

MRC Technical Summary Report \#2277

NONLINEAR PARABOLIC EQUATIONS INVOLVING MEASURES AS INITIAL CONDITIONS

Hair Brezis and Avner Friedman

Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street
Madison, Wisconsin 53706

September 1981
(Received September 1, 1981)

Sponsored by
U. S. Army Research office
P. O. Box 12211
and
Approved for public release
Distribution unlimited

Research Triangle Park
North Carolina 27709

UNIVERSITY OF WISCONSIN-MADISON
 MATHEMATLCS RESEARCH CENTER
 NONLINEAR PARABOLIC EQUATIONS INVOLVING MEASURES

 AS INITIAL CONDITIONSHaim Brezis and Avner Friedman

Technical Sumnary Report \#2277
September 1981
ABSTRACT
We first consider the cauchy problem, for certan equations,

$$
\begin{equation*}
u_{t}=\Delta u+|u|^{p-1} u=0 \text { on } \Omega \times(0, T) \tag{1}
\end{equation*}
$$

φ with a boundary condition and the initial condition.

$$
\begin{equation*}
u(x, 0)=\delta(x) \text { on } \Omega \tag{2}
\end{equation*}
$$

where $\Omega \quad R^{n}$ is domain containing $0,0<p<\infty, 0<T<\infty<\infty \quad$ and $\delta(x)$ is the Dirac mass at 0 . We prove that a solution of $+1+-\operatorname{lot}$ exists if and $n+2 \mu$ only if $0<p<\frac{n+2}{n}$ When $0<p<\frac{n+2}{n}$ we actually prove a more general existence and uniqueness result in which (2) is replaced by
(3)

$$
u(x, 0)=u(x) \text { on } \Omega
$$

where u_{0} is a measure.
Next, we discuss the Cauchy problem for

$$
\begin{equation*}
u_{t}-\Delta\left(|u|^{m-1} u\right)=0 \text { on } \Omega \times(0, T) \tag{4}
\end{equation*}
$$

where $0<m<\infty$, with a boundary condition and the initial condition (3). We prove that a solution of (4) $-(2)$ exists if and only if $m>\frac{n-2}{n}$. When $m>\frac{n-2}{n}$ we actually prove existence for the problem (4) - (3).

AMS(MOS) Subject Classificatinns: 35k15, 35K55
Rey Words: Nonlinear parabolic equations; Measures as initial conditions; Nonexistence; Roundary layer; Removahle singularities; Porous media equation; Regularizing semigroups; Compact semigroups.
Work Unit Number 1 - Applied Analysis

Sponsored by the Inited states Irmy under Contract No. DAAG29-80-C-0041. The second author is partially supported hy the National science Poundatjon under frant No. MCS 7915171.

Nonlinear evolution equations of the form

$$
u_{t}-\Delta u+|u|^{p-1} u=0 \quad \text { on } \quad \mathbf{R}^{n} \times(0, T)
$$

or

$$
u_{t}-\Delta\left(|u|^{m-1} u\right)=0 \text { on } \mathbf{R}^{n} \times(0, T)
$$

arise in a large variety of problems in physics and mechanics. This paper deals with the question of existence (and uniqueness) when the initial data is a measure, for example a Dirac mass. Physically this corresponds to the important case when the initial temperature (or initial density etc. ...) is extremely high near one point. The main novelty of this paper is to show that a solution exists only under some severe restrictions on the parameter p (or m): namely p must be less than $\frac{n+2}{n}\left(m>\frac{n-2}{n}\right)$. For example, one c striking conclusion reached is the fact that ene equation $\quad n \neq 0 \times(m>r+z)$

$$
\left\{\begin{align*}
& u_{t}-\Delta u+u^{3}=0 \text { in } \mathbf{e}^{n} \times(0, T) \tag{1}\\
& u(x, 0)=\delta(x) \\
& \nu_{\text {ot }}=
\end{align*}\right.
$$

possesses no solution $e^{i n}$ any dimension $n \geqslant 1$ and on any time interval ($0, T$). This result pinpoints the sharp contrast between linear and nonlinear equations from the point of view of existence. It also implies that linearization is meaningless for equations of/the type (1) ever - small time interval.

The responsibility for the woriing and views expressed in this descriptive summary lies with MRC, and not with the authors of this report.

$$
-\therefore-B-
$$

NONLINEAR PARABOLIC PQUATIONS INVOLVING MEASURES

AS INITIAL CONDITIONS

Haim Brezis and Avner Friedman

1. Introduction

In this paper we first consider the Cauchy problem for the nonlinear parabolic equation

$$
\begin{equation*}
u_{t}-\Delta_{u}+|u|^{p-1} u=0 \text { on } \Omega \times(0, T) \tag{1}
\end{equation*}
$$

with a boundary condition and the initial condition

$$
\begin{equation*}
u(x, 0)=\delta(x) \text { on } \Omega \tag{2}
\end{equation*}
$$

where $\Omega \quad R^{n}$ is a domain containing $0,0<p<\infty, 0<T<\infty$ and denotes the Dirac mass at $0 .$.

We prove that a solution of (1) - (2) exists if and only if $0<p<\frac{n+2}{n}$. In particular the equation

$$
\begin{aligned}
u_{t}-\Delta u+u^{3} & =0 \quad \text { on } \Omega \times(0, T) \\
u(x, 0) & =\delta(x) \quad \text { on } \Omega
\end{aligned}
$$

has no solution in any dimension $n \geqslant 1$. We derive the nonexistence claim from a statement about "removable singularities"; we show that there is a local obstruction to the existence of a solution of (1)-(2) when $p \geqslant \frac{n+2}{n}$ no matter what conditions we impose on the boundary $\partial \Omega$. When $0<p<\frac{n+2}{n}$ we actually prove a more general existence and uniqueness result in which (2) is replaced by

$$
\begin{equation*}
u(x, 0)=u_{0}(x) \quad \text { in } \Omega \tag{3}
\end{equation*}
$$

where $u_{0}(x)$ is a measure.

Sponsoced by the United States Army under Contract No. DAAG29-80-C-0041. The second author is partially supported by the National science Foundation under Grant No. MCS 7915171.

Next we discuss the Cauchy problem for the equation

$$
\begin{equation*}
u_{t}-\Delta\left(|u|^{m-1} u\right)=0 \text { on } \Omega \times(0, T) \tag{4}
\end{equation*}
$$

where $m>0$, with a boundary condition and the initial condition (2). We prove that a solution of (4) - (2) exists if and only if $m>\frac{n-2}{n}$ (any $m>0$ when $n=1$ or 21 . We actually prove an existence result for (4) - (3) when $m>\frac{n-2}{n}$.

The solvability of (4) - (3) when u_{0} is a measure has been considered by various authors. If $\Omega=R^{n}, u_{0}(x)=\delta(x)$ and $m>\frac{n-2}{n}$, an explicit solution of (4) - (3) was given by Barenblatt [4] (see also Pattle [21]). If $\Omega=R^{n}, m>1, u_{0} \geqslant 0$ is a bounded measure, existence and uniqueness was obtained by M. Pierre [23], even for more general nonlinearities $\phi(u)$ - not just $|u|^{m-1} u$ [the case $n=1$ had been treated earlier by S. Kamin [18]). The non existence aspect seems however to be new. Non existence results for (1) - (2) (or (4) - (2)) are somewhat surprizing in view of the following facts:
i) solutions of (1) - (3) [or (4) - (3ij are known to exist for any $u_{0} e L^{1}(\Omega)$ under no restriction on $p>0(o r m>0)$
ii) a priori estimates do not "distinguish" between L^{\prime} functions and measures.

This apparent contradiction will be explained in Sections 3 and 4.
Existence and non existence results for elliptic equations of the form

$$
-\Delta u+|u|^{p-1} u=f \quad \text { on } \Omega
$$

where f is a measure have been obtained by Bamberger [2], Benilan-Brezis [6] and Brezis-veron [12]. Dur approach borrows some iteas from these papers. The resuits concerning equation (1) are presented in Section 2, 3 and 4. In Section 2 we prove non existence and removable singularities for (1) (2) when $p \geqslant \frac{n+2}{n}$.

In Section 3 we prove existence and uniqueness of a solution of (1) - (3) when $p<\frac{n+2}{n}$.

In Section 4 we assume $p \geqslant \frac{n+2}{n}$ and we study the limiting behavior of a sequence u_{j} of solutions of (1) corresponding to a sequence of smooth initial data $u_{0 j} \rightarrow \delta$. We exhibit a boundary layer phenomenon at $t=0$ in the process of passing to the limit one loses the natural initial condition. In Section 5 we discuss the properties of equation (4).
2. Non existence and removable gingularities for equation (1) when $p \geqslant \frac{n+2}{n}$. Let $\Omega \subset R^{n}$ be any open set with $0 \in \Omega$. Assume $p \geqslant \frac{n+2}{n}$. Definition. A solution of (1) is a function $u(x, t)$ e $L_{l_{o c}}^{P}(\Omega \times(0, T))$ such that (1) holds in the sense of distributions i.e.
$-\iint u \phi_{t} d x d t-\iint u \Delta \phi d x d t+\iint|u|^{p-1} u \phi d x d t=0 \quad \phi$ e $D(\Omega \times(0, T)) \quad$. The main results of Section 2 are the following

Theorem 1. There is no solution of (1) such that ess $\lim _{t \rightarrow 0} \int u(x, t) \phi(x) d x=\phi(0) \quad \phi e c_{c}(\Omega)^{(1)}$

Theorem 1 is an inmediate consequence of
Theorem 2. Assume u is a solution of (1) such that
ess $\lim _{t \rightarrow 0} \int u(x, t) \phi(x) d x=0$ v $\quad e C_{c}(\Omega \backslash\{0\})$.
Then u e $c^{2,1}(\Omega \times[0, T))^{(2)}$ and $u(x, 0)=0$ on Ω.
Remark 1. Theorem 2 implies in particular the following. Let u be a classical solution of (1) on $\Omega \times(0, T)$. Assume that u is continuous on $\Omega \times[0, T)$ except possibly at the point $(x, t)=(0,0)$ and that $u(x, 0)=0$ on $\Omega \backslash\{0\}$. Conclusion: u has no singularity at (0,0).

Note the sharp contrast with the behavior of solutions of linear parabolic equations. For example the fundamental solution $E(x, t)$ of the heat equation satisfies:
i) $E_{t}-\Delta E=0$ in $R^{n} \times(0, T)$
ii) $\mathbf{E}(x, t)$ is smooth on $\mathbf{R}^{n} \times[0, T)$ except at the point $(x, t)=(0,0)$ and $E(x, 0)=0$ for $x \neq 0$
(1)
$C_{c}(\Omega)$ denotes the space of all onntinuous functions with compact support
in Ω.
(2)
$c^{2,1}$ denotes the space of all continuous functions $u(x, t)$ having continuous derivatives $u_{t}, u_{x_{i}}, u_{x_{i}} x_{j}$.
iii) E has a singularity at (0,0).

Remark 2. In Theorem 2 one may replace condition (5) by the weaker condition (5) ess $\lim _{t \rightarrow 0} \int u(x, t) \phi(x) d x=0 \quad \psi$ e $D(\Omega \backslash\{0\})$
provided $u \geqslant 0$ (because, in that case, (5) $\Leftrightarrow=$ (5')). However if u changes sign we don't know whether the conclusion of Theorem 2 is still valid under the assumption (5').

The proof of Theorem 2 is divided into 6 steps. In what follows u denotes a solution of (1) satisfying (5).
Step 1. We have u e $c^{2,1}(\Omega \times(0, T))$.
Proof. We shall use a parabolic version of Kato's inequality.
Lemma 1. Let $Q \subset R^{n} \times R$ be any open set. Let u e $L_{l_{O C}}^{1}(Q)$ be such that

$$
u_{t}-\Delta_{u}=f \text { in } D^{\prime}(Q)
$$

with f e $L_{l o c}^{1}(Q)$. Then
$|u|_{t}-\Delta|u| \leqslant f \operatorname{sign} u$ in $D^{\prime}(Q)$
Since the proof is almost identical to the proof in the elliptic case (see
Kato [19]) we shall omit it.
From (1) and Lemma 1 we deduce that

$$
\begin{equation*}
|u|_{t}-\Delta|u|+|u|^{P} \leqslant 0 \text { in } D^{\prime}(\Omega \times(0, T)) \tag{6}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
|u|_{t}-\Delta|u| \leqslant 0 \text { in } D^{\prime}(\Omega \times(0, T)) \tag{7}
\end{equation*}
$$

Therefore $|u|$ is subcaloric in $\Omega \times(0, T)$ and consequently ue $L_{\ell O C}^{\infty}(\Omega \times(0, T))$. Indeed a mollifier U_{ε} of $|u|$ still satisfies (7). Representing it in terms of Green's function in a cube X_{r} with sides
(1)

$$
\operatorname{sign} u=\left\{\begin{array}{rll}
1 & \text { if } & u>0 \\
0 & \text { if } & u=0 \\
-1 & \text { if } u<0
\end{array}\right.
$$

parallel to the axes we obtain (see Friedman [17] p. 130)

$$
U_{\varepsilon}(x, t) \leqslant c_{r} \int_{\partial_{p} K_{r}} U_{\varepsilon}
$$

where $\partial_{p} K_{r}$ is the parabolic boundary of K_{r} and (x, t) is the center of its top face. Integrating with respect to r in some interval $0<r_{1}<r<r_{2}$ and taking $\varepsilon \rightarrow 0$ we obtain that $u \in L_{\ell_{O C}}^{\infty}(\Omega \times(0, T))$. Using (1) and the standard regularity theory for the heat equation we conclude that u e $\mathrm{c}^{2,1}(\Omega \times(0, T))$. In fact, u is as smooth as the function $u \mapsto|u|^{p-1} u$ permits. In particular if p is an integer then ue: $:^{\infty}(\Omega \times(0, T))$.
Step 2. Let $\omega \subset \subset \Omega \backslash\{0\}^{(1)}$. Fix $T_{1}<T$. Then we have
ue $L^{\infty}\left(0, T_{1} ; L^{1}(\omega)\right)$
$u \in L^{p}\left(0, T_{1} ; L^{p}(\omega)\right)$
Proof of (8). Suppose by contradiction that for a sequence t_{n} in ($0.7,1$, $\operatorname{lu}^{\left(\cdot, t_{n}\right) \|_{L^{1}(\omega)}}+\infty$.
Since u e $L_{\ell_{O C}}^{\infty}(\Omega \times(0, T))$ we have $t_{n} \rightarrow 0$. on the other hand, we deduce from (5) and the uniform boundedness principle that $\| u\left({ }^{\circ}, t_{n}\right){ }^{\prime}{ }^{1}(\omega)$ remains bounded as $t_{n} \rightarrow 0$.

Proof of (9). Let ζ e $D(\Omega\{0\})$ be such that $0<\zeta \leqslant 1, \zeta=1$ on ω.
From (6) we deduce that for $0<\varepsilon<T_{1}$

$$
\int|u(x, T,)| \zeta(x) d x+\int_{\varepsilon}^{T} \int|u(x, t)|^{P_{r}}(x) d x d t<
$$

(10)

$$
\leqslant \int|u(x, \varepsilon)| \zeta(x) d x+\int_{\varepsilon}^{T} \int|u(x, t)| \Delta \zeta(x) d x
$$

(1)

As usual this notation means that ω is an open set such that $\bar{\omega} \subset \Omega \backslash\{0\}$.

From (8) we know that the right hand side in (10) remains bounded as $\varepsilon \rightarrow 0$ and thus (9) holds.

Step 3. Let $\omega \in \subset \Omega\{0\}$. Then $u \in C^{2,1}(\omega \times[0, T))$ with $u(x, 0)=0$ on ω

Proof. Consider the function $\tilde{u}(x, t)$ defined on $\omega \times(-T,+T)$ by (1)

$$
\tilde{u}(x, t)= \begin{cases}u(x, t) & \text { if } 0<t<T \\ 0 & \text { if }-T<t<0\end{cases}
$$

so that by step $2 \tilde{u} e L_{l_{O C}}^{p}(\omega \times(-T,+T))$. We claim that

$$
\begin{equation*}
\tilde{u}_{t}-\Delta \tilde{u}+|\tilde{u}|^{p-1} \tilde{u}=0 \quad \text { in } D^{\prime}(\omega \times(-T,+T)) \tag{11}
\end{equation*}
$$

Indeed let ϕ e $D(\omega \times(-T,+T))$; we mast check that

$$
\begin{equation*}
-\iint u \phi_{t}-\iint u \Delta \phi+\iint|u|^{p-1} u \phi=0 \tag{12}
\end{equation*}
$$

Let $n(t)$ be any smooth non decreasing function on R such that

$$
n(t)= \begin{cases}1 & \text { for } t>2 \\ 0 & \text { for } t<1\end{cases}
$$

and set $n_{k}(t)=n(k t)$.
Since u is a solution of (1) we know that

$$
\begin{equation*}
-\iint u\left\langle\phi \eta_{k}\right)_{t}-\iint u \Delta\left\langle\phi n_{k}\right\rangle+\iint|u|^{p-1} u \phi n_{k}=0 \tag{13}
\end{equation*}
$$

In order to deduce (12) it suffices to verify that

$$
\begin{equation*}
\iint u \phi\left(n_{k}\right)_{t}+0 \quad \text { as } k \rightarrow \infty \tag{14}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left.\iint u \phi\left(n_{k}\right)_{t}=\iint u(x, t)!\phi(x, t)-\phi(x, 0)\right\}\left(n_{k}\right)_{t}+\iint u(x, t) \phi(x, 0)\left(n_{k}\right)_{t} \tag{15}
\end{equation*}
$$

By assumption (5) $\int u(x, t) \phi(x, 0) d x \rightarrow 0$ as $t \rightarrow 0$ and thus

$$
\begin{equation*}
\iint u(x, t) \phi(x, 0)\left(\eta_{k}\right)_{t}+0 \quad \text { as } \quad k \rightarrow \infty \tag{16}
\end{equation*}
$$

On the other hand, by (8) we see that

We thank M. S. Baouendi for gugges ing this device which led to a simplification of our oris $\rightarrow 7$ pro

$$
\begin{equation*}
\left|\iint u(x, t)[\phi(x, t)-\phi(x, 0)]\left(n_{k}\right)_{t}\right|<\frac{C}{k}+0 \quad \text { as } \quad k+\infty \tag{17}
\end{equation*}
$$

Combining (15), (15) and (17) we obtain (14). Therefore (11) is proved. It follows (as in Step 1) that $\tilde{u} e^{2,1}(\omega \times(-T,+T)$; in particular u e $c^{2,1}(\omega \times[0, T))$ and $u(x, 0)=0$ on ω.

Let us summarize; so far, we have shown - without any restriction on p that any solution of (1) satisfying (5) is smooth on $\Omega \times[0, T$), except possibly at the point $(x, t)=(0,0)$, and that $u(x, 0)=0$ for $x \neq 0$. It remains to prove that u is smooth near $(0,0)$; the restriction $p \geqslant \frac{n+2}{n}$ is now essential.

Step 4. There are constants $C, \rho>0$ and $0<T_{1}<T$ such that

$$
\begin{equation*}
|u(x, t)| \leqslant \frac{c}{\left(|x|^{2}+t\right)^{n / 2}} \text { for }|x|<\rho \text { and } 0<t<T_{1} \tag{18}
\end{equation*}
$$

Proof. Let $\rho>0$ be such that $B_{2 p}(0) \subset \Omega$, fix x^{0} e x^{n} with $0<\left|x^{0}\right|<\rho$ and fix $R<\left|x^{0}\right|$. Set

$$
G=\left\{(x, t) ;\left|x-x^{0}\right|^{2}<R^{2}+t \text { with } 0<t<T_{1}\right\}
$$

By choosing $T_{1}>0$ small enough we may assume that $G \subset \Omega \times(0, T)$. In the region G we define

$$
U(x, t)=\frac{C\left(R^{2}+t\right)^{\theta / 2}}{\left(R^{2}-r^{2}+t\right)^{\theta}}
$$

with $\theta=\frac{2}{p-1}, x=\left|x-x^{0}\right|$ and C a positive constant. We compute

$$
\begin{aligned}
U_{t}-\Delta U & +U^{p}=\frac{\theta}{2} \frac{C\left(R^{2}+t\right)^{\frac{\theta}{2}-1}}{\left(R^{2}-r^{2}+t\right)^{\theta}}-\frac{4 C \theta(\theta+1) r^{2}\left(\dot{R}^{2}+t\right)^{\theta / 2}}{\left(R^{2}-r^{2}+t\right)^{\theta+2}} \\
& -\frac{C(2 n+1) \theta\left(R^{2}+t\right)^{\theta / 2}}{\left(R^{2}-r^{2}+t\right)^{\theta+1}}+\frac{c^{p}\left(R^{2}+t\right)^{\frac{\theta}{2}}}{\left(R^{2}-r^{2}+t\right)^{\theta} p}
\end{aligned}
$$

Note that $\theta_{p}=\theta+2$ and therefore

$$
\begin{equation*}
U_{t}-\Delta U+U^{P} \geqslant 0 \text { holds in } G \tag{19}
\end{equation*}
$$

provided
(20)

$$
C^{p-1}\left(R^{2}+t\right) \geqslant 4 \theta(\theta+1) r^{2}+(2 n+1) \theta\left(R^{2}-r^{2}+t\right)
$$

i.e.

$$
\left\{\begin{array}{l}
\left.c^{p-1}\right\rangle(2 n+1)^{\theta} \tag{21}\\
c^{p-1} \geqslant 4 \theta\langle\theta+1\rangle
\end{array}\right.
$$

(it suffices to check (20) at the end points $r=0$ and $r=\sqrt{R^{2}+t}$).
We choose C large enough (depending on p and n) 80 that (21) - and consequently (19) - holds. Clearly

$$
u(x, t) \leqslant U(x, t) \text { if }(x, t) e \partial_{G} \text { and } 0 \leqslant t<T_{1}
$$

(recall that $U(x, t)=+\infty$ if $(x, t) e \partial_{G}$ and $0<t<T_{1}$, while $u(x, 0)=0 \leqslant U(x, 0))$. By a standard comparison argument we obtain

$$
\mathrm{u} \leqslant \mathrm{U} \text { on } \mathrm{G}
$$

In particular

$$
u\left(x^{0}, t\right) \leqslant U\left(x^{0}, t\right)=\frac{C}{\left(R^{2}+t\right)^{\theta / 2}}
$$

Since R is any number less than $\left|x^{0}\right|$ we have

$$
u\left(x^{0}, t\right) \leqslant \frac{c}{\left(\left|x^{0}\right|^{2}+t\right)^{\theta / 2}} \text { for }\left|x^{0}\right|<\rho \text { and } 0<t<T_{1} \text {. }
$$

Finally since $\theta<n$ (i.e. $p \geqslant \frac{n+2}{n}$) we get

$$
u\left(x^{0}, t\right) \leqslant \frac{c_{1}}{\left(\left|x^{0}\right|^{2}+t\right)^{n / 2}}
$$

with $c_{1}=c\left(\rho^{2}+T_{1}\right)^{\frac{n-\theta}{2}}$. We conclude the proof of step 4 by changing u into -u.

Step 5. We have
(22)

$$
\int_{|x|<\rho} \int_{0}^{T_{1}}|u(x, t)|^{p d x a t}<\infty .
$$

Proof. An easy computation based on (18) shows that

$$
\begin{equation*}
\int_{|x|<\rho} \int_{0}^{T_{1}}|u(x, t)| d x d t<\infty \tag{23}
\end{equation*}
$$

Fix a function $\zeta \in D(\Omega \times(-T,+T))$ with $0 \leqslant \zeta \leqslant 1, \zeta=1$ on $B_{0}(0) \times\left(0, T_{1}\right)$ and set

$$
\phi_{k}(x, t)=\eta_{k}\left(|x|^{2}+t\right) \zeta(x, t)
$$

(the same function η_{k} as in Step 3). Since ϕ_{k} vanishes on a neighborhood of $(0,0)$ we deduce from Steps $1-3$ that

$$
\begin{equation*}
-\iint|u|\left(\phi_{k}\right)_{t}-\iint|u| \Delta \phi_{k}+\iint|u|^{p_{\phi_{k}}} \leqslant 0 \tag{24}
\end{equation*}
$$

ie.
(25)

$$
\iint|u|^{D_{\phi_{k}}} \leqslant \iint|u|\left(\phi_{k}\right)_{t}+\iint|u| \Delta \phi_{k} .
$$

Set $D_{k}=\left\{(x, t), \frac{1}{k}<x^{2}+t<\frac{2}{k}\right\}$. We have

$$
\begin{aligned}
& \left(\phi_{k}\right)_{t}=\eta_{k}^{\prime} \zeta+\eta_{k} \zeta_{t} \\
& \Delta \phi_{k}=\left(\Delta \eta_{k}\right) \zeta+2 \nabla \eta_{k} \nabla \zeta+\eta_{k} \Delta \zeta
\end{aligned}
$$

and so
(29)

$$
\begin{align*}
& \mid\left(\phi_{k} l_{t} \mid \leqslant C\right. \tag{26}\\
& \mid\left(\phi_{k} \prime_{t} \mid \leqslant C(k+1) \quad \text { outside } D_{k},\right. \tag{27}\\
& \left|\Delta \phi_{k}\right| \leqslant C \quad \text { outside } D_{k}, \tag{28}\\
& \left|\Delta \phi_{k}\right| \leqslant C(k+1) \quad \text { on } \quad D_{k} . \\
& (26),(27),(28),(29) \text { we obtain } \tag{30}\\
& \iint|u|^{p_{\phi_{k}}} \leqslant C k \iint_{D_{k}}|u|+C
\end{align*}
$$

$$
\text { Combining }(25),(23),(26),(27),(28),(29) \text { we obtain }
$$

On the other hand, by step 4

$$
\iint_{D_{k}}|u| \leqslant c \iint_{D_{k}} \frac{d x d t}{\left(|x|^{2}+t\right)^{n / 2}} \leqslant C k^{n / 2} \text { meas } D_{k}=\frac{C}{k} \text { meas } D_{1} \text {. }
$$

Therefore $\iint|u|^{p_{\phi_{k}}}$ remains bounded as $k+\infty$ and (22) follows.
Step 6. u is smooth on $\Omega \times[0, T)$ and $u(x, 0)=0$ on Ω. Proof. Consider the function \tilde{u} defined on $\Omega \times(-T,+T)$ by

$$
\tilde{u}(x, t)=\left\{\begin{array}{cc}
u(x, t) & \text { if } t>0 \\
0 & \text { if } t<0
\end{array}\right.
$$

In view of step 5 we know that $\tilde{u} e \tilde{u}_{\rho_{0 c}}^{p}(\Omega \times(-T,+T))$. We claim that

$$
\begin{equation*}
\tilde{u}_{t}-\Delta \tilde{u}+|\tilde{u}|^{p-1} \tilde{u}=0 \text { in } D^{\prime}(\omega \times(-T,+T)) \tag{31}
\end{equation*}
$$

from which we derive - as in step 1 - that $\tilde{u} \operatorname{ecc}^{2,1}(\Omega \times(-T,+T))$ and so $u \operatorname{ec} \mathrm{c}^{2,1}(\Omega \times(0, T))$ with $u(x, 0)=0$ on Ω.

Let ζ e $D(\Omega \times(-T,+T))$; we must check that

$$
\begin{equation*}
-\iint u \zeta_{t}-\iint u \Delta \zeta+\iint|u|^{p-1} u \zeta=0 \tag{32}
\end{equation*}
$$

We already know that

$$
\begin{equation*}
-\iint u\left(\phi_{k}\right)_{t}-\iint u \Delta \phi_{k}+\iint|u|^{p-1} u \phi_{k}=0 \tag{33}
\end{equation*}
$$

where $\phi_{k}(x, t)=\eta_{k}\left(x^{2}+t\right) \zeta(x, t)$.
It is therefore sufficient to verify that as $k \rightarrow+\infty$
(36)

$$
\begin{align*}
& \iint u\left(\eta_{k}\right)_{t} \zeta \rightarrow 0 \tag{34}\\
& \iint u \Delta n_{k} \zeta \rightarrow 0 \tag{35}\\
& \iint u \nabla n_{k} \nabla \zeta \rightarrow 0
\end{align*}
$$

We have

$$
\begin{aligned}
& \| \iint u\left(\eta_{k}\right)_{t} \zeta\left|\leqslant c k \iint_{D_{k}}\right| u \mid \\
& \left|\iint u \Delta n_{k} \zeta\right|<c k \iint_{D_{k}}|u| \\
& \left|\iint u \nabla n_{k} \nabla \zeta\right| \leqslant c / k \iint_{D_{k}}|u|
\end{aligned}
$$

Finally, by Holder we get

$$
\iint_{D_{k}}|u| \leqslant\left(\iint_{D_{k}}|u|^{p}\right)^{1 / p} \mid \text { meas }\left.D_{k}\right|^{\frac{1}{p^{\prime}}}
$$

Recall that \mid meas $D_{k} \left\lvert\,=\frac{c}{\frac{n}{2}+1}\right.$ and that $\frac{1}{p^{\prime}}\left\langle\frac{n}{2}+1\right\rangle \geqslant 1$ (i.e. $\left.p \geqslant \frac{n+2}{n}\right)$; therefore $k \iint_{D_{k}}|u| \leqslant c\left(\iint_{D_{k}}|u|^{p}\right)^{1 / p}+0 \quad$ (by step 5).
3. Existence and uniqueness for equations (1)-(3) when $0<p<\frac{n+2}{n}$.

We assume now for simplicity that $\Omega \subset \mathbb{R}^{n}$ is a bounded domain with a boundary $\partial \Omega$ of class $c^{2+\alpha}(\alpha>0)$. Let $0<p<\frac{n+2}{n}$.

Consider the initial value problem

$$
\begin{align*}
u_{t}-\Delta u+|u|^{p-1} u & =0 & & \text { on } \Omega \times(0, \infty) \tag{37}\\
u(x, t) & =0 & & \text { on } \partial \Omega \times(0, \infty) \tag{38}\\
u(x, 0) & =u_{0}(x) & & \text { on } \Omega \tag{39}
\end{align*}
$$

The initial data $u_{0}(x)$ is a bounded measure on Ω i.e.

$$
\begin{equation*}
u_{0} e m(\Omega)=c_{0}(\bar{\Omega}) \tag{40}
\end{equation*}
$$

.. here $C_{0}(\bar{\Omega})$ denotes the space of continuous functions on $\bar{\Omega}$ which vanish on $\boldsymbol{\partial}$.
Theorem 3. There is a unique function u e $c^{2.1}(\bar{\Omega} \times(0,+\infty))$ solving (37), (38) and such that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int u(x, t) \phi(x) d x=\left\langle u_{0}, \phi\right\rangle \quad \phi e c_{0}\langle\bar{\Omega}) \tag{41}
\end{equation*}
$$

In addition $\int_{0}^{\infty} \int_{\Omega}|u|^{p} d x d t<\infty \quad$.
Remark 3. The conclusion of Theorem 3 is also valid for some unbounded domains Ω, for example $\Omega=R^{n}$.

Remark 4. It is presumably possible to solve (37)-(38) - (39) for some values of $p \geqslant \frac{n+2}{n}$ and some ineasures u_{0} less singular than δ (for example a spherical distribution of charges) under some appropriate relation between
p and the singular part of H_{0}.
Let $S(t)=e^{t \Delta}$ denote the contraction semigroup generated in $L^{1}(\Omega)$ by Δ with zero Dirichlet boundary condition.

Let $0<T<\infty$ and set $Q=\Omega \times(0, T)$. We shall need the following
Lemma 2. Consider the mapping K defined by

$$
\left\{u_{0}, f\right\} \mapsto u=s(t) u_{0}+\int_{0}^{t} s(t-s) f(s) d s
$$

i.e. u is the solution of the linear equation

$$
\begin{cases}u_{t}-\Delta u=f & \text { on } \Omega \times(0, T) \\ u(x, t)=0 & \text { on } \partial \Omega \times(0, T) \\ u(x, 0)=u_{0}(x) & \text {. }\end{cases}
$$

Then K is a compact operator from $L^{1}(\Omega) \times L^{1}(Q)$ into $L^{q}(Q)$ for every $q<\frac{n+2}{n}$.

Proof of Lemma_2. We already know (see Bards [3]) that x is a compact operator from $L^{1}(\Omega) \times L^{1}(Q)$ into $L^{1}(Q)$. Therefore it suffices to check that K is a bounded operator from $L^{1}(\Omega) \times L^{1}(Q)$ into $L^{q}(Q)$ for every $q<\frac{n+2}{n}$.

Recall that for every $1 \leqslant q \leqslant \infty$ we have
(42)

$$
I S(t) u_{0} L_{L} q_{(\Omega)} \leqslant \frac{c}{\frac{n}{2}\left(1-\frac{1}{q}\right)} \|_{u_{0}}^{L_{L}^{1}(\Omega)}
$$

inequality (42) follows by HOlder's inequality from the extreme cases $q=1$, $q=\infty$ (and the case $q=\infty$ is obtained, via the maximum principle from the explicit representation of $e^{t \Delta}$ in R^{n}).

We deduce from (42) (and Young's inequality) that

$$
\| u l_{L}^{q}(Q) \leqslant c\left(\|_{u_{0}}{ }_{L}{ }^{1}(\Omega) \quad+{\| f L^{1}(Q)}\right)
$$

provided $q<\frac{n+2}{n}$ (in order for the function $t^{\frac{n}{2}\left(-1+\frac{1}{q}\right)}$ to lie in Lq(0,T)

Proof of Theorem 3

Existence. Let $u_{0 j} e D(\Omega)$ be a sequence such that

$$
\begin{gather*}
{ }^{u_{0 j} \|_{L}^{1}(\Omega)} \leqslant \tag{43}\\
u_{o j}+u_{0} \text { in the } w^{*} \text { topology of } M(\Omega) . \tag{44}
\end{gather*}
$$

Let u_{j} be the solution of (37) - (38) corresponding to the initial data
$\mathrm{u}_{0 j}$. One has the following estimates

$$
\begin{gather*}
\left\|u_{j}\right\|_{L}^{\infty}\left(0, T, L^{1}\right) \tag{45}\\
\int_{0}^{T} \int_{\Omega}\left|u_{o f}^{\prime \prime}\right|_{L}^{1} p_{(\Omega)} \leqslant c \tag{46}
\end{gather*}
$$

indeed, multiply (37) by $\theta_{m}\left(u_{j}\right)$ where θ_{m} is a sequence of smooth nondecreasing functions converging to sign. It follows from Lemma 2 that u_{j} is compact in $L^{q}(Q)$ for every $q<\frac{n+2}{n}$. We choose a subsequence still denoted by u_{j} such that $u_{j} \rightarrow u$ in $L^{q}(Q)$ for every $q<\frac{n+2}{n}$; and thus

$$
\begin{equation*}
\left|u_{j}\right|^{p-1} u_{j} \rightarrow|u|^{p-1} u \quad \text { in } \quad L^{1}(2) \tag{47}
\end{equation*}
$$

On the other hand an easy comparison argument shows that

$$
\begin{equation*}
\left|u_{j}(\cdot, t)\right| \leqslant s(t)\left|u_{0 j}\right| \text { on } Q \tag{48}
\end{equation*}
$$

and therefore

$$
\left\|u_{j}(\cdot, t)\right\|_{L}^{\infty}(\Omega)<\frac{c}{t^{n / 2}}\left\|_{u_{j j}}\right\|_{L}{ }^{\prime}(\Omega)<\frac{c}{t^{n / 2}} .
$$

Consequently ue $L^{\infty}\left((\delta, T) ; L^{\infty}(\Omega)\right)$ for every $\delta>0$ and u satisfies $u(t)=s(t) u_{0}-\int_{0}^{t} s(t-s)|u(s)|^{p-1} u(s) d s$.

We conclude - via a standard bootstrap - that u e $c^{2,1}(\bar{\Omega} \times(0, T])$ (and in fact u is as smooth as the function $u \nrightarrow|u|^{p-1} u$ permits). Here $s\left(t u_{0}\right.$ is defined on $M(\Omega)$ as the adjoint of the continuous contraction semigroup $e^{t \Delta}$ on $C_{0}(\bar{\Omega})$; as such $S(t)$ is not a continuous semi-grisip on $M(\Omega)$ but $s(t) u_{0}+u_{0}$ in the w^{*} topology of $M(\Omega)$ as $t+0$.
Remark 5. Assume u_{0} is an L^{1} function instead of a measure. Then, problem (37) - (38) - (39) has a solution for every $0<p<\infty$. This is a consequence of the Crandall-Liggett Theorem (see [15]) applied in $L^{1}(\Omega)$ to the m-accretive operator $A u=-\Delta u+|u|^{p-1} u$ (see Brezis-Strauss [11j). Fiu same conclusion can also be obtained directly as follows: let $u_{0 j}$ e $D(22)$ be
a saquence such that $u_{0 j} \rightarrow u_{0}$ strongly in $L^{1}(\Omega)$. Multiplying (37) by

$$
\begin{aligned}
& \theta_{m}\left(u_{j}-u_{k}\right) \text { we obtain } \\
& \int\left|u_{j}(x, T)-u_{k}(x, T)\right| d x+\left.\int_{0}^{T} \int_{\Omega}| | u_{j}\right|^{p-1} u_{j}-\left|u_{k}\right|^{p-1} u_{k} \mid d x d t \\
& \\
& <\int\left|u_{0 j}(x)-u_{0 k}(x)\right| d x+0 \text { as } j, k+\infty \quad .
\end{aligned}
$$

Therefore $\left|u_{j}\right|^{p-1} u_{j}$ is a Cauchy sequence in $T_{1}{ }^{1}(2)$ and converges strongly in $L^{1}(2)$. Thus we have proved (47) without any restriction on p (note that the assumption $p<\frac{n+2}{n}$ enters in the proof of Theorem 3 only in order t, obtain (47)).

Uniqueness. Here we need no restriction on pi so let $0<p<\infty$ be arbitrary. First, observe that if u e $\mathrm{c}^{2,1}(\bar{\Omega} \times(0, T])$ satisfies (37), (38) and (41), then

$$
\begin{equation*}
u e L^{1}(Q) \text { and } \int_{0}^{T} \int_{\Omega}|u|^{p} d x d t<\infty \tag{49}
\end{equation*}
$$

and
$(50)-\int_{0}^{T} \int_{\Omega} u \zeta_{t}-\int_{0}^{T} \int_{\Omega} u \Delta \zeta+\int_{0}^{T} \int_{\Omega}|u|^{p-1} u \zeta=\left\langle u_{0}, \zeta(\cdot, 0)\right\rangle v \zeta$ ew where

$$
W=\left\{\zeta \text { e } c^{2,1}(\bar{\Omega} \times[0, T]) ; \zeta(x, T)=0 \text { on } \Omega, \zeta(x, t)=0 \text { on } \partial \Omega \times[0, T]\right\} \text {. }
$$

Indeed from (41) and the uniform boundedness principle we see that $u \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$. Next, we have for $\varepsilon>0$

$$
\int_{\Omega}|u(x, T)| d x+\int_{\varepsilon}^{T} \int_{\Omega}|u|^{p} d x d t \leqslant \int_{\Omega}|u(x, \varepsilon)| d x
$$

(multiply (37) by $\theta_{m}(u)$ and integrate over $\left.\Omega \times(E, T)\right)$ and thus $\int_{0}^{T} \int_{\Omega}|u|^{p} d x d t<\infty$.

Finally in order to prove (50) multiply (37) by $\zeta_{\text {, integrate on }}$ $\Omega \times(\varepsilon, T)$, and pass to the limit as $\varepsilon+0$ (notice that $\left.\int u(x, \varepsilon) \zeta(x, \varepsilon) d x \rightarrow\left\langle u_{0}, \zeta(\cdot, 0)\right\rangle\right)$. We shall now establish unigueness within the Class of function u satisfying (49) - (50). Let u_{1}, u_{2} be two solutions and set $v=u_{1}-u_{2}$. We have

$$
-\int_{0}^{T} \int_{\Omega} v\left(\zeta_{t}+\Delta \zeta\right)=\int_{0}^{T} \int_{\Omega} f \zeta v \zeta \text { eN }
$$

where $f=-\left|u_{1}\right|^{p-1} u_{1}+\left|u_{2}\right|^{p-1} u_{2}$. Uniqueness is a direct consequence of the following

Lemma 3. Assume $v e \mathrm{~L}^{1}(2)$, f e $\mathrm{L}^{1}(Q)$ satisfy

$$
\begin{equation*}
-\int_{0}^{T} \int_{\Omega} v\left(\zeta_{t}+\Delta \zeta\right)=\int_{0}^{T} \int_{\Omega} f \zeta v \quad \zeta e w . \tag{51}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int_{0}^{t} \int_{\Omega} \mathrm{P} \operatorname{sign} \mathrm{v} \text { ixds }>\int_{\Omega}|v(x, t)| d x \text { for all } t \in[0, T] \tag{52}
\end{equation*}
$$

Proof of Lemma 3. Notice that for any given fe $L^{1}(Q)$ there is a unique $v e L^{1}(Q)$ satisfying (51). Indeed if

$$
\int_{0}^{T} \int_{\Omega} v\left(\zeta_{t}+\Delta \zeta\right)=0 \geqslant \zeta e w
$$

then take ζ such that

$$
\begin{aligned}
& \zeta_{t}+\Delta \zeta=h \quad \text { on } \Omega \times(0, T) \\
& \zeta(x, t)=0 \text { on } \partial \Omega \times(0, T) \\
& \zeta(x, T)=0 \text { on } \Omega
\end{aligned}
$$

(where $h(x, t)$ is arbitrary and smooth) to deduce that $\int_{0}^{T} \int_{\Omega}$ who $=0$.
From the preceding remark on uniqueness it follows that if we solve

$$
\left\{\begin{array}{l}
\frac{\partial v_{i}}{\frac{\partial t}{t}-\Delta v_{j}=f_{i}} \begin{array}{l}
\text { on } \Omega \times(0, T) \\
v_{i}(x, t)=0 \\
v_{i}(x, 0)=0
\end{array} \quad \text { on } \Omega \Omega \times(0, T) \tag{53}
\end{array}\right.
$$

with $f_{i} \rightarrow f$ in $L^{1}(\Omega)$, then $v_{j} \rightarrow V$ in $\left.C(0, T]: L^{1}(\Omega)\right)$. Multiplying $(53$,$) by \theta_{m}\left(v_{j}\right)$ we obtain

$$
\int x_{m}\left(v_{j}(x, t)\right) d x \in \int_{0}^{t} \int_{\Omega} \epsilon_{i} 0_{m}\left(v_{j}\right) d x d s
$$

where $X_{m}^{\prime}=\theta_{m}$. Taking first $j+\infty$ and then $\theta_{m}+\operatorname{sign}$ we get (52).
4. The limiting behavior of u_{f} as $u_{0 y} \rightarrow \delta$ in case $p>\frac{n+2}{n}$.

We return now to the case $p \geqslant \frac{n+2}{n}$. Let $\Omega \subset R^{n}$ be a bounded domain with mooth boundary with 0 e $a_{\text {. }}$

Consider a sequence u_{j} of solutions of (37)-(38) coresponding to a sequence if smooth Initial data $u_{0 j}$ whlch converges to δ. Since we know that the limiting initial value problem has no solution (with $u_{0}=\delta$), it is interesting to study what happens to the sequence u_{j} as $j+\infty$. Theorem 4. Assume $\operatorname{un}_{0 j}$ is a sequence in $L^{1}(\Omega)$ such that
(55)
$u_{0 j}+0$ strongly in $L^{1}\left(\Omega \backslash B_{r}(0)\right)$ for every $r>0$.
Let u_{j} be the solution of (37) - (38) correaponding to the initial data
${ }^{u_{0 j}}$
Then $u_{j}+0$ uniformly on $\overline{\boldsymbol{\Sigma}} \times[\varepsilon, T]$ for every $\varepsilon>0$.
Proof. As in the proof of Theorem 3 (existence partl we know that

$$
\begin{equation*}
\mathbb{I}_{f} \|_{L} \Phi_{\left(0, T i L^{1}\right)} \leqslant C \tag{56}
\end{equation*}
$$

$$
\begin{equation*}
u_{u_{L}}{ }_{L}{ }_{(0, T, L} p_{1} \leqslant C \tag{57}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{lu}_{j}(\cdot, t) \|_{L}^{\infty}(\Omega)<\frac{C}{t^{n / 2}} v t>0 \tag{58}
\end{equation*}
$$

From standard linear parabolic estimates we see that

$$
\operatorname{lu}_{u_{c}}{ }_{c^{\prime}(\Omega \times\{\varepsilon, T])} \leqslant c_{\varepsilon} v \varepsilon>0
$$

In particular
(59)
$u_{j} \rightarrow u$ uniformiy on $\overline{2} \times[\varepsilon, T] \quad \psi \varepsilon>0$
with u e $L^{\infty}\left(0, T ; L^{1}\right) \cap L^{P}\left(0, T, L^{p}\right)$.

Also we know that $u_{j}+u$ in $L^{q}(2)$ for every $q<\frac{n+2}{n}$ and in particular
(60)

$$
u_{j} \rightarrow u \text { in } L^{1}(Q)
$$

Next we show that

$$
\begin{equation*}
\left|u_{j}\right|^{p-1} u_{j} \rightarrow|u|^{p-1} u \text { in } L^{1}\left(0, T, L^{1}\left(x \lambda_{B_{r}}(0)\right) \quad v>0\right. \tag{61}
\end{equation*}
$$

$$
\begin{aligned}
& 0<\zeta \leqslant 1 \\
& \zeta=1 \text { on } x^{2}+5 \\
& \zeta=0 \text { on } \hat{B}_{\boldsymbol{z}} \boldsymbol{y}
\end{aligned}
$$

Multiplying the equation

$$
\frac{\partial}{\partial t}\left(u_{j}-u_{k}\right)-\Delta\left(u_{j}-u_{k} i+\left|u_{j}\right|^{p-1} u_{j}-\left|u_{k}\right|^{p-1} u_{k}=0\right.
$$

through by $\zeta \theta\left(u_{j}-u_{k}\right)$ and letting $\theta+\operatorname{sign}$ we find
$\left.\int_{0}^{T} \int_{\Omega}| | u_{j}\right|^{p-1} u_{j}-\left|u_{k}\right|^{p-1} u_{k}\left|\zeta \leqslant \int_{\Omega}\right| u_{0 j}-u_{o k}\left|\zeta+\int_{0}^{T} \int_{\Omega}\right| u_{j}-u_{k} \mid \Delta \zeta \quad$. Since the right hand side tends to 0 as $j, k \rightarrow \infty$ we obtain (61).

As a consequence of (59), (60), (61) we have

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} u(\zeta t+\Delta \zeta)+\int_{0}^{T} \int_{\Omega}|u|^{p-1} u \zeta=0 \tag{62}
\end{equation*}
$$

for every ζ e W such that $\zeta \equiv 0$ near $(0,0)$. since u e $L^{P}(Q)$ and $p \geqslant \frac{n+2}{n}$ we deduce as in Step 6 of Section 2 that

$$
\begin{equation*}
-\int_{0}^{T} \int_{\Omega} u\left(\zeta_{t}+\Delta \zeta\right)+\int_{0}^{T} \int_{\Omega}|u|^{p-1} u \zeta=0 \text { ew . } \tag{63}
\end{equation*}
$$

We conclude by uniqueness (see the proof of Theorem 3) that $u \equiv 0$. Remark 6. Assume in addition to (54) - (55) that $u_{0 j}+\delta$ in the w topology of $M(\Omega)$. Then we have

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega}\left|u_{j}\right|^{p-1} u_{j} \zeta \rightarrow \zeta(0,0) \text { ษ } \zeta \subset(\bar{Q}) \tag{64}
\end{equation*}
$$

Indeed let ζ ewi we have

$$
\iint_{Q}\left|u_{j}\right|^{p-1} u_{j} \zeta=\iint_{Q} u_{j}\left(\zeta_{t}+\Delta \zeta\right)+\int_{\Omega} u_{0 j}(x) \zeta(x, 0) d x+\zeta(0,0)
$$

since $u_{j}+0$ in $L^{\prime}(Q)$ (see (60)). We derive (64) from (59), (61), (57) and a density argument. Notice that (64) is not in contradiction with the fact that $u_{f} \rightarrow 0$ in $L^{q}(Q)$ for $q<\frac{n+2}{n}$.
Remark 7. The conclusion of Theorem 4 may be viewed as a boundary layer phenomenon at $t=0$. In the process of passing to the limit, equation (37) has been preserved, as well as the boundary condition (38): however the initial condition has been lost. More generally the argument above shuw that if $u_{n} e L^{1}(\Omega)$ and if $u_{0 j}$ is a sequence of initial data such that $\|_{u_{0 j}} I_{L}{ }^{1}(\Omega)<C$ and $u_{0 j}+u_{0}$ in $L^{1}\left(\Omega \Lambda_{B_{r}}(0)\right)$ for evary $r>0$. Then the corresponding solutions u_{j} converge to u (uniformly on $\overline{\boldsymbol{\Omega}} \times[\varepsilon, T]$, for each $\varepsilon>0$) where u is the unique solution of (37)-(38)-(39). Again one may lose the "natural" initial condition (for example when $u_{0 j} \rightarrow u_{0}+\delta$ in the w topology of $m(\Omega)$ then u takes the initial value $\left.u_{0}\right)$.

5. The porous medium equation

Consifier the equation
(65)
(66)
(67)

$$
\begin{aligned}
u_{t}-\Delta\left(|u|^{m-1} u\right) & =0 & & \text { on } \Omega \times(0, T) \\
u(x, t) & = & & \text { on } \partial \Omega \times(0, T) \\
u(x, 0) & =u_{0}(x) & & \text { on } \Omega
\end{aligned}
$$

with $0<m<\infty$.
There is extensive literature dealing with equation (65); see e.g. the expository paper of Peletier [22] and recent contributions by CaffarelliFriedman [13], [14], Aronson-Benilan [1], Benilan-Crandall [7], Benilan [5], Veron [24], Brezis-Crandall [10], Pierre [23], Crandall-Pierre [16]. The case $m<1$ corresponds to a "fast diffusion process"; equations of this type appear in plasma problems, see e.g. Berryman-Holland [8].

When $\Omega=R^{n}, u_{0}(x)=\delta(x)$ and $m>\frac{n-2}{n}$ (no restriction on m if $n=1$ or 2) an explicit solution of (65) was found by Barenblatt [4] (see also Pattle [21]), namely

$$
u(x, t)=\frac{1}{t} G\left(\frac{|x|}{t / n}\right)
$$

where

$$
G(s)=\left[\left(B^{2}-c s^{2}\right)^{+}\right]^{\frac{1}{m-1}}
$$

$c=\frac{\ell(m-1)}{2 m n}, \ell=\frac{1}{m-1+\frac{2}{n}}$ and β is a positive constant such that $\int_{R^{n}} G(|x|) d x=1$. A direct calculation shows that $u(x, t) \rightarrow \delta(x)=1(t)$ as $\mathfrak{m}^{\mathbf{R}}+\left(\frac{n-2}{n}\right)$. This suggests that no solution of (65) exists, in the sense of distributions, when $m=\frac{n-2}{n}$ and $u_{0}=\delta$ (since one cannot make sense out of δ^{m}.

We shall now proceed to prove that indeed when $0<m<\frac{n-2}{n}(n \geqslant 3)$ no anlution of (65) exiats for $u_{n}=5$. in the other hand when $m>\left(\frac{n-2}{n}\right)$, snlirimn of (55) exists for any measure u_{n}.
5.1. Non existence when $0<m<\frac{n-2}{n}$.

Assume $0<m<\frac{n-2}{n}(n \geqslant 3)$ iet $\Omega \subset R^{n}$ be any open set with 0 e Ω. Definition. A strong solution of (65) is a function $u e_{L_{o c}}^{\infty}(\Omega)$ such that $u_{t} \in L_{l o c}^{1}(2)$ and such that (65) holds in $D^{\prime}(2)$.
Theorem 5. There exists no strong nonnegative solution of (65) such that

$$
\begin{equation*}
\text { ess } \lim _{t \rightarrow 0} \int u(x, t) \phi(x) d x=\phi(0) \quad \psi \phi C_{c}(\Omega) \text {. } \tag{68}
\end{equation*}
$$

Remark 8. It is reasonable to believe that there is no weak solution of (65) (i.e. a function u e $L_{l o c}^{1}(2)$ such that (65$)$ holds in $0^{\prime}(2)$) satisfying (68).

Theorem 5 is a iirect consequence of
Theorem 6. Let u be a strong solution of (65) such that
(69)

$$
\text { ess } \lim _{t \rightarrow 0}\|u(\cdot, t)\|{ }_{L^{1}(\omega)}=0 \quad v \omega C \subset \Omega \backslash\{0\}
$$

Then

$$
\begin{equation*}
\text { ess } \lim _{t \rightarrow 0} \| u(\cdot, t){ }_{L}{ }^{1}\left(B_{r}(0)\right)=0 \text { for some } r>0 \text {. } \tag{70}
\end{equation*}
$$

Proof of Theorem 6.
Let $0<\rho<1$ be such that $B_{2 \rho}(0) \subset \Omega$. Let $x^{0} \in \mathrm{R}^{n}$ with $0<\left|x^{n}\right|<\rho$. Let $0<R<\left|x^{0}\right|$ and set

$$
V(x)=\frac{C R^{n-2}}{\left(R^{2}-\left|x-x^{0}\right|^{2}\right)^{n-2}} \text { for } x \in B_{R}\left(x^{0}\right)
$$

v is a positive smooth function in $B_{R}\left(x^{0}\right)$ and $v=\infty$ on $\partial_{B_{R}}\left(x^{0}\right)$. The same computation as in Brezis-Veron [12] shows that for some appropriate pogitive conct-ui: \therefore (fepending only on 7) one has

$$
\begin{equation*}
-\Delta v+v^{p} \geqslant 0 \text { on } B_{R}\left(x^{0}\right), q \geqslant \frac{n}{n-2} \tag{71}
\end{equation*}
$$

Set $p=\frac{1}{m}, \lambda=\frac{1}{1-m}$ and

$$
\begin{equation*}
U(x, t)=t^{\lambda} v^{p}(x) \text { on } 3_{R}\left(x^{0}\right) \times(0, \infty) \tag{72}
\end{equation*}
$$

r. iollows from (71) that

$$
U_{t}-\Delta u^{m} \geqslant 0 \text { on } B_{R}\left(x^{0}\right) \times(0, \infty)
$$

Also

$$
\begin{gather*}
U(x, t)=\infty \text { on } \partial_{B_{R}}\left(x^{0}\right) \times(0, \infty) \tag{74}\\
U(x, 0)=0 \text { on } B_{R}\left(x^{0}\right) . \tag{75}
\end{gather*}
$$

By comparison of (65) and (73) we shall deduce that

$$
\begin{equation*}
u \leqslant U \text { on } B_{R}\left(x^{0}\right) \times(0, T) \tag{76}
\end{equation*}
$$

Indeed, Kato's inequality - which is valid since u and u are strong

solutions - asserts that

$$
\Delta\left(|u|^{m-1} u-\left.|u|^{m-1} u\right|^{+}\right\rangle\left[\Delta\left(|u|^{m-1} u-|u|^{m-1} v\right)\right] \operatorname{sig}^{+}\left(|u|^{m-1} u-|u|^{m-1} v\right)
$$

and

$$
\frac{\partial}{\partial t}(u-v)^{+}=\frac{\partial}{\partial t}(u-v) \operatorname{sign}+(u-v) .
$$

Since $\operatorname{sign}^{+}\left(|u|^{m-1} u-|v|^{m-1} v\right)=\operatorname{sign}^{+}(u-v)$ we conclude that
(77) $\frac{\partial}{\partial t}(u-U)^{+}-\Delta\left(|u|^{m-1} u-|U|^{m-1} u\right)^{+} \leqslant 0$ in $D^{\prime}\left(g_{R}\left(x^{0}\right) \times(0, T)\right)$.

On the other hand $\left(|u|^{m-1} u-|u|^{m-1} u\right)^{+} \equiv 0$ in a neighborhood of $\partial_{B_{R}}\left(x^{0}\right) \times(E, T-E)$.

Thus by integrating (77) we find, for $\varepsilon<t<T-\varepsilon$,

As $\varepsilon+0$, the right hand side in (78) tends to 0 (by assumption (69)) and (76) is proved. Similarly we obtain $|u| \leqslant U$ on $B_{R}\left(x^{0}\right) \times(0, T)$ and in particular $\left|u\left(x^{0}, t\right)\right| \leqslant U\left(x^{0}, t\right)=\frac{C_{t}^{\lambda}}{R^{(n-2 \mid p}}$. since $R<\left|x^{0}\right|$ is arbitrary we have

$$
\left|u\left(x^{0}, t\right)\right|<\frac{C t^{\lambda}}{\left|x^{0}\right|^{(n-2) p}} \text { on } B_{\rho}(0) \times(0, T)
$$

and therefore

$$
\begin{equation*}
|u(x, t)|^{m} \leqslant c \frac{t^{m \lambda}}{\left|x^{0}\right|^{n-2}} \text { on } B_{\rho}(0) \times(0, T) \tag{79}
\end{equation*}
$$

Finally we claim that

$$
\begin{equation*}
\int_{B_{\rho} / 2}|u(x, t)| d x \leqslant c t^{\lambda} \tag{80}
\end{equation*}
$$

which proves (70).
Indeed, by Kato's inequality we have

$$
\frac{\partial}{\partial t}|u|-\Delta|u|^{m} \leqslant 0 \text { in } D^{\prime}(2) \text {. }
$$

Fix a smooth function $\phi(x), 0<\phi \leqslant 1$ with support in $B_{\rho}(0)$ such that $\phi=1$ on $B_{\rho / 2}(0)$.

Let η_{k} be a sequence of functions as in step 3 of section 2. Muitiplying (81) by $\phi(x) \eta_{k}(|x|)$ we find

$$
\begin{aligned}
& \int_{\Omega}|u(x, t)| \phi(x) n_{k}(|x|) d x \leqslant \int_{0}^{t} \int_{\Omega}|u|^{m} \Delta\left(\phi n_{k}\right) d x d s= \\
& \quad=\int_{0}^{t} \int_{\Omega}|u|^{m}\left(n_{k} \Delta \phi+2 \nabla \eta_{k} \nabla \phi+\Delta n_{k} \phi\right) d x d x \\
& \quad \leqslant C \int_{0}^{t} \int_{B_{\rho}(0)}|u|^{m} d x d s+\left.C\left(k+k^{2}\right) \int_{0}^{t} \int_{\frac{1}{k}}\langle | x\left|<\frac{2}{k}\right| u\right|^{m} d x d s \quad .
\end{aligned}
$$

Using (79) we find that

$$
\int_{\Omega} \operatorname{lu}(x, t) \mid \phi(x) \eta_{k}(|x|) d x \leqslant c t^{\lambda}
$$

We obiain (80) by letting $k \rightarrow \infty$.
5.2. Existence when $m>\frac{n-2}{n}$.

Assume (for simplicity) that $\Omega \subset \mathbf{R}^{\mathbf{n}}$ is a bounded domain with smooth boundary. Let $m>\frac{u-2}{n}$ (any $m>0$ if $n=1$ or 2).
Theorem 7. For every $u_{0} e m(\Omega)$ there exists a function $u(x, t)$ satisfying

$$
\begin{equation*}
\left.u e c\left((0, T] ; L^{1}\right) \cap L^{\infty}\left(0, T ; L^{1}\right) \cap L^{\infty}(\Omega \times(E, T)) \forall \varepsilon\right) 0 \tag{82}
\end{equation*}
$$

$$
\begin{equation*}
|u|^{m} \text { e } L^{1}(Q) \tag{83}
\end{equation*}
$$

$$
\begin{equation*}
-\iint u \zeta_{t}-\iint|u|^{m-1} u \Delta \zeta=\left\langle u_{0}, \zeta(\cdot, 0)\right\rangle \zeta \text { e } \psi^{(1)} \tag{84}
\end{equation*}
$$

(1)

$$
\begin{aligned}
& \text { Recail that } \\
& W=\left\{\zeta \mathrm{e} \mathrm{C}^{2,1}(\bar{\Omega} \times\{0, T j, \zeta(x, T)=0 \text { on } \Omega, \zeta(x, t)=0 \text { on } \partial \Omega \times[0, T]\}\right.
\end{aligned}
$$

In particular we have

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{\Omega} n(x, t) \phi(x) d x=\left\langle u_{n}, \phi\right\rangle \psi \phi e C_{0}(\bar{\Omega}) . \tag{85}
\end{equation*}
$$

Remark 9. When $\Omega=R^{n}, m>1$ and $u_{0} \geqslant 0$ an existence and uniqueness result has been obtained by pierre [23] for the equation (65) - (66) - (67). We suspect that under the assumptions of Theorem 7 the solution is also unique.

Remark 10. It is presumably possible to solve problem (65) - (66) - (67) for some values of $0<m \leqslant \frac{n-2}{n}$ and some measures u_{0} less singular than δ (for example a spherical distribution of changes) under some appropriate relation between m and the singular part of u_{0}.

Proof of Theorem 7.
We denote by $s(t)$ the L^{1} contraction semigroup generated by $\Delta\left(|u|^{m-1} u\right)$ via the Crandall-Liggett Theorem. We recall some properties of $S(t):$
i) $S(t)$ is smoothing from L^{1} into L^{∞}. More precisely we have

see Benilan [5] (and aiso Veron [24j).
ii) $S(t)$ is compact in L^{1}; that is, for each fixed $t>0, S(t)$ maps L^{1} bounded sets into L^{1}-compact sets, see Baras [3].
iii) The mapping $u_{0} H\left\{s(t) u_{0}\right\}_{0<t \leqslant T}$ maps L^{1} bounded sets into compact subsets of $L^{1}(Q)$, see Baras [3].

Given $u_{0} e M(\Omega)$ we consider a sequence $u_{0 j}$ of smooth functions such that $\left\|u_{0 j}\right\|_{L} \leqslant c$ and $u_{0 j} \rightarrow u_{0}$ in the w topology of $m(2)$. set $u_{j}=$ $s(t) u_{n j}$ so that
(H7)

$$
\left\|_{u_{j}}(\cdot, t)\right\|_{L}{ }_{(\Omega)} \leqslant c
$$

$$
\begin{gathered}
u_{j}(\cdot, t) \|_{L}(\Omega)<\frac{c}{t^{k}} v t>0 \\
\left.u_{j} \rightarrow u \text { in } c((0, T]) L^{1}\right) \\
u_{j} \rightarrow u \text { in } L^{1}(Q)
\end{gathered}
$$

with u satisfying (82).
Next, we deduce from HOlder's inequality, (87) and (88) that

$$
\begin{equation*}
I_{u_{j}(*, t)}{ }_{I} q_{(\Omega)} \leqslant \frac{C}{k\left(1-\frac{1}{q}\right)} \quad v \quad 1 \leqslant q \leqslant \infty \tag{91}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\left\|_{u_{j}}\right\|_{L(Q)} \leqslant C \text { provided } q<m+\frac{2}{n} \tag{92}
\end{equation*}
$$

In particular we derive from (90) and (92) that

$$
\begin{equation*}
u_{j}+u \text { in } L^{q}(Q) \text { for every } q<m+\frac{2}{n} ; \tag{93}
\end{equation*}
$$

thus

$$
\begin{equation*}
\left|u_{f}\right|^{m-1} u_{j}+|u|^{m-1} u \text { in } u^{1}(Q) \tag{94}
\end{equation*}
$$

Using (90) and (94) we obtain (84).
Finally we show that (84) implies (85). Indeed in (84) choose $\zeta(x, t)=\phi(x) \eta(t)$ with $\phi e c^{2}(\bar{\Omega}), \phi=0$ on $\partial \Omega$ and $\eta e c^{1}([0, T])$ with $\eta(T)=0$.

Setting $g(t)=\int_{\Omega} u(x, t) \phi(x) d x$ and $h(t)=\int_{\Omega}|u|^{m-1} u \Delta \phi d x$ we have $\left.g e L^{\infty}(0, T) \cap C(0, T]\right), \quad h \in L^{1}(0, T)$
and by (84),

$$
-\int_{0}^{T} g\left(t \mid \eta^{\prime}(t) d t-\int_{0}^{T} h(t) \eta(t) d t=\left\langle u_{0}, \phi\right\rangle n(0) \quad \vee n e c^{1}([0, T])\right.
$$

Consequently $\lim _{t \rightarrow 0} g(t)=\left\langle u_{0}, \phi\right\rangle$, that is

$$
\lim _{t \rightarrow 0} \int u(x, t) \phi(x) d x=\left\langle u_{0}, \phi\right\rangle \psi \phi e c^{2}(\bar{\Omega}) \cap c_{0}(\bar{\Omega})
$$

We derive (85) using a density argument and the fact that $u e^{\infty}\left(0, T, L^{1}\right)$.
5.3. The limiting behavior of u_{j} as $u_{0 j} \rightarrow \delta$ in case $m \leqslant \frac{n-2}{n}$.

We return now to the case $0<m \leqslant \frac{n-2}{n}(n \geqslant 3)$.
Let $\Omega \subset \mathbf{R}^{\mathbf{n}}$ be either a bounded domain with smooth houndary or $\Omega=\mathbf{R}^{\mathbf{n}}$. Theorem 8. Assume $u_{0 j}$ is a sequence in $L^{1}(\Omega)$ such that $u_{0 j} \rightarrow \delta$ in the w^{*} topology of $M(\Omega)$ and that $\operatorname{Supp} u_{0 j} \subset B_{1 / j}(0)$.

Let u_{j} be the (semi-group) solution of (65) - (66) corresponding to the initial data $u_{0 j}$.

Then $u_{j}(x, t) \rightarrow \delta(x) @ 1(t)$ in the w^{*} topology of $M(Q)$.

Proof

Step 1. Assume $\Omega=R^{n}, u_{0 j} \geqslant 0, \| u_{0 j}{ }_{L} 1 \leqslant C$ and Supp $u_{0 j} \subset B_{1 / j}(0)$. Then (95)

$$
u_{j}(x, t) \rightarrow 0 \text { a.e. on } R^{n} \times(0, T)
$$

Indeed, by the techniques of section 5.1 we obtain

$$
\begin{equation*}
\left|u_{j}(x, t)\right| \leqslant \frac{C^{\lambda}}{|x|^{(n-2) p}} \text { for }|x|>\frac{2}{j}, t>0 \tag{96}
\end{equation*}
$$

(notice that in the present context comparison is not a difficulty since u_{j} is the semi group solution; therefore u_{j} is obtained by some limiting procedure and the comparison can be made at each step of tike approximation).

Thus

$$
\begin{equation*}
\left|u_{j}(x, t)\right|^{m} \leqslant \frac{c t^{\lambda_{m}}}{|x|^{n-2}} \text { for }|x|>\frac{2}{j}, t>0 \tag{97}
\end{equation*}
$$

Next we claim that

$$
\begin{equation*}
\left.\int_{\frac{4}{j}}|x|<4 j u_{j}(x, t) \right\rvert\, d x \leqslant C t^{\lambda} \text { for } t>0 \tag{98}
\end{equation*}
$$

Indeed we have for every $\phi e D\left(R^{n}\right)$

$$
\begin{equation*}
\int_{R^{n}} u_{j}(x, t) \phi(x) d x=\int_{R^{n}} u_{j}(x, 0) \phi(x) d x+\int_{0}^{t} \int_{R^{n}} u_{j}^{m}(x, s) \Delta \phi(x) d x d s \tag{99}
\end{equation*}
$$

We choose ϕ in such a way that

$$
\left\{\begin{array}{l}
\phi(x)=0 \text { for }|x|<\frac{2}{j} \text { and for }|x|>8 j \\
\phi(x)=1 \text { for } \frac{4}{j}<|x|<4 j \\
|\Delta \phi|<C j^{2} \text { for } \frac{2}{j}<|x|<\frac{4}{j} \\
|\Delta \phi|<\frac{C}{j^{2}} \text { for } 4 j<|x|<9 j
\end{array}\right.
$$

Then, we derive (98) from (97) and (99). Next, we extract a subsequence still denoted by u_{j} such that $u_{j}(x, t)$ converges to some limit $u(x, t)$ abe. on 9 .

This is justified as follows. Let $\phi e D_{+}\left(R^{n} \backslash\{0\}\right)$. Multiplying (formally - but this can be justified) (65) by $u_{j}^{2-m} m_{\phi}$ we obtain

$$
\begin{aligned}
& \frac{1}{3-m} \int u_{j}^{3-m}(x, t) \phi(x) d x+(2-m) m \int_{0}^{t} \int\left|\nabla u_{j}\right|^{2} \phi d x d x \\
& \quad=\frac{1}{3-m} \int u_{j}^{3-m}(x, 0) \phi(x) d x+\frac{m}{2} \int_{0}^{t} \int u_{j}^{2} \Delta \phi .
\end{aligned}
$$

If j is large enough - so that $\operatorname{Supp} \phi \cap B_{2 / j}(0)=\varnothing$ - we see, using (96). that $\int_{0}^{t} \int\left|\nabla_{u_{j}}\right|^{2} \phi d x d s \leqslant c$. Therefore $\left(u_{j}\right)$ is compact in $L^{2}(\omega \times(0, T))$ for $\omega \subset \subset \mathbb{R}^{n} \backslash\{0\}$ (by Aubin's compactness Lemma, see egg. J. L. Lions (20j). The limit u satisfies

$$
\begin{equation*}
u(x, t) \leqslant \frac{c t^{\lambda}}{|x|^{(n-2) p}} \text { a.e. on } R^{n} \times(0, T) \tag{100}
\end{equation*}
$$

$$
\begin{equation*}
\int u(x, t) d x \leqslant c t^{\lambda} \text { for ace. } t \tag{101}
\end{equation*}
$$ since $u_{j} \rightarrow u$ in $L^{1}(\omega \times(0, T))$ for $\omega \subset R^{n} \backslash\{0\}$, the function u also verifies

$$
\begin{equation*}
\frac{\partial u}{\partial t}-\Delta u^{m}=0 \text { in } D^{\prime}\left(\left(R^{n} \backslash\{0\}\right) \leqslant(0, T)\right) \tag{102}
\end{equation*}
$$

The same argument as in Section 5.1 leads from (102) to

$$
\begin{equation*}
\frac{\partial u}{\partial t}-\Delta u^{m}=0 \text { in } D^{\prime}\left(R^{n} \times(0, T)\right) \tag{103}
\end{equation*}
$$

[Use the sequence $\eta_{k}(|x|)$ and notice that by Hblder, Theretore

$$
\left.k^{2} \int_{0}^{t} \int_{\frac{1}{k}}<|x|<\frac{2}{k} u^{m} \leqslant k^{2}\left(\int_{0}^{t} \int_{\frac{1}{k}}<|x|<\frac{2}{k}\right)^{m}\left(k^{-n} t\right)^{1-m}+0 \quad \text { as } \quad k+\infty\right] \quad .
$$

(104)

$$
\frac{\partial}{\partial t}(E * u)+u^{m}=0 \text { in } D^{\prime}\left(R^{n} \times(0, T)\right)
$$

where $E^{*} u=(-\Delta)^{-1} u=\frac{C_{n}}{|x|^{n-2}} * u$.
We conclude from (101) and (104) that $\frac{\partial}{\partial t}(E * u) \leqslant 0$ and consequentiy $E^{*} \mathbf{u} \equiv 0 ;$ thus $u \equiv 0$ 。

Step 2. Proof of Theorem 8 concluded in the general case.
From Step 1 we deduce that $u_{j}(x, t)+0$ a.e.
Indeed, by comparison we have

$$
\left|u_{j}\right| \leqslant s(t)\left|u_{0, j}\right|
$$

where $S(t)$ denotes the semi group generated in $L^{L^{1}\left(x^{n}\right)}$ by $\Delta|u|^{m-1} u$; by Step 1 we know that $s(t)\left|u_{0 j}\right|+0$ a.e. on $R^{n} \times(0, T)$.

We have for every ζ e $D(\Omega \times[0, T])$

$$
-\iint u_{j} \frac{\partial \zeta}{\partial t}-\iint\left|u_{j}\right|^{m-1} u_{j} \Delta \zeta=\left\langle u_{0 j}, \zeta(, 0)\right\rangle
$$

Since $\left|u_{j}\right|^{m-1} u_{j} \rightarrow 0$ in $L^{1}(\Omega)$ we obtain at the limit
(104)

$$
-\iint u_{j} \frac{\partial \zeta}{\partial t} \rightarrow \zeta(0,0) \otimes \zeta e D(\Omega \times[0, T))
$$

Given 0 e $D(\Omega \times(0, T))$ we set

$$
\zeta(x, t)=\int_{t}^{T} \theta(x, s) d s
$$

and we find

$$
\iint u_{j} \theta+\int_{\eta}^{T} \theta(0, s) d s=\langle\delta(x)=1(t), 0\rangle \quad \theta \in D(\Omega \times(0, T))
$$

Since u_{j} is hounded in $L^{1}(2)$ we conclude by density that
$u_{j}(x, t) \rightarrow \delta(x)$ ($1(t)$ in the w topology of $M(Q)$.
Remark 11. The two essential ingredients in the proof of existence (Theorem 71 , namely the $L^{1} \rightarrow L^{\infty}$ smonthing and the L^{9} compactness of $s(t)$ fail when $0<m \leqslant \frac{n-2}{n}$. This is a clear consequence of Theorem 8 . Another view
point is the following. Consifler in a bounded domain Ω the L^{1} maccretive operator $A u=-\Delta\left(|u|^{m-1} u\right)$ with zero Dirichlet boundary condition. Its resolvent $J_{\lambda}=\left(I+\lambda_{A}\right)^{-1}(\lambda>0)$ is not compact in $L^{1}(\Omega)$; this follows from the fact that the equation $-\Delta u+|u|^{p-1} u=\delta$ has no solution when $p \geqslant \frac{n}{n-2}$, see Brezis-Veron [12]. On the other hand it is easy to show that J_{λ} maps bounded sets from any $L^{q}(\Omega), I>1$ into compact sets of $L^{1}(\Omega)$. We deduce that:
i) $S(t)$ is not compact in $L^{1}(\Omega)$; indeed when a semi-group $S(t)$ is compact, then the resolvent J_{λ} is also compact, see Brezis [9]. ii) $S(t)$ is not smoothing from $L^{1}(\Omega)$ into any $L^{q}(\Omega), q>$ 1. Suppose, by contradiction, that there is a $q>1$ such that
 From the regularizing effect of Benilan-Crandall [7] we know that

$$
\left\|J_{\lambda} s(t) u_{0}-s(t) u_{0}\right\|_{L} \leqslant \frac{c \lambda}{t} \text { where } c=\frac{2\left\|u_{0}\right\|}{|m-1|} L^{1}
$$

It follows that $S(t)$ is compact in $L^{1}(\Omega)$. Indeed fix $0<t<T$ and fix $\varepsilon>0$; set $\lambda=\frac{t \varepsilon}{2 C}$. By assumption (105) the set $C=\left\{s(t) u_{0} ;\left\|u_{0}\right\|_{L} \leqslant M\right\}$ is bounder in $L^{T}(\Omega)$ and so the set $D=\left\{J_{\lambda} S(t) u_{0} ;\left\|_{n}\right\|_{L}{ }^{1} \leqslant M\right\}$ is compact in L^{1}. Therefore the set D (resp. C) may be covered by finite collection of balls of radius $\frac{\varepsilon}{2}$ (resp. ε) in $L^{1}(\Omega)$.

The preceding argument shows nevertheless that $S(t)$ enjoys two compactness properties:
a) $s(t)$ maps bounden sets from any $L^{7}(\Omega), q>1$, into compact sets of $L^{1}(\Omega)$ 。
b) $S(t)$ maps hounded sets from $L^{1}(\Omega)$ into compact sets of $L^{q}(\Omega)$ for any $0<\tau<1$.
[The lack of regularizing effect of $S(t)$ from L^{1} into iq for any $q>1$ when $m<\frac{n-2}{n}$ had been ohtained earlier by Benilan and Crandall in $\Omega=R^{n}$ using a simple homogeneity argument.]

REFERENCES

D. Aronson - Ph. Benilan, Régularité des solutions de l'equation des milieux poreux, C. R. Acad. Sc. 283 (1979) p. 103-105.
[2] A. Bamberger, Etude de deux equaticis nonlineaires lelliptique, parabolique) avec inasse de Dirac au second membre.
[3] P. Baras, Compacité de 1° opérateur $f{ }^{\circ} \mathrm{H}$ u solution d'une equation nonlineaire $\frac{d u}{d t}+A u$ Ef, C. R. Acad. Sc. 286 (1978) p. 1113-1116.
[4] G. I. Barenblatt, On some unsteady motions of a liquid and a gas in a porous medium, Prikl. Mat. Mekh. 16 (1952) p. 67-78 (Russian). Ph. Benilan, Opérateurs accretifs et semi-groupes dans les espaces $L^{p}(1 \leqslant p<\infty)$, in Functional analysis and Numerical analysis, France Japan Seminar, H. Fujita, ed. Jap. Soc. for the Promotion of Sciences, Tokyo (1978).
[6] Ph. Benilan - H. Brezis, Paper to appear on the Thomas-Fermi equation; see also H. Brezis, Some Variational Prohlems of the Thomas Fermi Type, in Variational Tnequalities, Cottle, Gianessi, Jions ed., Reirel (1990).

Ph. Benilan - M. Crandall, Regularizing effects of homogeneons evolution equations, Amer. J. Math. (t: appear).
[8] J. Berryman - C. Holiand, stabil:if ,f bue soparable solution for fast diffusion, Archive Rat. f.si. Anal. 74 (1980) p. 379-388.
[9] H. Brezis, New results conceraing monotone operators and nonlinear semigroups in Analysis of Nonlinear Problems RIMS Kyoto, 1974. H. Brezis - M. Crandall, Uniqueness of solutions of the initial value problem for $u_{t}-\Delta \varphi(u)=0$, J. Math. Pures et Appl. 58(1979) p. 153163.
[11] H. Brezis - W. Strauss, Semilinear elliptic equations in \mathbb{L}^{1}, J. Math. Soc. Japan 25 (1973) p. 15-26.
H. Brezis - L. Veron, Removable singularities for some nonlinear ellifptic equations, Archive Rat. Mech. Anal. 75 (1980) p. 1-6.
[13] L. Caffarelli - A. Friedman, Continuity of the density of a gas flow in a porous medium equation, Trans. Amer. Math. Soc., 252 (1979) p. 99113.
[14] L. Caffarelli - A. Friedman, Regularity of the free boundary for a gas flow in n-dimensional porous medium, Indiana Univ. Math. J., 29 (1980) p. 361-391.
[15] M. Crandall - T. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971) p. 265-298.
[16] M. Crandall - M. Pierre, Regularizing effects for $u_{t}=\Delta \varphi(u)$, Trans. AMS (to appear).
[17] A. Friedman, Partial differential equations of parabolic type, Prentice Hall, Englewoor Cliffs, NJ, 1964.
[18] S. Kamin, Source-type solutions for equations of nonstationary filtration, J. Math. Anal. and Appl. 64 (1978) p. 263-276. T. Kato, Schroringer operators with singular potentials, tsrael . T. Math. 13 (1972) p. 135-148. J. L. Rions, quelques méthodes de résolution des prohlemes aux limites nonlinéaires, nunot Gauthier-Villars, Paris (1969).
R. Pattle, Diffusion from an instantaneous point source with concentration-dependent coefficient, Quart. J. Mech. Appl. Math. 12 (1959) p. 407-409.
L. Peletier, The mon:1s media equation
[23] M. Pierre, Uniqueness of the solutions of $u_{t}-\Delta \varphi(u)=0$ with initial datum a measure, J. Nonlinear Anal. (to appear).
[24] L. Veron, Effets régularisants de semigroupes nonlineaires dans les espaces de Banach. Ann. Fac. Sc. Toulouse 1 (1979) p. 171-200.

SECURITY CLASSIFICATION OF THIS DAGE , IHmen Bata EInsered)

REPORT DOCUMENTATIUN PAGE	READ INSTRUCTIONS MFFORE COMPLETING FOKM
1. REPOAT NUMBER $2277 \quad\left\{\begin{array}{l}\text { 2. GOVT ACCESSION NO. } \\ \text { A1)-A110 } 460\end{array}\right.$	3. Recipient's catalog number
4. TITLE (and Subritio) Nonlinear Parabolic Equations Irivolving Measures as Initial Conditions	5. TYPE OF REPORT A PERIOD COVERED Summary Report - no specific reporting period
	6. PERFORMING ORG. REPORT NUMBER
7. AUTMOR(A) Haim Brezis and Avner Friedman	8. CONTRACT OR GRANT NUMEER(*) $\begin{aligned} & \text { DAAG29-80-C-0041 } \\ & \text { MCS } 7915171 \end{aligned}$
9. Performing organization name and adoress Mathematics Research Center, University of 610 Walnut Street Wisconsin Madison, Wisconsin 53706	10. PROGRAM ELEMENT. PROJECT. TASK AREA A WORK UNIT NUMEERS Work Unit Number 1 Applied Analysis
11. Controlling office name ant adoress	12. REPORT DATE September 1981
See Item 18 below	13. NUMEER OF PAGES 33
14. MONITORING EGENCY NAME ADORESS(if difterent from Controline Office)	15. SECURITY CLASS. (of thie report) UNCLASSIFIED
	15a. DEELASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (Of AMI Report) Approved for public release; distribution unlimited.	
17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, If dilferent from Report)	
16. SUPPLEMENTARYNOTES and National Science Foundation U. S. ARmY Research Office and P. O. Box 12211 Research Triangle Park North Carolina 27709	
19. KEY WORDS (Condinue on reveree elde il necectery and Identlly by block number) Nonlinear parabolic equations; Measures as initial conditions; Nonexistence; Boundary layer; Removable singularities; Porous media equation; Regularizing semigroups; Compact semigroups	

20. ABSTRACT (Continue on roverse side il necostary and ldentlly by block numbor)

We first consider the Cauchy problem for

$$
\begin{equation*}
u_{t}-\Delta u+|u|^{p-1} u=0 \text { on } \Omega \times(0, T) \tag{1}
\end{equation*}
$$

with a boundary condition and the initial condition
$u(x, 0)=\delta(x)$ on Ω
where $\Omega \subset \mathbb{R}^{n}$ is domain containing $0,0<p<\infty, 0<T<\infty$ and $\delta(x)$ is the Dirac mass at 0 . We prove that a solution of (1) - (2) exists if and only if

ABSTRACT (continued)

$0<p<\frac{n+2}{n}$. When $0<p<\frac{n+2}{n}$ we actually prove a more general existence and uniqueness result in which (2) is replaced by (3) $u(x, 0)=u_{0}(x)$ on Ω
where u_{0} is a measure.
Next, we discuss the Cauchy problem for

$$
\begin{equation*}
u_{t}-\Delta\left(|u|^{m-1} u\right)=0 \text { on } \Omega \times(0, T) \tag{4}
\end{equation*}
$$

where $0<m<\infty$, with a boundary condition and the initial condition (3). We prove that a solution of (4) - (2) exists if and only if $m>\frac{n-2}{n}$. When $m>\frac{n-2}{n}$ we actually prove existence for the problem (4) - (3).

