version of Kato's inequality.

Lemma 1. Let  $Q \subset \mathbb{R}^n \times \mathbb{R}$  be any open set. Let  $u \in L^1_{loc}(Q)$  be such that

 $u_{\perp} - \Delta u = f \text{ in } \mathcal{D}^{*}(Q)$ 

with  $f \in L^1_{loc}(Q)$ . Then

 $|u|_{t} - \Delta |u| \leq f \text{ sign } u \text{ in } \mathcal{D}(Q)$  .<sup>(1)</sup>

Since the proof is almost identical to the proof in the elliptic case (see Kato [19]) we shall omit it.

From (1) and Lemma 1 we deduce that

(6) 
$$|u|_{t} - \Delta |u| + |u|^{p} \leq 0 \text{ in } \mathcal{D}^{\prime}(\Omega \times (0,T))$$

and in particular

(7)  $|u|_{+} - \Delta |u| \leq 0 \quad \text{in} \quad \mathcal{D}^{\dagger}(\Omega \times (0,T)) \quad .$ 

Therefore |u| is subcaloric in  $\Omega \times (0,T)$  and consequently  $u \in L_{loc}^{\infty}(\Omega \times (0,T))$ . Indeed a mollifier  $U_{\varepsilon}$  of |u| still satisfies (7). Representing it in terms of Green's function in a cube  $K_{\tau}$  with sides

(1)

$$\operatorname{sign} u = \begin{cases} 1 & \text{if } u > 0 \\ 0 & \text{if } u = 0 \\ -1 & \text{if } u < 0 \end{cases}$$

-5-

parallel to the axes we obtain (see Friedman [17] p. 130)

$$U_{\varepsilon}(x,t) \leq C_{r} \int_{p_{r}}^{b_{r}} U_{\varepsilon}$$

where  $\partial_{p_{T}} K_{r}$  is the parabolic boundary of  $K_{r}$  and (x,t) is the center of its top face. Integrating with respect to r in some interval  $0 < r_{1} < r < r_{2}$  and taking  $\varepsilon \neq 0$  we obtain that  $u \in L_{loc}^{\infty}(\Omega \times (0,T))$ .

Using (1) and the standard regularity theory for the heat equation we conclude that  $u \in C^{2,1}(\Omega \times (0,T))$ . In fact, u is as smooth as the function  $u \mapsto |u|^{p-1}u$  permits. In particular if p is an integer then  $u \in c^{\infty}(\Omega \times (0,T))$ .

Step 2. Let  $\omega \subset \Omega \setminus \{0\}^{(1)}$ . Fix  $T_1 < T$ . Then we have (8)  $u \in L^{\infty}(0, T_1; L^1(\omega))$ 

(9)  $u \in L^{p}(0,T_{1}; L^{p}(\omega))$ .

<u>Proof of (8)</u>. Suppose by contradiction that for a sequence  $t_n$  in  $(0,T_1)$ ,  $\|u(\cdot,t_n)\|_{L^1(\omega)} + \infty$ .

Since  $u \in L_{loc}^{\infty}(\Omega \times (0,T))$  we have  $t_n \neq 0$ . On the other hand, we deduce from (5) and the uniform boundedness principle that  $\|u(\cdot,t_n)\|$  remains bounded as  $t_n \neq 0$ .

<u>Proof of (9)</u>. Let  $\zeta \in D(\Omega \{0\})$  be such that  $0 \leq \zeta \leq 1, \zeta = 1$  on  $\omega$ . From (6) we deduce that for  $0 < \varepsilon < T$ ,

$$\int |u(x,T_1)|\zeta(x)dx + \int_{\varepsilon}^{T_1} \int |u(x,t)|^p \zeta(x)dxdt \leq$$
(10)
$$\leq \int |u(x,\varepsilon)|\zeta(x)dx + \int_{\varepsilon}^{T_1} \int |u(x,t)|\Delta\zeta(x)dx \quad .$$

 $\overline{(1)}$ As usual this notation means that  $\omega$  is an open set such that  $\omega \subset \Omega \setminus \{0\}$ .

From (8) we know that the right hand side in (10) remains bounded as  $\varepsilon + 0$  and thus (9) holds.

Step 3. Let  $\omega \subset \Omega \setminus \{0\}$ . Then  $u \in C^{2,1}(\omega \times [0,T])$  with u(x,0) = 0 on  $\omega$ .

<u>Proof</u>. Consider the function  $\tilde{u}(x,t)$  defined on  $\omega \times (-T,+T)$  by<sup>(1)</sup>

$$\widetilde{u}(x,t) = \begin{cases} u(x,t) & \text{if } 0 < t < T \\ 0 & \text{if } -T < t < 0 \end{cases}$$

so that by Step 2  $\widetilde{u} \in L^p_{loc}(\omega \times (-T,+T))$ . We claim that (11)  $\widetilde{u}_t - \Delta \widetilde{u} + |\widetilde{u}|^{p-1}\widetilde{u} = 0$  in  $\mathcal{D}^{1}(\omega \times (-T,+T))$ .

Indeed let  $\phi \in D(\omega \times (-T,+T))$ ; we must check that

(12) 
$$-\iint u\phi_{\pm} - \iint u\Delta\phi + \iint |u|^{p-1}u\phi = 0$$

Let  $\eta(t)$  be any smooth non decreasing function on R such that

$$n(t) = \begin{cases} 1 & \text{for } t \ge 2 \\ 0 & \text{for } t \le 1 \end{cases}$$

and set  $\eta_k(t) = \eta(kt)$ .

Since u is a solution of (1) we know that

(13) 
$$-\iint u(\phi n_k)_t - \iint u\Delta(\phi n_k) + \iint |u|^{p-1} u\phi n_k = 0$$

In order to deduce (12) it suffices to verify that

(14) 
$$\iint u\phi(n_k) + 0 \text{ as } k + \infty$$

We have

(1)

(15) 
$$\iint u\phi(n_k)_t = \iint u(x,t) [\phi(x,t) - \phi(x,0)](n_k)_t + \iint u(x,t) \phi(x,0)(n_k)_t$$
.  
By assumption (5)  $\int u(x,t) \phi(x,0) dx \neq 0$  as  $t \neq 0$  and thus  
(16)  $\iint u(x,t) \phi(x,0)(n_k)_t \neq 0$  as  $k \neq \infty$ .

On the other hand, by (8) we see that

We thank M. S. Baouendi for sugges ing this device which led to a simplification of our orig and pro

-7-

(17) 
$$\left| \iint u(x,t) \left[ \phi(x,t) - \phi(x,0) \right] (n_k)_t \right| \le \frac{C}{k} + 0 \text{ as } k + \infty$$

Combining (15), (16) and (17) we obtain (14). Therefore (11) is proved. It follows (as in Step 1) that  $\tilde{u} \in C^{2,1}(\omega \times (-T,+T);$  in particular  $u \in C^{2,1}(\omega \times [0,T))$  and u(x,0) = 0 on  $\omega$ .

Let us summarize; so far, we have shown - without any restriction on p that any solution of (1) satisfying (5) is smooth on  $\Omega \times [0,T)$ , except possibly at the point (x,t) = (0,0), and that u(x,0) = 0 for  $x \neq 0$ . It remains to prove that u is smooth near (0,0); the restriction  $p \ge \frac{n+2}{n}$  is now essential.

Step 4. There are constants C,  $\rho > 0$  and  $0 < T_1 < T$  such that (18)  $|u(x,t)| \leq \frac{C}{(|x|^2+t)^{n/2}}$  for  $|x| < \rho$  and  $0 < t < T_1$ .

<u>Proof</u>. Let  $\rho > 0$  be such that  $B_{2\rho}(0) \subset \Omega$ ; fix  $x^0 \in \mathbb{R}^n$  with  $0 < |x^0| < \rho$  and fix  $\mathbb{R} < |x^0|$ . Set

G = {(x,t); 
$$|x - x^0|^2 < R^2 + t$$
 with  $0 < t < T_1$  .

By choosing  $T_1 > 0$  small enough we may assume that  $G \subset \Omega \times (0,T)$ . In the region G we define

$$U(x,t) = \frac{C(R^{2}+t)^{\theta/2}}{(R^{2}-r^{2}+t)^{\theta}}$$

with  $\theta = \frac{2}{p-1}$ ,  $r = |x - x^0|$  and C a positive constant. We compute

$$U_{t} - \Delta U + U^{p} = \frac{\theta}{2} \frac{C(R^{2}+t)^{2}}{(R^{2}-r^{2}+t)^{\theta}} - \frac{4C\theta(\theta+1)r^{2}(R^{2}+t)^{\theta/2}}{(R^{2}-r^{2}+t)^{\theta+2}}$$

$$-\frac{C(2n+1)\theta(R^{2}+t)^{\theta/2}}{(R^{2}-r^{2}+t)^{\theta+1}}+\frac{C^{p}(R^{2}+t)^{p}}{(R^{2}-r^{2}+t)^{\theta}p}$$

Note that  $\theta p = \theta + 2$  and therefore

(19) 
$$U_t - \Delta U + U^P \ge 0$$
 holds in G

provided

(20) 
$$C^{p-1}(R^{2}+t) \ge 4\theta(\theta+1)r^{2} + (2n+1)\theta(R^{2}-r^{2}+t)$$

i.e.

(21) 
$$\begin{cases} c^{p-1} \ge (2n+1)\theta \\ c^{p-1} \ge 4\theta(\theta+1) \end{cases}$$

(it suffices to check (20) at the end points r = 0 and  $r = \sqrt{R^2 + t}$ ).

We choose C large enough (depending on p and n) so that (21) - and consequently (19) - holds. Clearly

 $u(x,t) \leq U(x,t) \text{ if } (x,t) \notin \partial G \text{ and } 0 \leq t < T_1$ (recall that  $U(x,t) = +\infty$  if  $(x,t) \notin \partial G$  and  $0 < t < T_1$ , while  $u(x,0) = 0 \leq U(x,0)$ ). By a standard comparison argument we obtain  $u \leq U$  on G.

In particular

$$u(x^{0},t) \leq U(x^{0},t) = \frac{C}{(R^{2}+t)^{\theta/2}}$$

Since R is any number less than  $|x^0|$  we have

$$u(x^{0},t) \leq \frac{c}{(|x^{0}|^{2}+t)^{\theta/2}}$$
 for  $|x^{0}| < \rho$  and  $0 < t < T_{1}$ .

Finally since  $\theta \le n$  (i.e.  $p \ge \frac{n+2}{n}$ ) we get

$$u(x^{0},t) \leq \frac{c_{1}}{(|x^{0}|^{2}+t)^{n/2}}$$

with  $C_1 = C(\rho^2 + T_1)^2$ . We conclude the proof of Step 4 by changing u into -u.

Step 5. We have

(22) 
$$\int_{|x|<\rho} \int_0^{T_1} |u(x,t)|^p dx dt < \infty$$

-9-

Proof. An easy computation based on (18) shows that

 $\int_{|\mathbf{x}| < \rho} \int_0^{\mathbf{T}_1} |\mathbf{u}(\mathbf{x}, t)| d\mathbf{x} dt < \infty$ (23)

Fix a function  $\zeta \in \mathcal{D}(\Omega \times (-T,+T))$  with  $0 \leq \zeta \leq 1, \zeta = 1$  on  $B_{\rho}(0) \times (0,T_{1})$ and set

$$\phi_{k}(x,t) = n_{k}(|x|^{2} + t)\zeta(x,t)$$

(the same function  $\eta_k$  as in Step 3). Since  $\phi_k$  vanishes on a neighborhood of (0,0) we deduce from Steps 1 - 3 that

(24) 
$$-\iint |\mathbf{u}| (\phi_{\mathbf{k}})_{\mathbf{t}} - \iint |\mathbf{u}| \Delta \phi_{\mathbf{k}} + \iint |\mathbf{u}|^{\mathbf{p}} \phi_{\mathbf{k}} \leq 0$$

i.e.

(25) 
$$\iint |u|^{p} \phi_{k} \leq \iint |u|(\phi_{k})_{t} + \iint |u| \Delta \phi_{k}$$
  
Set  $D_{k} = \{(x,t), \frac{1}{k} < x^{2} + t < \frac{2}{k}\}$ . We have

D

and so

(26) 
$$|(\phi_k)_t| \leq C$$
 outside  $D_k$ ,

(27) 
$$|(\phi_k)_t| \leq C(k+1)$$
 on  $D_k$ ,  
(28)  $|\Delta\phi_t| \leq C$  outside  $D_k$ ,

(28) 
$$|\Delta \phi_k| \leq C$$
 outside  $D_k$ ,  
(29)  $|\Delta \phi_k| \leq C(k+1)$  on  $D_k$ .

Combining (25), (23), (26), (27), (28), (29) we obtain

(30) 
$$\iint |\mathbf{u}|^{p} \phi_{k} \leq Ck \iint_{D_{k}} |\mathbf{u}| + C$$

On the other hand, by Step 4

$$\iint_{D_{k}} |u| \leq C \iint_{D_{k}} \frac{dxdt}{(|x|^{2}+t)^{n/2}} \leq Ck^{n/2} \text{ meas } D_{k} = \frac{C}{k} \text{ meas } D_{1} .$$

Therefore  $\iint |u|^p \phi_k$  remains bounded as  $k + \infty$  and (22) follows. Step 6. u is smooth on  $\Omega \times [0,T)$  and u(x,0) = 0 on  $\Omega$ . <u>Proof</u>. Consider the function  $\tilde{u}$  defined on  $\Omega \times (-T_{f}+T)$  by

-10-

$$\widetilde{u}(x,t) = \begin{cases} u(x,t) & \text{if } t > 0 \\ 0 & \text{if } t < 0 \end{cases}$$

In view of Step 5 we know that  $\tilde{u} \in L^p_{2oc}(\Omega \times (-T,+T))$ . We claim that (31)  $\tilde{u}_t - \Delta \tilde{u} + |\tilde{u}|^{p-1} \tilde{u} = 0$  in  $\mathcal{D}^*(\omega \times (-T,+T))$ 

from which we derive - as in Step 1 - that  $\tilde{u} \in C^{2,1}(\Omega \times (-T,+T))$  and so  $u \in C^{2,1}(\Omega \times [0,T))$  with u(x,0) = 0 on  $\Omega$ .

Let  $\zeta \in D(\Omega \times (-T,+T))$ ; we must check that

(32) 
$$-\iint u\zeta_t - \iint u\Delta\zeta + \iint |u|^{p-1}u\zeta = 0$$

We already know that

(33) 
$$-\iint u(\phi_k)_t - \iint u\Delta\phi_k + \iint |u|^{p-1}u\phi_k = 0$$

where  $\phi_k(x,t) = \eta_k(x^2 + t)\zeta(x,t)$ .

It is therefore sufficient to verify that as  $k + +\infty$ 

(34) 
$$\iint u(n_k)_{\pm} \zeta \neq 0$$

$$(35) \qquad \qquad \int \int u \Delta n_k \zeta \neq 0$$

$$(36) \qquad \qquad \iint u \, \nabla n_k \, \nabla \zeta \neq 0 \quad .$$

We have

$$\begin{aligned} \|\iint u(n_{k})_{t} \xi\| \leq Ck \quad \iint_{D_{k}} \|u\| \\ \|\iint u \Delta n_{k} \xi\| \leq Ck \quad \iint_{D_{k}} \|u\| \\ \|\iint u \nabla n_{k} \nabla \xi\| \leq C \sqrt{k} \quad \iint_{D_{k}} \|u\| \end{aligned}$$

Finally, by Hölder we get

$$\iint_{D_{k}} |u| \leq \left(\iint_{D_{k}} |u|^{p}\right)^{1/p} ||\text{meas } D_{k}|^{\frac{1}{p^{*}}},$$
  
Recall that  $|\text{meas } D_{k}| = \frac{C}{\frac{n}{k^{2}} + 1}$  and that  $\frac{1}{p^{*}} (\frac{n}{2} + 1) \geq 1$  (i.e.  $p \geq \frac{n+2}{n}$ );

therefore  $k \iint_{D_k} |u| \leq C (\iint_{D_k} |u|^p)^{1/p} + 0$  (by Step 5).

. ₽ 3. Existence and uniqueness for equations (1) - (3) when 0 .

We assume now for simplicity that  $\Omega \subset \mathbb{R}^n$  is a bounded domain with a boundary  $\partial \Omega$  of class  $C^{2+\alpha}(\alpha > 0)$ . Let 0 .

Consider the initial value problem

(37)  $u_t - \Delta u + |u|^{p-1} u = 0$  on  $\Omega \times (0, \infty)$ 

(38) 
$$u(x,t) = 0$$
 on  $\partial \Omega \times (0,\infty)$ 

(39)  $u(x,0) = u_0(x)$  on  $\Omega$ 

The initial data  $u_{\Omega}(x)$  is a bounded measure on  $\Omega$  i.e.

(40) 
$$u_{\Omega} \in M(\Omega) = C_{\Omega}(\overline{\Omega})^{T}$$

where  $C_0(\overline{\Omega})$  denotes the space of continuous functions on  $\overline{\Omega}$  which vanish on  $\partial \Omega_{\bullet}$ 

<u>Theorem 3</u>. There is a unique function  $u \in C^{2,1}(\overline{\Omega} \times (0,+\infty))$  solving (37), (38) and such that

(41) 
$$\lim_{t \to 0} \int u(x,t)\phi(x)dx = \langle u_0, \phi \rangle \quad \forall \phi \in C_0(\overline{\Omega}) \quad .$$

In addition  $\int_0^\infty \int_\Omega |u|^p dx dt < \infty$ .

<u>Remark 3</u>. The conclusion of Theorem 3 is also valid for some unbounded domains  $\Omega$ , for example  $\Omega = \mathbb{R}^n$ .

<u>Remark 4</u>. It is presumably possible to solve (37) - (38) - (39) for some values of  $p \ge \frac{n+2}{n}$  and some measures  $u_0$  <u>less singular</u> than  $\delta$  (for example a spherical distribution of charges) under some appropriate relation between p and the singular part of  $u_0$ .

Let  $S(t) = e^{t\Delta}$  denote the contraction semigroup generated in  $L^{1}(\Omega)$  by  $\Delta$  with zero Dirichlet boundary condition.

Let  $0 < T < \infty$  and set  $Q = \Omega \times (0,T)$ . We shall need the following Lemma 2. Consider the mapping K defined by

$$\{u_0, f\} \mapsto u = S(t)u_0 + \int_0^t S(t-s)f(s)ds$$

i.e. u is the solution of the linear equation

$$\begin{cases} u_t - \Delta u = f & \text{on } \Omega \times (0,T) \\ u(x,t) = 0 & \text{on } \partial \Omega \times (0,T) \\ u(x,0) = u_0(x) & . \end{cases}$$

Then K is a compact operator from  $L^{1}(\Omega) \times L^{1}(Q)$  into  $L^{q}(Q)$  for every  $q < \frac{n+2}{n}$ .

<u>Proof of Lemma 2</u>. We already know (see Baras [3]) that K is a compact operator from  $L^{1}(\Omega) \times L^{1}(Q)$  into  $L^{1}(Q)$ . Therefore it suffices to check that K is a <u>bounded operator</u> from  $L^{1}(\Omega) \times L^{1}(Q)$  into  $L^{q}(Q)$  for every  $q < \frac{n+2}{n}$ .

Recall that for every  $1 \leq q \leq \infty$  we have

(42) 
$$|\mathbf{s}(t)\mathbf{u}_{0}| \leq \frac{C}{\mathbf{L}^{q}(\Omega)} \leq \frac{C}{\frac{n}{2}(1-\frac{1}{q})} |\mathbf{u}_{0}| \mathbf{L}^{1}(\Omega)$$

inequality (42) follows by Hölder's inequality from the extreme cases q = 1,  $q = \infty$  (and the case  $q = \infty$  is obtained, via the maximum principle from the explicit representation of  $e^{t\Delta}$  in  $\mathbf{R}^{\mathbf{n}}$ ).

We deduce from (42) (and Young's inequality) that

$$\begin{array}{cccc} \mathbf{I}_{\mathbf{u}} \mathbf{I} & \leq \mathbf{C} \left( \begin{array}{ccc} \mathbf{I}_{\mathbf{u}} & \mathbf{I} & + & \mathbf{I}_{\mathbf{f}} \mathbf{I} \end{array} \right) \\ \mathbf{L}^{\mathbf{q}}(\mathbf{Q}) & \mathbf{L}^{\mathbf{1}}(\mathbf{\Omega}) & \mathbf{L}^{\mathbf{1}}(\mathbf{Q}) \end{array}$$

provided  $q < \frac{n+2}{n}$  (in order for the function  $t^2$   $(-1 + \frac{1}{q})$  to lie in  $L^q(0,T)$ ).

# Proof of Theorem 3

Existence. Let  $u_{0j} \in \mathcal{D}(\Omega)$  be a sequence such that

(44)  $u_{oj} + u_{oj}$  in the w topology of  $M(\Omega)$ .

-13-

Let  $u_j$  be the solution of (37) - (38) corresponding to the initial data  $u_{0j}$ . One has the following estimates

(45) 
$$\|u\| \le \|u\| \le c$$
  
 $\int L^{\infty}(0, \tau_{1}L^{1}) = \int L^{1}(\Omega)$ 

(46) 
$$\int_0^T \int_\Omega |u_j|^p dx dt \leq |u_0| \leq C ;$$

indeed, multiply (37) by  $\theta_{m}(u_{j})$  where  $\theta_{m}$  is a sequence of smooth nondecreasing functions converging to sign. It follows from Lemma 2 that  $u_{j}$ is compact in  $L^{q}(Q)$  for every  $q < \frac{n+2}{n}$ . We choose a subsequence still denoted by  $u_{j}$  such that  $u_{j} \neq u$  in  $L^{q}(Q)$  for every  $q < \frac{n+2}{n}$ ; and thus (47)  $|u_{j}|^{p-1}u_{j} \neq |u|^{p-1}u$  in  $L^{1}(Q)$ .

On the other hand an easy comparison argument shows that

(48) 
$$|u_{i}(\cdot,t)| \leq S(t) |u_{0i}|$$
 on Q

and therefore

$$\|\mathbf{u}_{\mathbf{j}}(\cdot,\mathbf{t})\|_{\mathbf{L}^{\infty}(\Omega)} \leq \frac{C}{t^{n/2}} \|\mathbf{u}_{0\mathbf{j}}\|_{\mathbf{L}^{1}(\Omega)} \leq \frac{C}{t^{n/2}}$$

Consequently  $u \in L^{\infty}((\delta,T); L^{\infty}(\Omega))$  for every  $\delta > 0$  and u satisfies  $u(t) = S(t)u_0 - \int_0^t S(t-s) |u(s)|^{p-1}u(s)ds$ .

We conclude - via a standard bootstrap - that  $u \in C^{2,1}(\overline{\Omega} \times (0,T])$  (and in fact u is as smooth as the function  $u \neq |u|^{p-1}u$  permits). Here  $S(t)u_0$ is defined on  $M(\Omega)$  as the adjoint of the continuous contraction semigroup  $e^{t\Delta}$  on  $C_0(\overline{\Omega})$ ; as such S(t) is not a continuous semi-group on  $M(\Omega)$  but  $S(t)u_0 \neq u_0$  in the  $w^*$  topology of  $M(\Omega)$  as  $t \neq 0$ . <u>Remark 5</u>. Assume  $u_0$  is an  $L^1$  <u>function</u> instead of a measure. Then, problem (37) - (38) - (39) has a solution for every 0 . This is a $consequence of the Crandall-Liggett Theorem (see [15]) applied in <math>L^1(\Omega)$  to the m-accretive operator  $Au = -\Delta u + |u|^{p-1}u$  (see Brezis-Strauss [11]). The

-14-

same conclusion can also be obtained directly as follows: let  $u_{0j} \in \mathcal{D}(\Omega)$  be

a sequence such that  $u_{0j} + u_0 \xrightarrow{\text{strongly}} \text{ in } L^1(\Omega)$ . Multiplying (37) by  $\theta_m(u_j - u_k)$  we obtain  $\int |u_j(x,T) - u_k(x,T)| dx + \int_0^T \int_{\Omega} ||u_j|^{p-1}u_j - |u_k|^{p-1}u_k| dx dt$  $\leq \int |u_{0j}(x) - u_{0k}(x)| dx + 0$  as  $j,k + \infty$ .

Therefore  $|u_j|^{p-1}u_j$  is a Cauchy sequence in  $L^1(Q)$  and converges strongly in  $L^1(Q)$ . Thus we have proved (47) without any restriction on p (note that the assumption  $p < \frac{n+2}{n}$  enters in the proof of Theorem 3 only in order to obtain (47)).

<u>Uniqueness</u>. Here we need no restriction on p; so let 0 be $arbitrary. First, observe that if <math>u \in C^{2,1}(\overline{\Omega} \times (0,T])$  satisfies (37), (38) and (41), then

(49) 
$$u \in L^{1}(Q)$$
 and  $\int_{0}^{T} \int_{\Omega} |u|^{p} dx dt < \infty$ 

and

 $(50) - \int_0^T \int_\Omega u\zeta_t - \int_0^T \int_\Omega u\Delta\zeta + \int_0^T \int_\Omega |u|^{p-1} u\zeta = \langle u_0, \zeta(\cdot, 0) \rangle \forall \zeta \in W$ where

 $W = \{\zeta \in C^{2,1}(\overline{\Omega} \times [0,T]); \zeta(x,T) = 0 \text{ on } \Omega, \zeta(x,t) = 0 \text{ on } \partial\Omega \times [0,T] \}.$ Indeed from (41) and the uniform boundedness principle we see that  $u \in L^{\infty}(0,T; L^{1}(\Omega)).$  Next, we have for  $\varepsilon > 0$ 

 $\int_{\Omega} |u(\mathbf{x},\mathbf{T})| d\mathbf{x} + \int_{\varepsilon}^{\mathbf{T}} \int_{\Omega} |u|^{P} d\mathbf{x} d\mathbf{t} \leq \int_{\Omega} |u(\mathbf{x},\varepsilon)| d\mathbf{x}$ (multiply (37) by  $\theta_{m}(u)$  and integrate over  $\Omega \times (\varepsilon,\mathbf{T})$ ) and thus  $\int_{\Omega}^{\mathbf{T}} \int_{\Omega} |u|^{P} d\mathbf{x} d\mathbf{t} < \infty.$ 

Finally in order to prove (50) multiply (37) by  $\zeta$ , integrate on  $\Omega \times (\varepsilon, T)$ , and pass to the limit as  $\varepsilon \neq 0$  (notice that  $\int u(x,\varepsilon)\zeta(x,\varepsilon)dx \neq \langle u_0,\zeta(\cdot,0) \rangle$ ). We shall now establish <u>uniqueness within the</u> <u>class of function</u> u <u>satisfying</u> (49) - (50). Let  $u_1$ ,  $u_2$  be two solutions and set  $v = u_1 - u_2$ . We have

$$-\int_0^{\mathbf{T}}\int_{\Omega} v(\zeta_t + \Delta \zeta) = \int_0^{\mathbf{T}}\int_{\Omega} f\zeta \quad \forall \ \zeta \ e \ w$$

where  $f = -|u_1|^{p-1}u_1 + |u_2|^{p-1}u_2$ . Uniqueness is a direct consequence of the following

Liemma 3. Assume  $v \in L^1(Q)$ ,  $f \in L^1(Q)$  satisfy

(51) 
$$-\int_0^T \int_{\Omega} v(\zeta_t + \Delta \zeta) = \int_0^T \int_{\Omega} f\zeta \Psi \zeta e W$$

Then

(52)  $\int_0^t \int_{\Omega} f \operatorname{sign} v \, dxds \ge \int_{\Omega} |v(x,t)| dx$  for all  $t \in [0,T]$ . <u>Proof of Lemma 3</u>. Notice that for any <u>given</u>  $f \in L^1(\Omega)$  there is a unique  $v \in L^1(\Omega)$  satisfying (51). Indeed if

$$\int_{0}^{T} \int_{\Omega} \mathbf{v}(\zeta_{t} + \Delta \zeta) = 0 \quad \forall \quad \zeta \in W$$

then take  $\zeta$  such that

$$\zeta_t + \Delta \zeta = h$$
 on Ω × (0,T)  
 $\zeta(x,t) = 0$  on  $\partial \Omega \times (0,T)$   
 $\zeta(x,T) = 0$  on Ω

(where h(x,t) is arbitrary and smooth) to deduce that  $\int_0^T \int_{\Omega} vh = 0$ . From the preceding remark on uniqueness it follows that if we solve

(53) 
$$\begin{cases} \frac{\partial v_j}{\partial t} - \Delta v_j = f_i \quad \text{on} \quad \Omega \times (0, T) \\ v_i(x, t) = 0 \quad \text{on} \quad \partial \Omega \times (0, T) \\ v_i(x, 0) = 0 \quad \text{on} \quad \Omega \end{cases}$$

with  $f_i \neq f$  in  $L^1(\Omega)$ , then  $v_j \neq v$  in  $C([0,T]; L^1(\Omega))$ . Multiplying (53<sub>1</sub>) by  $\theta_m(v_j)$  we obtain

$$\int \chi_{m}(v_{j}(x,t)) dx \leq \int_{0}^{t} \int_{\Omega} \varepsilon_{i} \theta_{m}(v_{j}) dx ds$$

where  $\chi_{m}^{*} = \theta$ . Taking first  $j^{+\infty}$  and then  $\frac{9}{m}^{*}$  sign we get (52).

-16-

4. The limiting behavior of  $u_j$  as  $u_{0j} + \delta$  in case  $p > \frac{n+2}{n}$ .

We return now to the case  $p \ge \frac{n+2}{n}$ . Let  $\Omega \subset \mathbb{R}^n$  be a bounded domain with smooth boundary with  $0 \in \Omega$ .

Consider a sequence  $u_j$  of solutions of (37) - (38) corresponding to a sequence of smooth initial data  $u_{0j}$  which converges to  $\delta$ . Since we know that the limiting initial value problem has <u>no solution</u> (with  $u_0 = \delta$ ), it is interesting to study what happens to the sequence  $u_j$  as  $j + \infty$ . <u>Theorem 4</u>. Assume  $u_{0j}$  is a sequence in  $L^1(\Omega)$  such that

(54) 
$$\| u_{0j} \| < c$$

(55)  $u_{0j}^{+0}$  strongly in  $L^{1}(\Omega \setminus B_{r}^{-}(0))$  for every r > 0. Let  $u_{j}$  be the solution of (37) - (38) corresponding to the initial data  $u_{0j}^{+}$ .

Then  $u_j \neq 0$  uniformly on  $\overline{\Omega} \times [\varepsilon, T]$  for every  $\varepsilon > 0$ . <u>Proof.</u> As in the proof of Theorem 3 (existence part) we know that (56)  $|u_j|_{L^{-}(0,T;L^{-})} \leq C$ 

$$\begin{array}{c} (57) \\ I_{u}I \\ J_{L^{p}(0,T;L^{p})} \end{array}$$

(58) 
$$\|u_{j}(*,t)\| \leq \frac{C}{t^{n/2}} \forall t > 0.$$

From standard linear parabolic estimates we see that

$$\begin{array}{ccc} I_{u}I & \langle c_{\varepsilon} & \forall \varepsilon > 0 \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

In particular

(59) 
$$u_j \neq u$$
 uniformly on  $\overline{\Omega} \times [\varepsilon, T] \quad \forall \varepsilon > 0$   
with  $u \in L^{\infty}(0, T; L^1) \cap L^{p}(0, T; L^{p})$ .

-17-

Also we know that  $u_j \neq u$  in  $L^q(Q)$  for every  $q < \frac{n+2}{n}$  and in particular

(60) 
$$u_j \neq u \text{ in } L^1(Q)$$
.

Next we show that

(61) 
$$|u_j|^{p-1}u_j + |u|^{p-1}u$$
 in  $L^1(0,T_7L^1(A_B(0)) \forall r > 0$   
Indeed fix  $\zeta \in C^2(\overline{\Omega})$  such that

$$\zeta = 1 \quad \text{on} \quad \Re_{\mathbf{B}_{g}} \otimes \mathbb{R}$$

$$\zeta = 0 \quad \text{on} \quad \mathbb{B}_{g,g} \otimes \mathbb{R}$$

Multiplying the equation

$$\frac{\partial}{\partial t} (u_j - u_k) - \Delta (u_j - u_k) + |u_j|^{p-1} u_j - |u_k|^{p-1} u_k = 0$$
  
through by  $\zeta \theta (u_j - u_k)$  and letting  $\theta$  + sign we find

$$\int_0^T \int_\Omega ||u_j|^{p-1} u_j - |u_k|^{p-1} u_k |\zeta \leq \int_\Omega |u_{0j} - u_{0k}|\zeta + \int_0^T \int_\Omega |u_j - u_k| \Delta \zeta$$
  
Since the right hand side tends to 0 as  $j,k + \infty$  we obtain (61).

As a consequence of (59), (60), (61) we have

(62) 
$$\int_0^T \int_\Omega u(\zeta_t + \Delta \zeta) + \int_0^T \int_\Omega |u|^{p-1} u \zeta = 0$$

for every  $\zeta \in W$  such that  $\zeta \equiv 0$  near (0,0). Since  $u \in L^p(Q)$  and  $p \ge \frac{n+2}{n}$  we deduce as in Step 6 of Section 2 that (63)  $-\int_0^T \int_{\Omega} u(\zeta_t + \Delta \zeta) + \int_0^T \int_{\Omega} |u|^{p-1} u \zeta = 0 \quad \forall \zeta \in W$ . We conclude by uniqueness (see the proof of Theorem 3) that  $u \equiv 0$ . <u>Remark 6</u>. Assume in addition to (54) - (55) that  $u_{0j} \neq \delta$  in the w<sup>\*</sup>

topology of  $M(\Omega)$ . Then we have

(64) 
$$\int_0^T \int_{\Omega} |u_j|^{p-1} u_j \zeta + \zeta(0,0) \quad \forall \zeta \in C(\overline{\Omega})$$

Indeed let ζ C W; we have

$$\iint_{Q} |\mathbf{u}_{j}|^{p-1} \mathbf{u}_{j} \zeta = \iint_{Q} \mathbf{u}_{j} (\zeta_{t} + \Delta \zeta) + \int_{\Omega} \mathbf{u}_{0j} (\mathbf{x}) \zeta(\mathbf{x}, 0) d\mathbf{x} + \zeta(0, 0)$$

-18-

since  $u_j \neq 0$  in  $L^1(Q)$  (see (60)). We derive (64) from (59), (61), (57) and a density argument. Notice that (64) is <u>not in contradiction</u> with the fact that  $u_i \neq 0$  in  $L^q(Q)$  for  $q < \frac{n+2}{n}$ .

Remark 7. The conclusion of Theorem 4 may be viewed as a boundary layer phenomenon at t = 0. In the process of passing to the limit, equation (37) has been preserved, as well as the boundary condition (38); however the initial condition has been lost. More generally the argument above shows that if  $u_0 \in L^1(\Omega)$  and if  $u_{0j}$  is a sequence of initial data such that  $\|u_{0j}\|_{L^1(\Omega)} \leq C$  and  $u_{0j} \neq u_0$  in  $L^1(\Omega \setminus B_r(0))$  for every r > 0. Then the corresponding solutions  $u_j$  converge to u [uniformly on  $\overline{\Omega} \times [\varepsilon, T]$ , for each  $\varepsilon > 0$ ] where u is the unique solution of (37) - (38) - (39). Again one may lose the "natural" initial condition (for example when  $u_{0j} \neq u_0 + \delta$ in the  $w^*$  topology of  $M(\Omega)$  then u takes the initial value  $u_0$ ).

-19-

## 5. The porous medium equation

Consider the equation

| (65) |            | $u_t - \Delta( u ^{m-1}u) = 0$ | on | $\Omega \times (0,T)$ |
|------|------------|--------------------------------|----|-----------------------|
| (66) |            | u(x,t) =                       | on | 2Ω × (0,T)            |
| (67) |            | $u(x,0) = u_0(x)$              | on | Ω                     |
| with | 0 < m < ∞. |                                |    |                       |

There is extensive literature dealing with equation (65); see e.g. the expository paper of Peletier [22] and recent contributions by Caffarelli-Friedman [13], [14], Aronson-Benilan [1], Benilan-Crandall [7], Benilan [5], Veron [24], Brezis-Crandall [10], Pierre [23], Crandall-Pierre [16]. The case m < 1 corresponds to a "fast diffusion process"; equations of this type appear in plasma problems, see e.g. Berryman-Holland [8].

When  $\Omega = \mathbb{R}^n$ ,  $u_0(x) = \delta(x)$  and  $m > \frac{n-2}{n}$  (no restriction on m if n = 1 or 2) an <u>explicit</u> solution of (65) was found by Barenblatt [4] (see also Pattle [21]), namely

$$u(x,t) = \frac{1}{t} G(\frac{|x|}{t/n})$$
  
G(s) =  $[(\beta^2 - cs^2)^+]^{\frac{1}{m-1}}$ 

where

 $c = \frac{\ell(m-1)}{2mn} , \quad \ell = \frac{1}{m-1 + \frac{2}{n}} \text{ and } \beta \text{ is a positive constant such that}$   $\int_{\mathbb{R}^{n}} G(|x|) dx = 1. \text{ A direct calculation shows that } u(x,t) + \delta(x) \oplus 1(t) \text{ as}$   $m + \left(\frac{n-2}{n}\right). \text{ This suggests that no solution of (65) exists, in the sense of}$   $distributions, \text{ when } m = \frac{n-2}{n} \text{ and } u_{0} = \delta \text{ (since one cannot make sense out of } \delta^{m}).$ 

We shall now proceed to prove that indeed when  $0 < m < \frac{n-2}{n}$  (n > 3) no solution of (65) exists for  $u_0 = 5$ . On the other hand when  $m > (\frac{n-2}{n})$  a solution of (65) exists for any measure  $u_0$ .

5.1. <u>Non existence when</u>  $0 < m \leq \frac{n-2}{n}$ .

Assume  $0 < m < \frac{n-2}{n}$  (n > 3); let  $\Omega \subset \mathbb{R}^n$  be any open set with  $0 \in \Omega$ . <u>Definition</u>. A strong solution of (65) is a function  $u \in L^{\infty}_{loc}(\Omega)$  such that  $u_t \in L^1_{loc}(\Omega)$  and such that (65) holds in  $\mathcal{D}^1(\Omega)$ .

Theorem 5. There exists no strong nonnegative solution of (65) such that

(68) ess 
$$\lim_{t \to 0} \int u(x,t)\phi(x)dx = \phi(0) \quad \forall \phi \in C_C(\Omega)$$
.

<u>Remark 8.</u> It is reasonable to believe that there is no <u>weak</u> solution of (65) (i.e. a function  $u \in L^{1}_{loc}(Q)$  such that (65) holds in  $D^{*}(Q)$ ) satisfying (68).

Theorem 5 is a direct consequence of

Theorem 6. Let u be a strong solution of (65) such that

(69) ess lim 
$$\|u(\cdot,t)\| = 0 \quad \forall \ \omega \subset \Omega \setminus \{0\}$$
.  
 $t \neq 0 \qquad L^{1}(\omega)$ 

Then

(70) ess lim 
$$[u(*,t)] = 0$$
 for some  $r > 0$ .  
 $t > 0$   $L^{1}(B_{-}(0))$ 

Proof of Theorem 6.

Let  $0 < \rho < 1$  be such that  $B_{2\rho}(0) \subset \Omega$ . Let  $x^0 \in \mathbb{R}^n$  with  $0 < |x^0| < \rho$ . Let  $0 < R < |x^0|$  and set

$$V(x) = \frac{C R^{n-2}}{(R^2 - |x-x^0|^2)^{n-2}} \text{ for } x \in B_R(x^0) .$$

V is a positive smooth function in  $B_R(x^0)$  and  $V = \infty$  on  $\partial B_R(x^0)$ . The same computation as in Brezis-Veron [12] shows that for some appropriate positive constant: C (depending only on a) one has

(71) 
$$-\Delta v + v^p > 0 \text{ on } B_R(x^0), \forall p > \frac{n}{n-2}$$
.

Set 
$$p = \frac{1}{m}$$
,  $\lambda = \frac{1}{1-m}$  and  
(72)  $U(x,t) = t^{\lambda} V^{p}(x)$  on  $B_{R}(x^{0}) \times (0,\infty)$ .

It follows from (71) that

-21-

(73) 
$$U_t = \Delta U^m \ge 0$$
 on  $B_R(x^0) \ge (0,\infty)$ .

Also

(74) 
$$U(x,t) = \infty \text{ on } \partial B_R(x^0) \times (0,\infty)$$

(75) 
$$U(x,0) = 0 \text{ on } B_{R}(x^{U})$$
.

By comparison of (65) and (73) we shall deduce that

(76) 
$$u \leq U \text{ on } B_{R}(x^{U}) \times (0,T)$$
.

Indeed, Kato's inequality - which is valid since u and U are strong solutions - asserts that

$$\Delta(|u|^{m-1}u - |v|^{m-1}v)^{+} \geq [\Delta(|u|^{m+1}u - |v|^{m-1}v)] \operatorname{sign}^{+}(|u|^{m+1}u - |v|^{m-1}v)$$

and

$$\frac{\partial}{\partial t} (u - U)^{\dagger} = \frac{\partial}{\partial t} (u - U) \operatorname{sign}^{\dagger} (u - U) .$$
Since  $\operatorname{sign}^{\dagger} (|u|^{m-1}u - |U|^{m-1}U) = \operatorname{sign}^{\dagger} (u - U)$  we conclude that
$$(77) \quad \frac{\partial}{\partial t} (u - U)^{\dagger} - \Delta (|u|^{m-1}u - |U|^{m-1}U)^{\dagger} \leq 0 \quad \operatorname{in} \quad \mathcal{D}^{*} (\mathfrak{B}_{R}(x^{0}) \times (0,T)) .$$

On the other hand  $(|u|^{m-1}u - |U|^{m-1}U)^{+} \equiv 0$  in a neighborhood of  $\partial B_{R}(x^{0}) \times (\varepsilon, T-\varepsilon)$ .

Thus by integrating (77) we find, for  $\varepsilon < t < T-\varepsilon$ ,

(78) 
$$\int_{B_{R}(\mathbf{x}^{0})} (\mathbf{u}(\mathbf{x},t) - \mathbf{U}(\mathbf{x},t))^{\dagger} d\mathbf{x} \leq \int_{B_{R}(\mathbf{x}^{0})} (\mathbf{u}(\mathbf{x},\varepsilon) - \mathbf{U}(\mathbf{x},\varepsilon)^{\dagger} d\mathbf{x} .$$

As  $\varepsilon \neq 0$ , the right hand side in (78) tends to 0 (by assumption (69)) and (76) is proved. Similarly we obtain  $|u| \leq U$  on  $B_R(x^0) \times (0,T)$  and in particular  $|u(x^0,t)| \leq U(x^0,t) = \frac{Ct^{\lambda}}{R^{(n-2)p}}$ . Since  $R < |x^0|$  is arbitrary we have

$$|u(x^{0},t)| \leq \frac{Ct^{\lambda}}{|x^{0}|^{(n-2)p}}$$
 on  $B_{\rho}(0) \times (0,T)$ 

and therefore

(79) 
$$|u(x,t)|^m \leq C \frac{t^{m\lambda}}{|x^0|^{n-2}}$$
 on  $B_{\rho}(0) \times (0,T)$ .

Finally we claim that

(80) 
$$\int_{B_{\rho/2}} |u(x,t)| dx \leq c t^{\lambda}$$

-22-

which proves (70).

Indeed, by Kato's inequality we have

(31) 
$$\frac{\partial}{\partial t} |u| - \Delta |u|^m \leq 0 \quad \text{in } \mathcal{D}^*(Q) \quad .$$

Fix a smooth function  $\phi(x)$ ,  $0 \le \phi \le 1$  with support in  $B_{\rho}(0)$  such that  $\phi = 1$  on  $B_{\rho/2}(0)$ .

Let  $n_k$  be a sequence of functions as in Step 3 of Section 2. Multiplying (81) by  $\phi(x)n_k(\{x\})$  we find

$$\int_{\Omega} |u(x,t)|\phi(x)n_{k}(|x|)dx \leq \int_{0}^{t} \int_{\Omega} |u|^{m} \Delta(\phi n_{k}) dxds =$$

$$= \int_{0}^{t} \int_{\Omega} |\mathbf{u}|^{m} (\mathbf{n}_{k} \Delta \phi + 2\nabla \mathbf{n}_{k} \nabla \phi + \Delta \mathbf{n}_{k} \phi) d\mathbf{x} d\mathbf{x}$$

$$\int_{0}^{t} \int_{B_{\rho}(0)} |u|^{m} dx ds + C(k+k^{2}) \int_{0}^{t} \int_{\frac{1}{k} < |x| < \frac{2}{k}} |u|^{m} dx ds$$

Using (79) we find that

$$\int_{\Omega} |u(x,t)| \phi(x) \eta_{k}(|x|) dx \leq Ct^{\lambda} .$$

We obtain (80) by letting  $k + \infty$ .

5.2. Existence when  $m > \frac{n-2}{n}$ .

Assume (for simplicity) that  $\Omega \subset \mathbb{R}^n$  is a bounded domain with smooth boundary. Let  $m > \frac{n-2}{n}$  (any m > 0 if n = 1 or 2). <u>Theorem 7</u>. For every  $u_0 \in M(\Omega)$  there exists a function u(x,t) satisfying (82)  $u \in C((0,T]; L^1) \cap L^{\infty}(0,T; L^1) \cap L^{\infty}(\Omega \times (\varepsilon,T)) \forall \varepsilon > 0$ , (83)  $|u|^m \in L^1(\Omega)$ ,

(84) 
$$-\iint u\zeta_{t} - \iint |u|^{m+1} u\Delta\zeta = \langle u_{0}, \zeta(\cdot, 0) \rangle \forall \zeta \in \Psi^{(1)}$$

(1) Recall that  $W = \{\zeta \in C^{2,1}(\overline{\Omega} \times [0,T]; \zeta(x,T) = 0 \text{ on } \Omega, \zeta(x,t) = 0 \text{ on } \partial\Omega \times [0,T]\}$ 

-23-

In particular we have

(85) 
$$\lim_{t \to 0} \int_{\Omega} u(x,t)\phi(x) dx = \langle u_0, \phi \rangle \quad \forall \phi \in C_0(\overline{\Omega}) \quad .$$

<u>Remark 9</u>. When  $\Omega = \mathbb{R}^n$ , m > 1 and  $u_0 > 0$  an existence and <u>uniqueness</u> result has been obtained by Pierre [23] for the equation (65) - (66) - (67). We suspect that under the assumptions of Theorem 7 the solution is also unique.

<u>Remark 10</u>. It is presumably possible to solve problem (65) - (66) - (67) for some values of  $0 < m < \frac{n-2}{n}$  and some measures  $u_0$  <u>less singular</u> than  $\delta$ (for example a spherical distribution of changes) under some appropriate relation between m and the singular part of  $u_0$ .

# Proof of Theorem 7.

We denote by S(t) the  $L^1$  contraction semigroup generated by  $\Delta(|u|^{m-1}u)$  via the Crandall-Liggett Theorem. We recall some properties of S(t):

i) S(t) is <u>smoothing</u> from  $L^1$  into  $L^{\infty}$ . More precisely we have (86)  $\|S(t)u_0\|_{L^{\infty}(\Omega)} \leq [\frac{c}{t}\|u_0\|_{L^{1}(\Omega)}^{n}]^{k}$ ,  $\forall t > 0$ , with  $k = (m-1+\frac{2}{n})^{-1}$ ;

see Benilan [5] (and also Veron [24]).

ii) S(t) is <u>compact</u> in  $L^1$ ; that is, for each <u>fixed</u> t > 0, S(t) maps  $L^1$ bounded sets into  $L^1$ -compact sets, see Baras [3]. iii) The mapping  $u_0 \stackrel{\text{tr}}{=} \{S(t)u_0\}_{0 \le t \le T}$  maps  $L^1$  bounded sets into compact subsets of  $L^1(Q)$ , see Baras [3].

Given  $u_0 \in M(\Omega)$  we consider a sequence  $u_{0j}$  of smooth functions such that  $\|u_{0j}\|_{L^1} \leq C$  and  $u_{0j} \neq u_0$  in the w\* topology of  $M(\Omega)$ . Set  $u_j = S(t)u_{0j}$  so that

$$\begin{array}{c} (87) \\ \parallel u_{j}(*,t) \parallel & \leq c \\ L^{1}(\Omega) \end{array}$$

(38) 
$$\|\mathbf{u}_{j}(\cdot,t)\| \leq \frac{C}{L^{\infty}(\Omega)} \quad \forall t > 0$$

(89) 
$$u_j + u_j in C((0,T]; L^1)$$

$$(90) \qquad u_j \neq u \text{ in } L^1(Q)$$

with u satisfying (82).

Next, we deduce from Hölder's inequality, (87) and (88) that

(91) 
$$\begin{aligned} \|u_{j}(\cdot,t)\| &\leq \frac{C}{-1} & \forall 1 \leq q \leq \infty \\ j & L^{q}(\Omega) & k(1-\frac{1}{q}) \\ t & t \end{aligned}$$

and therefore

(92) 
$$\|u_{j}\| \leq C \text{ provided } q \leq m + \frac{2}{n}$$
.

In particular we derive from (90) and (92) that

(93) 
$$u_j + u_{j} \text{ in } L^{\mathbf{q}}(Q)$$
 for every  $q < m + \frac{2}{n}$ ;

thus

(94) 
$$|u_j|^{m-1}u_j + |u|^{m-1}u$$
 in  $L^1(Q)$ .

Using (90) and (94) we obtain (84).

Finally we show that (84) implies (85). Indeed in (84) choose  $\zeta(x,t) = \phi(x)n(t)$  with  $\phi \in C^2(\overline{\Omega}), \phi = 0$  on  $\partial\Omega$  and  $n \in C^1([0,T])$  with n(T) = 0.

Setting 
$$g(t) = \int_{\Omega} u(x,t)\phi(x)dx$$
 and  $h(t) = \int_{\Omega} |u|^{m-1} u\Delta \phi dx$  we have  
 $g \in L^{\infty}(0,T) \cap C((0,T])$ ,  $h \in L^{1}(0,T)$ 

and by (84),

$$-\int_0^T g(t)n'(t)dt - \int_0^T h(t)n(t)dt = \langle u_0, \phi \rangle n(0) \forall n \in C^1([0,T]) .$$
  
Consequently lim g(t) =  $\langle u_0, \phi \rangle$ , that is  
t+0

$$\lim_{t \to 0} \int u(x,t)\phi(x) dx = \langle u_0, \phi \rangle \quad \forall \phi \in \mathbb{C}^2(\overline{\Omega}) \cap \mathbb{C}_0(\overline{\Omega}) \quad .$$

-25-

We derive (85) using a density argument and the fact that  $u \in L^{\infty}(0,T, L^{1})$ .

5.3. The limiting behavior of  $u_j$  as  $u_{0j} + \delta$  in case  $m < \frac{n-2}{n}$ . We return now to the case  $0 < m < \frac{n-2}{n}$  (n > 3).

Let  $\Omega \subset \mathbb{R}^n$  be <u>either</u> a bounded domain with smooth boundary or  $\Omega = \mathbb{R}^n$ . <u>Theorem 8</u>. Assume  $u_{0j}$  is a sequence in  $L^1(\Omega)$  such that  $u_{0j} \neq \delta$  in the w\* topology of  $M(\Omega)$  and that  $\operatorname{Supp} u_{0j} \subset B_{1/j}(0)$ .

Let  $u_j$  be the (semi-group) solution of (65) - (66) corresponding to the initial data  $u_{0i}$ .

Then 
$$u_1(x,t) \neq \delta(x) \oplus 1(t)$$
 in the w\* topology of M(Q).

Proof

Step 1. Assume 
$$\Omega = \mathbb{R}^n$$
,  $u_{0j} > 0$ ,  $\|u_{0j}\| \le C$  and  $\operatorname{Supp} u_{0j} \subset B_{1/j}(0)$ . Then  
(95)  $u_j(x,t) \neq 0$  a.e. on  $\mathbb{R}^n \times (0,T)$ .

Indeed, by the techniques of Section 5.1 we obtain

(96) 
$$|u_{j}(x,t)| \leq \frac{Ct^{2}}{|x|^{(n-2)p}}$$
 for  $|x| > \frac{2}{j}, t > 0$ 

(notice that in the present context comparison is not a difficulty since  $u_j$  is the semi group solution; therefore  $u_j$  is obtained by some limiting procedure and the comparison can be made at each step of the approximation). Thus

(97) 
$$|u_{j}(x,t)|^{m} \leq \frac{Ct^{\lambda m}}{|x|^{n-2}} \text{ for } |x| > \frac{2}{j}, t > 0$$
.

Next we claim that

(98) 
$$\int |u_j(x,t)| dx \leq Ct^{\lambda} \text{ for } t > 0$$

Indeed we have for every  $\phi \in \mathcal{D}(\mathbf{R}^n)$ 

$$(99) \int_{\mathbf{R}^n} u_j(\mathbf{x},t)\phi(\mathbf{x})d\mathbf{x} = \int_{\mathbf{R}^n} u_j(\mathbf{x},0)\phi(\mathbf{x})d\mathbf{x} + \int_0^t \int_{\mathbf{R}^n} u_j^m(\mathbf{x},s)\Delta\phi(\mathbf{x})d\mathbf{x}ds$$

-26-

We choose  $\phi$  in such a way that

$$\begin{aligned} \phi(\mathbf{x}) &= 0 \quad \text{for} \quad |\mathbf{x}| < \frac{2}{j} \quad \text{and for} \quad |\mathbf{x}| > 8j \\ \phi(\mathbf{x}) &= 1 \quad \text{for} \quad \frac{4}{j} < |\mathbf{x}| < 4j \\ |\Delta \phi| \le Cj^2 \quad \text{for} \quad \frac{2}{j} < |\mathbf{x}| < \frac{4}{j} \\ |\Delta \phi| \le \frac{C}{j^2} \quad \text{for} \quad 4j < |\mathbf{x}| < 8j \quad . \end{aligned}$$

Then, we derive (98) from (97) and (99). Next, we extract a subsequence - still denoted by  $u_j$  such that  $u_j(x,t)$  converges to some limit u(x,t)a.e. on Q.

This is justified as follows. Let  $\phi \in \mathcal{D}_+(\mathbb{R}^n \setminus \{0\})$ . Multiplying (formally - but this can be justified) (65) by  $u_j^{2-m}\phi$  we obtain  $\frac{1}{3-m} \int u_j^{3-m}(x,t)\phi(x)dx + (2-m)m \int_0^t \int |\nabla u_j|^2 \phi dx dx$ 

$$=\frac{1}{3-m}\int u_{j}^{3-m}(x,0)\phi(x)dx+\frac{m}{2}\int_{0}^{t}\int u_{j}^{2}\Delta\phi$$

If j is large enough - so that  $\operatorname{Supp} \phi \cap \operatorname{B}_{2/j}(0) = \emptyset$  - we see, using (96), that  $\int_0^t \int |\nabla u_j|^2 \phi dx ds \leq C$ . Therefore  $(u_j)$  is compact in  $\operatorname{L}^2(\omega \times (0,T))$ for  $\omega \subset \mathbb{R}^n \setminus \{0\}$  (by Aubin's compactness Lemma, see e.g. J. L. Lions [20]). The limit u satisfies

(100) 
$$u(x,t) \leq \frac{Ct^{\lambda}}{|x|^{(n-2)p}}$$
 a.e. on  $\mathbf{R}^{n} \times (0,T)$ 

(101) 
$$\int u(x,t) dx \leq Ct^{\lambda}$$
 for a.e. t.

Since  $u_j \neq u$  in  $L^1(\omega \times (0,T))$  for  $\omega \subset \mathbb{R}^n \setminus \{0\}$ , the function u also verifies

(102) 
$$\frac{\partial u}{\partial t} - \Delta u^{m} = 0 \quad \text{in} \quad \mathcal{D}^{\prime}((\mathbf{R}^{n} \setminus \{0\}) \times (0, \mathbf{T})) \quad .$$

The same argument as in Section 5.1 leads from (102) to

(103) 
$$\frac{\partial u}{\partial t} = \Delta u^m = 0 \quad \text{in } \mathcal{D}^*(\mathbf{R}^n \times (0, \mathbf{T})) \quad .$$

-27-

[Use the sequence  $n_{\mu}(|\mathbf{x}|)$  and notice that by Hölder,

$$k^{2} \int_{0}^{t} \int_{\frac{1}{k} < |x| < \frac{2}{k}} u^{m} \leq k^{2} \left( \int_{0}^{t} \int_{\frac{1}{k} < |x| < \frac{2}{k}} \right)^{m} (k^{-n}t)^{1-m} + 0 \quad \text{as} \quad k + \infty ]$$

Therefore

(104) 
$$\frac{\partial}{\partial t} (\mathbf{E}^{\pm} \mathbf{u}) + \mathbf{u}^{\mathbf{m}} = 0 \quad \text{in} \quad \mathcal{D}^{*} (\mathbf{R}^{\mathbf{n}} \times (0, \mathbf{T}))$$

where 
$$E^*u = (-\Delta)^{-1}u = \frac{C_n}{|x|^{n-2}} * u$$

We conclude from (101) and (104) that  $\frac{\partial}{\partial t}$  (E\*u) < 0 and consequently E\*u = 0; thus u = 0.

Step 2. Proof of Theorem 8 concluded in the general case.

From Step 1 we deduce that  $u_{i}(x,t) + 0$  a.e.

Indeed, by comparison we have

 $|u_j| \leq S(t) |u_{0j}|$ 

where S(t) denotes the semi group generated in  $\underline{L^1(\mathbb{R}^n)}$  by  $\Delta|u|^{m-1}u$ ; by Step 1 we know that  $S(t)|u_{0j}| \neq 0$  a.e. on  $\mathbb{R}^n \times (0,T)$ .

We have for every  $\zeta \in \mathcal{D}(\Omega \times [0,T])$ 

$$-\iint u_j \frac{\partial \zeta}{\partial t} - \iint |u_j|^{m-1} u_j \Delta \zeta = \langle u_{0j}, \zeta(0) \rangle .$$

Since  $|u_j|^{m-1}u_j \neq 0$  in  $L^1(Q)$  we obtain at the limit (104)  $- \iint u_j \frac{\partial \zeta}{\partial t} \neq \zeta(0,0) \neq \zeta \in \mathcal{D}(\Omega \times [0,T))$ . Given  $\theta \in \mathcal{D}(\Omega \times (0,T))$  we set

 $\zeta(x,t) = \int_{t}^{T} \theta(x,s) ds$ 

and we find

$$\iint \mathbf{u}_{j}^{\theta} \neq \int_{\gamma}^{T} \Im(0, \mathbf{s}) d\mathbf{s} = \langle \delta(\mathbf{x}) \oplus \mathbf{1}(\mathbf{t}), \theta \rangle \neq \emptyset \in \mathcal{D}(\Omega \times (0, \mathbf{T}))$$

Since  $u_j$  is bounded in  $L^1(Q)$  we conclude by density that  $u_j(x,t) \neq \delta(x) \oplus 1(t)$  in the w\* topology of M(Q). <u>Remark 11</u>. The two essential ingredients in the proof of existence (Theorem 7), namely the  $L^1 \neq L^\infty$  smoothing and the  $L^1$  compactness of S(t) fail when  $0 < m < \frac{n-2}{n}$ . This is a clear consequence of Theorem 8. Another view

-28-

point is the following. Consider in a bounded domain  $\Omega$  the L<sup>1</sup> m-accretive operator Au =  $-\Delta(|u|^{m-1}u)$  with zero Dirichlet boundary condition. Its resolvent  $J_{\lambda} = (I + \lambda A)^{-1}(\lambda > 0)$  is <u>not compact</u> in L<sup>1</sup>( $\Omega$ ); this follows from the fact that the equation  $-\Delta u + |u|^{p-1}u = \delta$  has no solution when  $p \ge \frac{n}{n-2}$ , see Brezis-Veron [12]. On the other hand it is easy to show that  $J_{\lambda}$  maps bounded sets from any L<sup>q</sup>( $\Omega$ ), q > 1 into <u>compact</u> sets of L<sup>1</sup>( $\Omega$ ). We deduce that:

i) S(t) is <u>not compact</u> in  $L^{1}(\Omega)$ ; indeed when a semi-group S(t) is compact, then the resolvent  $J_{\lambda}$  is also compact, see Brezis [9]. ii) S(t) is <u>not smoothing</u> from  $L^{1}(\Omega)$  into any  $L^{q}(\Omega)$ , q > 1. Suppose, by contradiction, that there is a q > 1 such that  $(105) \ S(t)u_{0} \ L^{q}(\Omega) \ \leq C(t) \ \forall t \in (0,T), \forall u_{0} \in L^{1} \ \text{with} \ \|u_{0}\|_{L^{1}} \leq M$ .

From the regularizing effect of Benilan-Crandall [7] we know that

$$\|\mathbf{J}_{\lambda} \mathbf{S}(t)\mathbf{u}_{0} - \mathbf{S}(t)\mathbf{u}_{0}\|_{L^{1}} \leq \frac{C\lambda}{t} \text{ where } \mathbf{C} = \frac{2\|\mathbf{u}_{0}\|}{|\mathbf{m}-1|} \mathbf{L}^{1}$$

It follows that S(t) is compact in  $L^{1}(\Omega)$ . Indeed <u>fix</u> 0 < t < T and <u>fix</u>  $\varepsilon > 0$ ; set  $\lambda = \frac{t\varepsilon}{2C}$ . By assumption (105) the set  $C = \{S(t)u_{0}; u_{0}\|_{L^{1}} \leq M\}$ is bounded in  $L^{(1)}(\Omega)$  and so the set  $D = \{J_{\lambda} S(t)u_{0}; u_{0}\|_{L^{1}} \leq M\}$  is compact in  $L^{(1)}$ . Therefore the set D (resp. C) may be covered by a finite collection of balls of radius  $\frac{\varepsilon}{2}$  (resp.  $\varepsilon$ ) in  $L^{(1)}(\Omega)$ .

The preceding argument shows nevertheless that S(t) enjoys two compactness properties:

a) S(t) maps bounded sets from any  $L^{q}(\Omega)$ , q > 1, into compact sets of  $L^{1}(\Omega)$ .

b) S(t) maps bounded sets from  $L^{1}(\Omega)$  into compact sets of  $L^{q}(\Omega)$  for any  $0 < \eta < 1$ .

[The lack of regularizing effect of S(t) from  $L^1$  into  $L^q$  for any q > 1 when  $m \le \frac{n-2}{n}$  had been obtained earlier by Benilan and Crandall in  $\Omega = R^n$  using a simple homogeneity argument.]

### REFERENCES

| [1] | D. Aronson - Ph. Benilan, Régularité des solutions de <i>l</i> 'equation des                            |
|-----|---------------------------------------------------------------------------------------------------------|
|     | milieux poreux, C. R. Acad. Sc. <u>283</u> (1979) p. 103-105.                                           |
| [2] | A. Bamberger, Etude de deux equations nonlineaires (elliptique,                                         |
|     | parabolique) avec masse de Dirac au second membre.                                                      |
| [3] | P. Baras, Compacité de l'opérateur f 🏾 u solution d'une equation                                        |
|     | nonlineaire $\frac{\mathrm{d}u}{\mathrm{d}t}$ + Au Ə f, C. R. Acad. Sc. <u>286</u> (1978) p. 1113-1116. |
| [4] | G. I. Barenblatt, On some unsteady motions of a liquid and a gas in a                                   |
|     | porous medium, Prikl. Mat. Mekh. <u>16</u> (1952) p. 67-78 (Russian).                                   |
| [5] | Ph. Benilan, Opérateurs accretifs et semi-groupes dans les espaces                                      |
|     | $L^{p}(1 \leq p \leq \infty)$ , in <u>Functional analysis and Numerical analysis</u> , France           |
|     | Japan Seminar, H. Fujita, ed. Jap. Soc. for the Promotion of Sciences,                                  |
|     | Tokyo (1978).                                                                                           |
| [6] | Ph. Benilan - H. Brezis, Paper to appear on the Thomas-Fermi equation;                                  |
|     | see also H. Brezis, Some Variational Problems of the Thomas Fermi Type,                                 |
|     | in <u>Variational Inequalities</u> , Cottle, Gianessi, Lions ed., Reidel                                |
|     | (1980).                                                                                                 |
| [7] | Ph. Benilan - M. Crandall, Regularizing effects of homogeneous                                          |
|     | evolution equations, Amer. J. Math. (to appear).                                                        |
| [8] | J. Berryman - C. Holland, Stability of the separable solution for East                                  |

- diffusion, Archive Rat. Mach. Anal. <u>74</u> (1980) p. 379-388.
- [9] H. Brezis, New results concerning monotone operators and nonlinear semigroups in <u>Analysis of Nonlinear Problems</u> RIMS Kyoto, 1974.
- [10] H. Brezis M. Crandall, Uniqueness of solutions of the initial value problem for  $u_t - \Delta \varphi(u) = 0$ , J. Math. Pures et Appl. <u>58</u> (1979) p. 153-163.

-31-

Same and

- [11] H. Brezis W. Strauss, Semilinear elliptic equations in L<sup>1</sup>, J. Math.
   Soc. Japan <u>25</u> (1973) p. 15-26.
- [12] H. Brezis L. Veron, Removable singularities for some nonlinear elliptic equations, Archive Rat. Mech. Anal. <u>75</u> (1980) p. 1-6.
- [13] L. Caffarelli A. Friedman, Continuity of the density of a gas flow in a porous medium equation, Trans. Amer. Math. Soc., <u>252</u> (1979) p. 99-113.
- [14] L. Caffarelli A. Friedman, Regularity of the free boundary for a gas flow in n-dimensional porous medium, Indiana Univ. Math. J., <u>29</u> (1980) p. 361-391.
- [15] M. Crandall T. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. <u>93</u> (1971) p. 265-298.
- [16] M. Crandall M. Pierre, Regularizing effects for  $u_t = \Delta \varphi(u)$ , Trans. AMS (to appear).
- [17] A. Friedman, <u>Partial differential equations of parabolic type</u>, Prentice Hall, Englewood Cliffs, NJ, 1964.
- [18] S. Kamin, Source-type solutions for equations of nonstationary filtration, J. Math. Anal. and Appl. <u>64</u> (1978) p. 263-276.
- [19] T. Kato, Schrödinger operators with singular potentials, Israel J. Math. <u>13</u> (1972) p. 135-148.
- [20] J. L. Lions, <u>Quelques méthodes de résolution des problemes aux limites</u> nonlinéaires, Dunod Gauthier-Villars, Paris (1969).
- [21] R. Pattle, Diffusion from an instantaneous point source with concentration-dependent coefficient, Quart. J. Mech. Appl. Math. <u>12</u> (1959) p. 407-409.
- [22] L. Peletier, The porous media equation

- [23] M. Pierre, Uniqueness of the solutions of  $u = \Delta \varphi(u) = 0$  with initial datum a measure, J. Nonlinear Anal. (to appear).
- [24] L. Veron, Effets régularisants de semigroupes nonlineaires dans les espaces de Banach. Ann. Fac. Sc. Toulouse <u>1</u> (1979) p. 171-200.

# HB/AF/jvs

e a ser a segura de la constante

....

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEAD MEMORIANA                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | READ INSTRUCTIONS<br>REFORE COMPLETING FORM                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 3. RECIPIENT'S CATALOG NUMBER                                                                                                                                                                                                                         |
| 2277 41-410-46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                |
| . TITLE (and Subtitie)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5. TYPE OF REPORT & PERIOD COVERED                                                                                                                                                                                                                      |
| Nonlinear Parabolic Equations Involving Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Summary Report - no specific                                                                                                                                                                                                                            |
| as Initial Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | reporting period                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8. PERFORMING ONG. REPORT NUMBER                                                                                                                                                                                                                        |
| AUTHOR(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B. CONTRACT OR GRANT NUMBER(s)                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                         |
| Haim Brezis and Avner Friedman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DAAG29-80-C-0041                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MCS 7915171                                                                                                                                                                                                                                             |
| Mathematics Research Center, University of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS                                                                                                                                                                                          |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Work Unit Number 1 -                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Applied Analysis                                                                                                                                                                                                                                        |
| Madison, Wisconsin 53706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12. REPORT DATE                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | September 1981                                                                                                                                                                                                                                          |
| See Item 18 below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13. NUMBER OF PAGES                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33                                                                                                                                                                                                                                                      |
| 4. MONITORING IGENCY NAME & ADDRESS(II dillerent from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15. SECURITY CLASS. (of this report)                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UNCLASSIFIED                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15. DECLASSIFICATION DOWNGRADING                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SCHEDULE                                                                                                                                                                                                                                                |
| 7. DISTRIBUTION STATEMENT (of the ebetrect entered in Black 20, if different fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | om Report)                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | om Report)                                                                                                                                                                                                                                              |
| 8. SUPPLEMENTARY NOTES<br>U. S. Army Research Office and N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ational Science Foundation                                                                                                                                                                                                                              |
| 8. SUPPLEMENTARY NOTES<br>U. S. Army Research Office and N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                         |
| 8. SUPPLEMENTARY NOTES<br>U. S. Army Research Office and N<br>P. O. Box 12211 W<br>Research Triangle Park<br>North Carolina 27709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ational Science Foundation<br>ashington, DC 20550                                                                                                                                                                                                       |
| P. O. Box 12211 W<br>Research Triangle Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ational Science Foundation<br>ashington, DC 20550                                                                                                                                                                                                       |
| <ul> <li>8. SUPPLEMENTARY NOTES <ul> <li>U. S. Army Research Office and N</li> <li>P. O. Box 12211 W</li> </ul> </li> <li>Research Triangle Park <ul> <li>North Carolina 27709</li> </ul> </li> <li>9. KEY WORDS (Continue on reverse side if necessary and identify by block number) <ul> <li>Nonlinear parabolic equations; Measures as initial</li> <li>Boundary layer; Removable singularities; Porous med semigroups; Compact semigroups</li> </ul> </li> <li>9. ABSTRACT (Continue on reverse side if necessary and identify by block number, We first consider the Cauchy problem for</li> </ul>                                                                                                                                                                                                                                 | ational Science Foundation<br>ashington, DC 20550<br>conditions; Nonexistence;<br>lia equation; Regularizing                                                                                                                                            |
| <ul> <li>8. SUPPLEMENTARY NOTES</li> <li>U. S. Army Research Office and N</li> <li>P. O. Box 12211 W</li> <li>Research Triangle Park</li> <li>North Carolina 27709</li> <li>9. KEY WORDS (Continue on reverse eide if necessary and identify by block number)</li> <li>Nonlinear parabolic equations; Measures as initial</li> <li>Boundary layer; Removable singularities; Porous med semigroups; Compact semigroups</li> <li>0. ABSTRACT (Continue on reverse eide if necessary and identify by block number)</li> </ul>                                                                                                                                                                                                                                                                                                              | ational Science Foundation<br>ashington, DC 20550<br>conditions; Nonexistence;<br>lia equation; Regularizing                                                                                                                                            |
| 8. SUPPLEMENTARY NOTES<br>U. S. Army Research Office and N<br>P. O. Box 12211 W<br>Research Triangle Park<br>North Carolina 27709<br>9. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Nonlinear parabolic equations; Measures as initial<br>Boundary layer; Removable singularities; Porous med<br>semigroups; Compact semigroups<br>0. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>We first consider the Cauchy problem for<br>(1) $u_t - \Delta u +  u ^{p-1} u = 0 \text{ on } \Omega$                                                                                                                                                                                                                                                                      | ational Science Foundation<br>ashington, DC 20550<br>conditions; Nonexistence;<br>lia equation; Regularizing<br>(0,T)                                                                                                                                   |
| 8. SUPPLEMENTARY NOTES<br>U. S. Army Research Office and N<br>P. O. Box 12211 W<br>Research Triangle Park<br>North Carolina 27709<br>9. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Nonlinear parabolic equations; Measures as initial<br>Boundary layer; Removable singularities; Porous med<br>semigroups; Compact semigroups<br>0. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>We first consider the Cauchy problem for<br>(1) $u_t - \Delta u +  u ^{p-1} u = 0 \text{ on } \Omega$                                                                                                                                                                                                                                                                      | ational Science Foundation<br>ashington, DC 20550<br>conditions; Nonexistence;<br>lia equation; Regularizing<br>(0,T)                                                                                                                                   |
| 8. SUPPLEMENTARY NOTES<br>U. S. Army Research Office and N<br>P. O. Box 12211 W<br>Research Triangle Park<br>North Carolina 27709<br>9. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Nonlinear parabolic equations; Measures as initial<br>Boundary layer; Removable singularities; Porous med<br>semigroups; Compact semigroups<br>0. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>We first consider the Cauchy problem for<br>(1) $u_t - \Delta u +  u ^{p-1} u = 0$ on $\Omega$<br>with a boundary condition and the initial condition<br>(2) $u(x,0) = \delta(x)$ on $\Omega$                                                                                                                                                                              | ational Science Foundation<br>ashington, DC 20550<br>conditions; Nonexistence;<br>lia equation; Regularizing<br>( (0,T)                                                                                                                                 |
| 8. SUPPLEMENTARY NOTES<br>U. S. Army Research Office and N<br>P. O. Box 12211 W<br>Research Triangle Park<br>North Carolina 27709<br>9. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Nonlinear parabolic equations; Measures as initial<br>Boundary layer; Removable singularities; Porous med<br>semigroups; Compact semigroups<br>9. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>We first consider the Cauchy problem for<br>(1) $u_t - \Delta u +  u ^{p-1} u = 0$ on $\Omega$<br>with a boundary condition and the initial condition<br>(2) $u(x,0) = \delta(x)$ on $\Omega$<br>where $\Omega \in \mathbb{R}^n$ is domain containing $0, 0 ,$                                                                                                             | ational Science Foundation<br>ashington, DC 20550<br>conditions; Nonexistence;<br>lia equation; Regularizing<br>x (0,T)<br>0 < T < ∞ and δ(x) is the                                                                                                    |
| 8. SUPPLEMENTARY NOTES<br>U. S. Army Research Office and N<br>P. O. Box 12211 W<br>Research Triangle Park<br>North Carolina 27709<br>9. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Nonlinear parabolic equations; Measures as initial<br>Boundary layer; Removable singularities; Porous med<br>semigroups; Compact semigroups<br>0. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>We first consider the Cauchy problem for<br>(1) $u_t - \Delta u +  u ^{p-1} u = 0$ on $\Omega$<br>with a boundary condition and the initial condition<br>(2) $u(x,0) = \delta(x)$ on $\Omega$<br>where $\Omega \subset \mathbb{R}^n$ is domain containing $0, 0 ,Dirac mass at 0. We prove that a solution of (1)$                                                         | ational Science Foundation<br>ashington, DC 20550<br>conditions; Nonexistence;<br>lia equation; Regularizing<br>(0,T)<br>(0,T)<br>(0,T)<br>$(0,T) \leq \infty$ and $\delta(x)$ is the<br>- (2) exists <u>if and only if</u>                             |
| 8. SUPPLEMENTARY NOTES<br>U. S. Army Research Office and N<br>P. O. Box 12211 W<br>Research Triangle Park<br>North Carolina 27709<br>9. KEY WORDS (Continue on reverse elde if necessary and identify by block number)<br>Nonlinear parabolic equations; Measures as initial<br>Boundary layer; Removable singularities; Porous med<br>semigroups; Compact semigroups<br>0. ABSTRACT (Continue on reverse elde if necessary and identify by block number)<br>We first consider the Cauchy problem for<br>(1) $u_t - \Delta u +  u ^{p-1} u = 0$ on $\Omega$<br>with a boundary condition and the initial condition<br>(2) $u(x,0) = \delta(x)$ on $\Omega$<br>where $\Omega \subset \mathbb{R}^n$ is domain containing $0, 0 ,Dirac mass at 0. We prove that a solution of (1)D form 1473 EDITION OF INOV 65 IS OBSOLETE$               | ational Science Foundation<br>ashington, DC 20550<br>conditions; Nonexistence;<br>lia equation; Regularizing<br>(0,T)<br>(0,T)<br>(0,T)<br>$(0 < T < \infty$ and $\delta(x)$ is the<br>- (2) exists <u>if and only if</u><br>(continued)<br>NCLASSIFIED |
| 8. SUPPLEMENTARY NOTES<br>U. S. Army Research Office and N<br>P. O. Box 12211 W<br>Research Triangle Park<br>North Carolina 27709<br>9. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Nonlinear parabolic equations; Measures as initial<br>Boundary layer; Removable singularities; Porous med<br>semigroups; Compact semigroups<br>0. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>We first consider the Cauchy problem for<br>(1) $u_t - \Delta u +  u ^{p-1} u = 0$ on $\Omega$<br>with a boundary condition and the initial condition<br>(2) $u(x,0) = \delta(x)$ on $\Omega$<br>where $\Omega \subset \mathbb{R}^n$ is domain containing $0, 0 ,Dirac mass at 0. We prove that a solution of (1)D form 1473 EDITION OF INOV 65 IS OBSOLETE$               | ational Science Foundation<br>ashington, DC 20550<br>conditions; Nonexistence;<br>lia equation; Regularizing<br>(0,T)<br>(0,T)<br>(0,T)<br>$(0 < T < \infty$ and $\delta(x)$ is the<br>- (2) exists <u>if and only if</u><br>(continued)<br>NCLASSIFIED |
| 8. SUPPLEMENTARY NOTES<br>U. S. Army Research Office and N<br>P. O. Box 12211 W<br>Research Triangle Park<br>North Carolina 27709<br>8. KEY WORDS (Continue on reverse eide if necessary and identify by block number)<br>Nonlinear parabolic equations; Measures as initial<br>Boundary layer; Removable singularities; Porous med<br>Semigroups; Compact semigroups<br>0. ABSTRACT (Continue on reverse eide II necessary and identify by block number)<br>We first consider the Cauchy problem for<br>(1) $u_t - \Delta u +  u ^{p-1} u = 0$ on $\Omega$<br>with a boundary condition and the initial condition<br>(2) $u(x,0) = \delta(x)$ on $\Omega$<br>where $\Omega \subset \mathbb{R}^n$ is domain containing $0, 0 ,Dirac mass at 0. We prove that a solution of (1)D form 1473 EDITION OF I NOV 45 IS OBSOLETE USECURITY CL$ | ational Science Foundation<br>ashington, DC 20550<br>conditions; Nonexistence;<br>lia equation; Regularizing<br>(0,T)<br>(0,T)<br>(0,T)<br>$(0 < T < \infty$ and $\delta(x)$ is the<br>- (2) exists <u>if and only if</u><br>(continued)<br>NCLASSIFIED |
| 8. SUPPLEMENTARY NOTES<br>U. S. Army Research Office and N<br>P. O. Box 12211 W<br>Research Triangle Park<br>North Carolina 27709<br>9. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Nonlinear parabolic equations; Measures as initial<br>Boundary layer; Removable singularities; Porous med<br>semigroups; Compact semigroups<br>0. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>We first consider the Cauchy problem for<br>(1) $u_t - \Delta u +  u ^{p-1} u = 0$ on $\Omega$<br>with a boundary condition and the initial condition<br>(2) $u(x,0) = \delta(x)$ on $\Omega$<br>where $\Omega \subset \mathbb{R}^n$ is domain containing $0, 0 ,Dirac mass at 0. We prove that a solution of (1)D form 1473 EDITION OF INOV 65 IS OBSOLETE$               | ational Science Foundation<br>ashington, DC 20550<br>conditions; Nonexistence;<br>lia equation; Regularizing<br>( o,T)<br>0 < T < $\infty$ and $\delta(x)$ is the<br>- (2) exists <u>if and only if</u>                                                 |

•

٠

•

.

•

ł

;

ł

1

1;

### ABSTRACT (continued)

0 . When <math>0 we actually prove a more general existenceand uniqueness result in which (2) is replaced by $(3) <math>u(x,0) = u_0(x)$  on  $\Omega$ where  $u_0$  is a measure.

Next, we discuss the Cauchy problem for

(4)  $u_t - \Delta(|u|^{m-1}u) = 0 \text{ on } \Omega \times (0,T)$ 

where  $0 < m < \infty$ , with a boundary condition and the initial condition (3). We prove that a solution of (4) - (2) exists if and only if  $m > \frac{n-2}{n}$ . When  $m > \frac{n-2}{n}$  we actually prove existence for the problem (4) - (3).

# DAT FILM