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ABSTRACT

We first consider the Cauchy problem for ca
'

ta--

(1) abnr Au + lul u = 0 on x (0,T1

with a boundary condition and t initial condition

(2) u(x,0) = 
6(x) on

where S7 Rn is domain containing 0, D ( p--, 0,< T ( . and 
6
(x) is

the Dirac mass at 0. We prove that' solution of-4- *2+ exists if and

0< n+2 ' n+2
q44 only if 0 < p -M When 0 < p < - we actually prove a more general

~n n
existence and uniqueness re t in which (2) is replaced by

(3) u(x,0 iiv _(x) on

where u0  is a measure. >

Next, we discuss the Cauchy problem for

(4) u t - A(Ju m-l u) = 0 on x (0,T)

where 0 < m < c, with a boundary condition and the initial condition (3).
n-2

We prove that a solution of (4) - (2) exists if and only if m > -2. When
n-2n

m > n- we actually prove existence for the problem 
(4) - (3).

n
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SIGNIFICANCE AND EXPLANATION

Nonlinear evolution equations oE the form

ut - Au + ful lu - 0 on in x (0,T)

or

- (fufi Iu - 0 on 
n 

x (0,TJ

arise in a large variety of problems in physics and mechanics. This paper

deals with the question of existence (and uniqueness) when the initial data is

a measure, for example a Dirac mass. Physically this corresponds to the

important case t. en the initial temperature (or initial density etc. ..) is

extremely high near one point. The main novelty of this paper is to show that

a solution exists only under some severe restrictions on the parameter p
n+2 n-

(or m); namely p must be less than n ( > n. For example, one .

striking conclusion eached Is the fact that A equation4

*3 n
(1) fut - Au + U 3 0 in Un x (0,T)/

u(x,O) - 6(x)

.\possesses no solutionn any dimension n 
) 1 and on any time interval

(O,T). This result pinpoints the sharp contrast btween linear and nonlinear

equations from the point of view of existence. It also implies that

linearization is meaningless for equations of/e type (1) ever small

time interval.

The responsibility for the wording and views expressed in this descriptive

summary lies with NRC, and not with the authors of this report.

* '4s 'a
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NONLINEAR PARABOLIC EQUATIONS INVOLVING MEASURES

AS INITIAL CONDITIONS

Haim Brezis and Avner Friedman

1. Introduction

In this paper we first consider the Cauchy problem for the nonlinear

parabolic equation

) u - Au + lulplu - 0 on 9 x (0,T)

with a boundary condition and the initial condition (
(2) u(x,O) - 8(x) on

where Rn  is a domain containing 0, 0 < p < , 0<T <w and 5( ,

denotes the Dirac mass at 0. . N " C 4q*:

We prove that a solution of (1) - (2) exists if-and only if -

C,. ,, 4,I  -

0 < p < 2. In particular the equation "
n

ut -Au + u
3  0 on x (0,T) <.

, : ulxO) 8 (Sx) on 1 1..

has no solution in any dimension n ) 1. We derive the nonexistence claim "-.,

from a statement about "removable singularities"; we show that there is a COPY

local obstruction to the existence of a solution of (1) - (2) when p A -+2
n

no matter what conditions we impose on the boundary al. When 0 < C -p
n

we actually prove a more general existence and uniqueness result in which (2)

,/4 is replaced by

(3) u(x,0) u 0 (x) in

where uo(x) is a measure.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. The

second author is partially supported by the National Science Foundation under
Grant No. MCS 7915171.
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Next we discuss the Cauchy problem for the equation

(4) ut - -A(ulm- Il - 0 on A x (0,T)

where m > 0, with a boundary condition and the initial condition (2). we

prove that a solution of (4) - (2) exists if and only if m > n-2 (any m > 0n

when n - 1 or 2). We actually prove an existence result for (4) - (3) when

n-2
n

The solvability of (4) - (3) when u0  is a measure has been considered
= (x ad0 n-2

by various authors. if f = u0()- 6W and m > -, an explicit
0 n

solution of (4) - (3) was given by Barenblatt [4] (see also Pattle [21]). If

S= Rn . M > 1, u0 > 0 is a bounded measure, existence and uniqueness was

obtained by M. Pierre [23], even for more general nonlinearities f(u) - not

just ulm-lu [the case n = 1 had been treated earlier by S. Kamin [18]).

The non existence aspect seems however to be new. Non existence results for

(1) - (2) (or (4) - (2)) are somewhat surprizing in view of the following

facts:

i) solutions of (I) - (3) [or (4) - (3}] are known to exist for any

u0 e L1 () under no restriction on p > 0 (or m > 0)

ii) a priori estimates do not "distinguish" between L functions and

measures.

This apparent contradiction will be explained in Sections 3 and 4.

Existence and non existence results for elliptic equations of the form

-Au + lulP u = f on

where f is a measure have been obtained by Bamberger 12], Benilan-Brezis [6j

and Brezis-Veron [121. Our approach borrows some ideas from these papers.

The results concerninq equation (1) are presented in Section 2, 3 and 4.

In Section 2 we prove non existence and removable singularities for (1) -

(2) when p > n 2
n

-2-



In Section 3 we prove existence and uniqueness of a solution of (11 - (3)

when p < q+2
n

In Section 4 we assume p 0 a+.2 and we study the limiting behavior of a
n

sequence uj of solutions of (1) corresponding to a sequence of smooth

initial data U + S. We exhibit a boundary layer phenomenon at t - O in

the process of passing to the limit one loses the natural Initial condition.

In Section 5 we discuss the properties of equation (4).

-3-
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2. Non existence and removable singularities for equation (1) when p _ n+2
n

Let a C R
n be an open set with o e a. Assume p n+2

n

Definition. A solution of (1) is a function u(x,t) e L?o(a x (0,T)) such

that (1) holds in the sense of distributions i.e.

-f u# dxdt - If uA+ dxdt + ff IulIlu *dxdt - 0 V # e V(A x (0,T))

The main results of Section 2 are the following

Theorem 1. There is no solution of (1) such that

ess lim f u(x,t)#(x)dx - co} V # e cc(a}(1
t O

Theorem I is an immediate consequence of

Theorem 2. Assume u is a solution of (1) such that

(5) ess lim f u(x,t)#(x)dx - 0 V + C (\ } .

2,1 t+ 0  (2)
Then u e c2(S x 0,T)) 2  and u(x,0) - 0 on U.

Remark 1. Theorem 2 implies in particular the following. Let u be a

classical solution of (1) on 9 x (0,T). Assume that u is continuous on

U x [0,T) except possibly at the point (x,t) - (0,01 and that u(x,0) - 0

on S\{o}. Conclusion: u has no singularity at (0,0).

Note the sharp contrast with the behavior of solutions of linear

parabolic equations. For example the fundamental solution E(x,t) of the

heat equation satisfies:

i) Et - AE - 0 in 1n x (0,T)

ii) Z(x,t) is smooth on I? x [0,T) except at the point (x,t) = (0,0)

and E(x,O) - 0 for x 0 0

(1)

Cc(Q) denotes the space of all continuous functions with compact support

in 0.
(2)

C2 ,1 denotes the space of all continuous functions u(x,t) having

continuous derivatives t, uX , Uxxj

-4-



iii) E has a singularity at (0,0).

Remark 2. In Theorem 2 one may replace condition (5) by the weaker condition

(5') ess lim f u(x,t)#(x)dx - 0 v # e D(I\{0})
t*0

provided u > 0 (because, in that case, (5) <--> (511). However if u

changes sign we don't know whether the conclusion of Theorem 2 is still valid

under the assumption (5').

The proof of Theorem 2 is divided into 6 steps. In what follows u

denotes a solution of (1) satisfying (5).

Ste . We have u e C
2
'
1
( x (0,T)).

Proof. We shall use a parabolic version of Kato's inequality.

Lemma 1. Let Q C Rn x R be any open set. Let u e Ltoc(Q) be such that

ut - Au - f in D'(Q)

with f e Lhoc(Q). Then

(1)

lul t - Alul - f sign u in V'(Q)

Since the proof is almost identical to the proof in the elliptic case (see

Kato 119]) we shall omit it.

From (1) and Lemma 1 we deduce that

(6) lul - Alul + IuIP 4 o in V'(Q x (0,T))t

and in particular

(7) lul t - Alul 0 in V,(O x (0,T))

Therefore lul is subcaloric in 9 x (0,T) and consequently

u e Lo(A x (0,T)). Indeed a mollifier U of lul still satisfies (7).

Representing it in terms of Green's function in a cube X with sides

(1)
I if u > 0

sign uk 0 if u = 0

-1 if u < 0

, , , _ Jn , ,-5-
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parallel to the axes we obtain (see Friedman [171 p. 130)

U c (x,t) 4 Cr f U

pr

where 
3p Xr is the parabolic boundary of Kr and (x,t) is the center of

its top face. Integrating with respect to r in some interval

0 < r1 < r < r2  and taking C + 0 we obtain that u e Loc (n x (0,T)).

Using (1) and the standard regularity theory for the heat equation we

conclude that u e C2 ,1( ( x (0,T)). In fact, u is as smooth as the function

uO+ lulP-lu permits. In particular if p is an integer then

U e 1 (9 x (0,T)).

Step 2. Let WCC 9\10) ( 1 ).  Fix T, < T. Then we have

(8) u e L (0,T1
; 
L (W))

(9) u e LP(0,T 1 LP(M)

Proof of (8). Suppose by contradiction that for a sequence tn in (0,T1),

|u{°,tn)IL( }n 1

L (W)

Since u e L (oc(n x (0,T)) we have tn + 0. On the other hand, we deduce

from (5) and the uniform boundedness principle that lu(*,tn )I remains

bounded as t + 0.
n

Proof of (9). Let C 8 P(e (01) be such that 0 ( C 1, = 1 on w.

From (6) we deduce that for 0 < < T

TI
f lu(xT 1 iI(xdx + jl f lu(xt)IPC(x)dxdt

(10)

I Iu(x,£)lC(x)dx + f f Ilu(x,t)IAC(x)dx

(1)

As usual this notation means that w is an open set such that w C \ 01.

-6-



From (8) we know that the right hand side in (10) remains bounded as C + 0

and thus (9) holds.

Step 3. Let w CC 1\{01. Then u e C2 ' 1 (W x 10,T)) with u(x,0} - 0 on

W.

Proof. Cons-der the function u(x,t) defined on ) x (-T,+T) by( 1 )

(u(x,t) if 0 < t < T

0 if -T < t < 0

so that by Step 2 u e I (w x (-T,+T)). We claim thatloc

(11) ut - Au + lul-u 0 in DI(( x (-T,+T))

Indeed let # e D(w x (-T,+T)}l we must check that

(12) - ff uft - ff uA+ + ff IuIpuU#- 0

Let I(t) be any smooth non decreasing function on R such that

[1 for t ) 2
rn(t) =m

0 for t •1

and set nk (t) = n(kt).

Since u is a solution of (1) we know that
(131 - ff U(*nk )t - ff uA(*nk) + ff lulplu +nk .

In order to deduce (12) it suffices to verify that

(14) f fu#(n ) + 0 as k +
k t

We have

* (15) ff u+(nk)t = ff u(x~t)lj(xt)-(xo)](fk) t + ff u(xlt)+(x,0)(nk)t

By assumption (5) f u(x,t)}(x,O)dx + 0 as t + 0 and thus

(16) ff u(x,t)#(x,o(n k t + 0 as k

On the other hand, by (8) we see that

(1)
We thank M. S. Baouendl for suggep Lng this device which led to a

simplification of our oriq -' pro

-7-
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(17) iff u(xt[*(xt) - #(xo)]( 1k)tl ( 0 as k +
kt k

Combining (15), (16) and (17) we obtain (14). Therefore (11) is proved. It

follows (as in Step 1) that Z e C2'1 (W x (-T,+T); in particular

u e C'2,1 x [0,T)) and u(x,O) - 0 on W.

Let us summarize so far, we have shown - without any restriction on p -

that any solution of (1) satisfying (5) is smooth on ( x [0,T), except

possibly at the point (xt) - (0,0), and that u(x,0) - 0 for x 0. It

remains to prove that u is smooth near (0,0); the restriction p _ is
n

now essential.

Step 4. There are constants C, P > 0 and 0 < TI < T such that

C
(18) lu(xt)l 2 / for Ixl < P and 0 < t < T

(lxi2+t)
n / 2

Proof. Let P > 0 be such that B 2P(0) C a; fix x0 eR0 with

0 < 1x01 < P and fix R < jx0 j. Set

G - ((xt) x - x012 < R + t with 0 < t < TI }

By choosing T, > 0 small enough we may assume that G C $1 x (0,T). In the

region G we define

U(x,t) 
- C(R2 +t)/2

(R 2_r 2+t) 0
20

with 6 r =Ix - x and C a positive constant. We compute

0

&u + = 0 CIR2 +t) 2  
-4C0(0+1)r

2 (k2+tO/2

t  2 U U(R 2_r 2+t) (R2 -r 2+t)0+2

2 6/2 CC 2n+l)B(R+t) (R2 +t)2

2 2 8+1 2_-2 tJ(R 2r +t) (R2r2+t)

Note that Op 0 + 2 and therefore

(19) Ut - AU + UP ) 0 holds in G

---



provided

(201 C I (R2+t) > 48(0+1)r 2 + (2n+1)6(R 2-r 2+t)

i.e.

(21) I
CP - 1 ;I (2n+110

(21)

C
p - 1 > 46(0+1)

(it suffices to check (20) at the end points r = 0 and r VRi+t).

We choose C large enough (depending on p and n) so that (21) - and

consequently (19) - holds. Clearly

u(x,t) ( U(x,t) if (x,t) e aG and 0 4 t < T

(recall that U(x,t) = if (x,t) e aG and 0 < t < T1, while

u(x,0) = 0 ( U(x,0)). By a standard comparison argument we obtain

u 4U on G .

In particular

u(x0,t) 4 U(x0,t) 2 C
(R +t)

Since R is any number less than Ix 01 we have

u(x ,t) (x02 C e/2 for Ix 01 < P and 0 < t < T
(IX I +t)

Finally since e 4 n (i.e. p )2 we getn

u(x ,t) 1

( I 0 12+t)n/2

n-0

with C1 = C(P 2+TI) 2 We conclude the proof of Step 4 by changing u

into -u.

Step 5,. We have

T1(22) f lxl< f lu (x,t)lPdxdt <

-9-



Proof. An easy computation based on (18) shows that

(23) flxl< p f Iiu(x,t)ldxdt <

Fix a function C e D(, x (-T,+T)) 41th 0 ( C ( I, C - 1 on 9 (0) x (0,T1 )

and set

k (Xt) - nk (lXI 2 + tIC(x~t)

(the same function nk as in Step 3). Since *k  vanishes on a neighborhood
of (0,0) we deduce from Steps 1 - 3 that

(24) - fS Iul (*k)t - fS luiA~k + ff luiPo k 0

i.e.

(25) I luIPNk 4 If rut(*k t + ff luIak
1 x2 2

Set Dk {(Xlt)u< +t < ). We have

(0k)t n'kC + nk Ct

A*k -(Ank K + 2VfkVC + nk AC

and so

(26) '( k)t' ( C outside D4k

(27) Ok)t 1 C(k+1) on Dk

(28) IjA I C outside D
k k

(29) IAk I0 C(k+1) on D
k kc

Combining (25), (23), (26), (27), (28), (29) we obtain

(30) ff tuI% 4 Ck ff)k lul + C

On the other hand, by Step 4

u II c ff dxdt < Ckn/2 mea D mea@ D
SD (Ix2 +t)n/2

Therefore ff lulPk remains bounded as k + I and (22) follnws.

Step u is smooth on x [0,T) and u(x,0) - 0 on 0.

Proof. Consider the function u defined on 0 x (-T,+T) by

-10-
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(u(x,t) if t > 0u(x,t)
Z 0 if t <0

In view of Step 5 we know that u R 1( x (-T,+TI). We claim that

(311 ut - Au + lU p- U 0 in D'(w x (-T,+T))

from which we derive - as in Step I - that u e C2I (n x (-T,+T)) and so

u e C 2,(1 x [0,T)) with u(x,O) - 0 on

Let e D(O x (-T,+T)); we must check that

(32) - ff u Ct - ff uAC + ff IuIP-lu C - o

We already know that

(33) - ff U(ok)t - ff UA~k + If Ilwo-u *k = 0

where k(x,t) =n (x + tJ4(x'tJ.

It is therefore sufficient to verify that as k +

(34) ff u(nk)t C 
+ o

(35) ff u ank C + o

(36) ff urnk VC + 0 o

We have

Iff u(nk )t C< Ck ffDklul

Ill uAn k C1 i f1D lul

Iff uVnk VCi ' &k ff klul

Finally, by H8lder we get

HDk lul (ffDk lul
p) Imeas Dklp'I

k k

Recall that Imeas k = n and that -p ( + 1) 1 (i.e p n

k2

therefore k f Pul < C(ff U) I/p + 0 (by Step 5).thrfoe k cffk

-11-
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n 2
3. Existence And uniqueness for ecuations (1) - (3) when 0 < p < n2

We assume now for simplicity that C Rn  is a bounded domain with a

boundary an of class C2+O(a > 0). Let 0 < p < B+2
n

Consider the initial value problem

(37) Ut - Au + uiP-lu - 0 on x (0,0)

(38) u(x,t) - 0 on x (0,-)

(39) u(x,O) - u0 (x) on

The initial data uo(x) is a bounded measure on i.e.

(40) uo e m(n) - c 0 ()

..here C (11) denotes the space of continuous functions on I which vanish on

an.

Theorem 3. There is a unique function u e C21 (N x (0,+i)) solving (37),

(38) and such that

(41) lim f u(x,t)(x)dx - <u0 1* V * e C0(1)
t+O

In addition f0 I JutPdxdt 
<

Remark 3. The conclusion of Theorem 3 is also valid for some unbounded

domains n, for example 0 - R
n .

Remark 4. It is presumably possible to solve (37) - (38) - (39) for some

values of p > n+2 and some measures u0  less singular than 6 (for example
n

a spherical distribution of charges) under some appropriate relation between

p and the singular part of ut, .

Let S(t) - etA denote the contraction semigroup generated in L1(0) by

A with zero Dirichlet boundary condition.

Let 0 < T < - and set Q - U x (0,T). We shall need the following

Lemma 2. Consider the mapping K defined by

CUs,f) , u - S(tu 0 + ft S(t-s)f(s)ds

-12-
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i.e. u is the solution of the linear equation

Sut - Au - f on 9 X (0,T)

U(,t) - 0 on x (0,T)

u(x,O) - u0(x)

Then K is a compact operator from LI(a) x L (Q) into Lq(Q) for every

n+2q < -. o
n

Proof of Lemma 2. We already know (see Baras 13]) that K is a compact

operator from LI( ) x L (Q) into Li(Q). Therefore it suffices to check

that K is A bounded operator from L (12) x LI(Q) into Lq(Q) for every

n+2.
n

Recall that for every 1 4 q 4 - we have

(42) IS(t)u 1 ( C 1Lq( ) t~z 1 o L(

t2 q

inequality (42) follows by H8lder's lneIaality from the extreme cases q 1,

q = (and the case q = is obtained, via the maximum principle from the

tA
explicit representation of e in R"}.

We deduce from (42) (and Younq'e inequality) that

lul ( C(ulL1 + IfI )
1 (Q) L (Q)

n 1

provided q < n+2 (in order for the function t2  to lie in

Lq(0,T)).

Proof of Theorem 3

Existence. Let u0 j e DO) be a sequence such that

(43) Iu L 1 ( C

(44) Uoj + u in the w topology of M(0I

-13-



Let uj be the solution of (37) - (38) corresponding to the initial data

uoj. One has the following estimates

(45) lu 1 < lUo(! C 

J L(O,TIL1 ) 1L(a)

(46) IT fa lu Ip dxdt I < C I
0 1 L ()

indeed, multiply (37) by e m(uj ) where em is a sequence of smooth

nondecreasing functions converging to sign. It follows fcom Lemma 2 that uj

n+2
is compact in Lq(Q) for every q < n2 We choose a subsequence still

n
such qn+2

denoted by uj such that u + u in Lq(Q) for every q < n+2 and thus

pi pn
(47) lu ip-lu + julp lu in LI(Q) .

On the other hand an easy comparison argument shows that

(48) lu (.,t)l ( S(t) luj I on Q

and therefore

luj(9,t)I C u ( C

Sttl n/2 Dj L 1 () tn/2

Consequently u e L ((8,T); L (9)) for every 6 > 0 and u satisfies

ut) - S(t)u 0 - 0 S(t-s) lu(s)lp'lu(s)ds

We conclude - via a standard bootstrap - that u e C 2,(? x (0,T]) (and in

fact u is as smooth as the function u * lulP lu permits). Here S(t)u 0

is defined on M(n) as the adjoint of the continuous contraction semigroup

etA  on C0 (?7) as such S(t) is not a continuous semi-gro. p on F40) but

S(t)u 0  u0  in the w topology of M(Pi as t 0.

Remark 5. Assume u0  is an L function instead of a measure. Then,

problem (37) - (38) - (39) has a solution for every 0 < p < -. This is a

consequence of the Crandall-Liggett Theorem (see [15]) applied in LI (a) to

the m-accretive operator Au - -Au + JulP-i (see Brezis-Strauss [11]). i'le

same conclusion can also be obtained directly as follows: let uj 8 DO) be

-14-
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a sequence such that u0j u0  strongly in L (S). Multiplying (37) by

m (uj - u ) we obtain

f luj (x,T) - uk(x,T)1dx + 0 fai lu i - lukt uktdxft

f u Oj(x - u*k(x)ldx * 0 as J,k +

Therefore ujlP-luj is a Cauchy sequence in T.'(Q) and converges strongly

in LI(Q). Thus we have proved (47) without any restriction on p (note that

n+2
the assumption p < - enters in the proof of Theorem 3 only in order ton

obtain (47)).

Uniqueness. Here we need no restriction on pi so let 0 < p < be

arbitrary. First, observe that if u e C2'(l x (0,T]) satisfies (37), (38)

and (41), then

(491 u e L (Q) and f0 f' lul~dxt <

and

( - _o In - uA& + fT In julp uC _ < u0 , co,0) > v c e w

where

W - (c e c2 ' 1 
-x [0,T] 1; C(x,T) - 0 on 1, C(x,t) - 0 on 3 x [0,T])

Indeed from (41) and the uniform boundedness principle we see that

u e L (0,T; L()). Next, we have for C ) 0

fI lu(xT)Idx + fT In lulpdxdt ' fI lu(x,c)Idx
(multiply (37) by m(u) and integrate over x (E,T)) and thus

fT fa lulp'dxdt <

Finally in order to prove (50) multiply (37) by C, integrate on

x (E,T), and pass to the limit as C + 0 (notice that

f u(x,C)C(x,C)dx < <u01 (,0>). We shall now establish uniqueness within the

class of function u satisfying (49) - (50). Let u1 , U2 be two solutions

and set v - ul - u2. We have

-15-



- f fa7(c + AC) - f7 fa fc V c e w

where f - -tullP-lu1 + 1u 2 Ip- 1 u 2 . Uniqueness is a direct consequence of the

following

Lemma 3. Assume v e LI(Q), f e LI(Q) satisfy

(51) - fT fn v(t + AC) - fT fa fc v c e w

Then

(52) ft fa f sign v dxds > fa Iv(x,tlldx for all t e [0,T]

Proof of Lemma 3. Notice that for any given f e LI(Q) there is a unique

v L Li (Q) satisfying (51). Indeed if

fT fn v(t + AC) - 0 V C e W

then take C such that

1t + AC - h on 0 x (0,T)

(x,t) - 0 on 3 x (0,T)

C(x,T) - 0 on

(where h(x,t) is arbitrary and smooth) to deduce that fo f vh 0.

rrom the preceding remark on uniqueness it follows that if we solve

av
- AVj f on Q x (0,T)

(53) v.(x,t) - 0 on ag x (0,T)

v.(x,O) - 0 on

1 L1

with fi ' f in L (Q), tnen v, 
+ 

v in C([OTl; L (n11. Multiplying

(530 by Om(v j  we obtain

f X(Vj (x,t))dx ft fa 0 m"j )dxds

where X' O m. Taking first j + and then S * sign we get (521.

-16-



4. The limiting behavior of uj as u-j in case p ) n

We return now to the case p - n+2 Let Q C Rn be a bounded domain
n

with smooth boundary with 0 e 2.

Consider a sequence u, of solutions of (37) - (38) corresponding to a

sequenc-e (3 smooth inLtial data u0j which converges to 8. Since we know

that the limiting initial value problem has no solution (with u0 - 5), it is

interesting to study what happens to the sequence u1  as j -.

Theorem 4. Assume u0 j is a sequence in L1 (2) such that

(54) lu0jlLI(a ) 4 C

(55) u j + 0 strongly in LI(O\B r (0)) for every r > 0

Let uj be the solution of (37) - (38) corresponding to the initial data

u0 je

Then u 0 uniformly on x IC,T] for every C > 0.

Proof! As in the proof of Theorem 3 (existence part) we know that

(56) lujlL(0,TjL 1 )

(57) lu. 1 C17L(0,TIL p )

(58) luj(',t)l V t >
L (() tn/2

From standard linear parabolic estimates we see that

lu I C I(lx,Tj r CE V e > 0

In particular

(591 u u uniformly on 1 x 1.TJ V E > 0

with u e L*(n,TjL 1) f LP(o,TgLP).

-17-
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Also we know that uj u in Lq(Q) for every q < and in

particular

(60) + u in L (Q)

Next we show that

(61) UlupIu + julp-lU in L (0,TjLl(.\B (0)) V r > 0
i ir

Indeed fix C S C 2(?F) such that

C 1on

0 0 on

Multiplying the equation

5-t (uj - uk' -A(u -uk + lui l u lukl uk o

through by CO(uj - uk) and letting 0 -sign we find

fT fa llPlu - lulPlukIC ' fa lu0j - UoklC + fo fa juj _ ukJac

Since the right hand side tends to 0 as j,k + 0 we obtain (61).

As a consequence of (59), (60), (61) we have

(62) f f U(Ct + AC) + f T f lulP'lu C = 0

for every c e W such that C E 0 near (0,0). Since u e LP(Q) and

P;n+2
p )- we deduce as in Step 6 of Section 2 that

n

(63) "f fn u(Ct + AC) + fT fa julp-lu C _ 0 V C 8 W

We conclude by uniqueness (see the proof of Theorem 3) that u S 0.

Remark 6. Assume in addition to (54) - (55) that uj + 5 in the w

topology of M(9). Then we have

(64) fo fa lu lP-'u C + C(0,0) V CS C(i)

Indeed let c e w; we have

ffQ lujllpmuj = ffQ uj(ct + AC) + fa uo (x)C(x'O)dx C (Oo)

-18-
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since u + 0 in L (Q) (see (60)). We derive (64) from (59), (61), (57)

and a density argument. Notice that (64) is not In contradiction with the

fact that u 0 in Lq(Q) for q . n+2.
jn

Remark 7. The conclusion of Theorem 4 may be viewed as a boundary layer

phenomenon at t - 0. In the process of passing to the limit, equation (37)

has been preserved, as well as the boundary condition (38)1 however the

initial condition has been lost. More generally the argument above shows that

if u0 e L (11) and if u0j is a sequence of initial data such that

Eu I ( C and u 0 u in L(B r(0)) for every r > 0. Then the

corresponding solitLons uj converge to u (uniformly on 1 x [C,T], for

each £ > 0] where u is the unique solution of (37) - (38) - (39). Again

one may lose the "natural" initial condition (for example when u + u0 + 8

in the w* topology of M() then u takes the initial value u0 ).

-1 9-



5. The porous medium equation

Consider the equation

rn-1(65) ut -A(ul U) - 0 on a x (0,T)

(66) u(x,t) = on 39 x (0,T)

(67) u(x,O) - u0(x) on
0

with 0 < m < .

There is extensive literature dealing with equation (65); see e.g. the

expository paper of Peletier [22] and recent contributions by Caffarelli-

Friedman [13], [14], Aronson-Benilan [1], Benilan-Crandall [7], Benilan [5],

Veron [24], Brezis-Crandall [10], Pierre [23], Crandall-Pierre [16]. The

case m < 1 corresponds to a "fast diffusion process"; equations of this type

appear in plasma problems, see e.g. Berryman-Holland [8].

When 9 - 1n
, U W 6(x) and m > n-2 (no restriction on m if

n

n = 1 or 2) an explicit solution of (65) was found by Barenblatt [4] (see

also Pattle [211), namely

u(x,t) 1rG(IxI
t t

1 r

where G(s) [(28 - c) +IM-1

L (m-1 } £ 1i
= 2mn+2 and 8 is a positive constant such that

m_1 + --
n

f G(Ixl)dx 1. A direct calculation shows that u(x,t) + 6 (x) B 1(t) as

m + (!i-). This suggests that no solution of (65) exists, in the sense of
n

n-.
distrihutLons, when m = -2 and u = 6 (since one cannot make sense out of

n
6m .

Tie qhali now proceed to prove that indeped when 0 < m 4 n-2 (n ) 3) no

1Ol?1tion of (65) exLqts For u(= ) . %n the other hand when m > (2-_,)n-
0 n

4nllitinn of (651 txistq for any frets.Ire t 0 .

-20-
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5.1. Mon existence when 0 < m 4 n-2
n

Assume 0 < m < E-_2 (n > 3); let Q C R he any open set with 0 e '.
n

Definition. A strong solution of (65) is a function u e L7(CP) such that

u~ e L (Q) and such that (65) holds in D'(Q).ut  10

Theorem 5. There exists no strong nonnegative solution of (65) such that

(68) ess lr f u(x,t)f(x)ax - *(0) v f e c (Ci)
t+0

Remark 8. It is reasonable to belLeve that there is no weak solution of (65)

(i.e. a function u e L I (Q) such that (65) holds in D'(0)) satisfying

(68).

Theorem 5 is a direct consequence of

Theorem 6. Let u be a strong solution of (65) such that

(69) ess lim nu(o,t) = 0 V W cc 0\{0}.

t+0 L (W)
Then

(70) ess lim lu(@,t)l - 0 for some r > 0
t+0 L (Br (0))

Proof of Theorem 6.

Let 0 < P < I be such that S20(0) C 0. Let xe Rn1 with

0 < Ix nI < P. Let 0 < R < jx0 1 and set

C n-2

VW - CR -2for x e BR(x 
0

V~) (2 _xx012)n-2

CR - x-xI

V is a positive smooth functLon in BR(X0) and V on 3B (x 0). The
TR

same computation as in Brezis-Veron [12] shows that for some appropriate

poqLtL'e cnl.-.'i: C (iepending only on x) one has

(71) -AV + Vp > 0 on B R(x ), V p > n2-Rn-2"

get p = - and
N' 1-15

(72) U(x,t) t VPx) on R(x ) x (0,' 0 )

tt Follows from (71) that

-21-
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(73) Ut - AU
m > 0 on 8R(x0 ) x (0,)

Also

(74) U(x,t) = on 3BR(X 0 x
0 ,

(75) U(x,0) = 0 on 3 0(x0

By comparison of (65) and (73) we shall deduce that

(76)U < U on B R(x 0) x (0,T)

Indeed, Kato's inequality - which is valid since u and U are strong

solutLons - asserts that

A(lul -Iu - JulI U) > [A&lullu _ Iulm- 1 U)]sign+(tul -Iu _ guIl U)

and

+ +
at (u - U) - - (u - U) sign (u - U)

+ 1n- rn-i)

Since sign (lul m" u - 1 U) - sign (u - U) we conclude that

(77) a (u - U) + - A(1u m-lu - Jur-IU)+ < 0 in D,(BR(x 0 ) x (0,T))

On the other hand (lulm Iu - Julu-) + U) 0 in a neighborhood of

B R(x 0) x (, T-C).

Thus by integrating (77) we find, for C < t < T-C,

(78) f . (u(x,t) - U(x,t))+dx fB (0 (u(x,C) - U(x,,C) +dx
B R(x ) B R(x )

As C + 0, the right hand side in (78) tends to 0 (by assumption (69)) and

(76) is proved. Similarly we obtain Jul 4 U on RR (x 0 ) x (0,T) and in

0 0R
particular lu(x ,t)l < U(x ,t) = -- 2 Since R < Jx 01 is arbitrary we

R(n-2

have

lu(X ,t)l O(n-2)p on B P(0) x (0,T)
lx I

and therefore

(79) lu(x,t)lm < C on B3 (0) x (0,T)Ix01 - I00 0T

Pinally we claim that

(80) fB lu(x,t)ldx 4 C t
P0/2

-22-



which proves (70).

Indeed, by Kato's inequality we have

(8- ul Alulm 4 o in V'(Q) .

Fix a smooth function O(x), 0 ( 1 with support in B p(0) such that

= 1 on B P/2(0).

Let nk be a sequence of functions as in Step 3 of Section 2.

Multiplying (81) by (X)Ik (Ixl) we find

k k

ft~ flulm(flkAO + 2V V + An )dxdx

0~~ kk
SC ft f J0)ulmdxds + C(k~k2) ft fi 21ulmdxds

Using (79) we find that

fnlulx,tll(xln kllxlldx ctA

We obtain (80) by letting k .

n-2
5.2. Existence when m > -.

n

Assume (for simplicity) that 9 C R is a bounded domain with smooth

boundary. Let m > - (any m > 0 if n = or 2).

n

Theorem 7. For every u 0 e M(9l) there exists a functio~n u(x,t) satisfying

(82) u e C((0,T]i L )fL**(0,T, L n1 LO*( x (C,T II V C 0,

(83) lul e L(Q)

((1)

(84) - JJu~ - jj 1 1lm1 UtC = <u0 1;(-,0) >V C e W4

Recall thatw ={ e c2,1 x [0,T] 1 (x,T) =0 on , (x,t) -0 on aQ x [0,T]}

-23-
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In particular we have

(85) lim fa 'I(x,t14(x)dx = <un> v * e Co(f)
t+o

Remark 9. When 9 R , m > 1 and u0 > 0 an existence and uniqueness

result has been obtained by Pierre [23] for the equation (65) - (661 - (67).

We suspect that under the assumptions of Theorem 7 the solution is also

unique.

Remark 10. It is presumably possible to solve problem (65) - (66) - (67) for

some values of 0 < m 4 _ and some measures u0  less singular than
n

(for example a spherical distribution of changes) under some appropriate

relation between m and the singular part of u 0 .

Proof of Theorem 7.

We denote by S(t) the L I 
contraction semigroup generated by

A(oujm- u) via the Crandall-Liggett Theorem. We recall some properties of

s(t):

i) S(t) is smoothing from L I 
into L 0 More precisely we have

2

(86) *S(tlu 1 4 [2u-In I k, V t > n, with k -(m-1 + 2)-
L (a) L (1)

see Renilan 15] (and also Veron [24]).

ii) S(t) is compact in L1 that is, for each fixed t > 0, S(t) maps L

bounded sets into L 1-compact sets, see Baras [3].

iii) The mapping u0 I S(tu00(t(T maps L
1  

bounded sets into compact

subsets of LI(Q), see Baras 13].

Given u0 e M() we consider a sequence uj of smooth functions such

that lu I C and u Un  in the w* topology of M(a). Set u=

flj L1 Oj
S0tlunj so that

(8u(7t1l 1 i C

-24-



(88) luj(,,t)l C > 1
L(a) 

t

(89) u u in C((0,T]i L1I

(90) u + u in LIQ)

with u satisfying (82).

Next, we deduce from H81der's inequality, (87) and (88) that
C

(91) lui (*,t)l V 1 q (
L'q( } k(I - -

t 
q

and therefore

(92) luj* ( C provided q < m + 2

LjlQ) 
n

In particular we derive from (90) and (92) that

(93) u + u in Lq(Q) for every q < m +
j n

thus

(94) lu i-luj + lul m-iu in LI(Q)

Using (90) and (94) we obtain (841.

Finally we show that (84) implies (85). Indeed in (84) choose

C(x,t) - *(x)rl(t) with 0 e C2 (i), * - 0 on 3a and n e CI (10,T]) with

n(T) - 0.

Setting g(t) - fU u(xt)f(x)dx and h(t) =- fgiui- I uAdx we have

q e L (0,T) ) C((0,T I, h e L (0,T)

and by (84),

" J0 g(tl,'(tldt - h(t)n(t)dt - <uo,> n(o) v n e c ([o,T)

Consequently lim g(t) = <u0,*>, that is

t+0

11M f u(x,t)#(x)dx - <u0 1 > v 0 e C2 1J) r C (F)
t+0
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We derive (85) using a density argument and the fact that u e L (O,T, L ).

5.3. The limiting behavior of uas uO, 
+ 6 in case m 1--.

n-2

We return now to the case 0 < m( - (n ) 3).
nn

Let 9 C R be either a bounded domain with smooth boundary or S1 Rn,

I
Theorem 9. Assume u0 j Is a sequence in L (fa) such that u 6 in the

Oj

w* topology of M(9) and that Supp u0 j C B1/j(0 ).

Let uj be the (semi-group) solution of (65) - (66) corresponding to the

initial data u0j.

Then uj(xt) + 6 (x) 4 1(t) in the w* topology of H(Q).

Proof

Step 1. Assume = R , u 0 j > 0, Iu0i 1 1 C and Supp u0j C B1/j(O). Then
L

(95) u (x,t) 4 0 a.e. on Rn x (0,T)

Indeed, by the techniques of Section 5.1 we obtain

(96) ui (x,t)j r Ct for lxI > 3, t 0j ix(n'2)pj

(notice that in the present context comparison is not a difficulty since u

is the semi group solution; tht.refore u is obtained by some limiting

procedure and the comparison can be made at each step ,if Uhe approximation).

Thus
Am

(97) lu.(x,t) m  
_----- for lx >2, t> 0

or l ,n-2  •

Next we claim that

(98<4 lu (xt)ldx • Ct for t > 0

lx<4j
Jn

Indeed we have for every 0 e V(1n )

(99) f uj(x,t)f(x)dx - f. u (x,O)(x)dx + ft f u m(xs)h(x)dxds
R ~ 0 R"

-26-
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We choose * in such a way thatI (x) - 0 for lxI < 3 and for Ixi > Bj

*(x) 1 for < Ixi < 4J

141 4Ci 2for < xi<

141I 4 C for 4J < IxI < sj.
.2

J

Then, we derive (98) from (97) and (99). Next, we extract a subsequence -

still denoted by u1  such that uj(x,tJ converges to some limit u(x,t)

a.e. on Q.

This is justified as follows. Let * e )+ (N\ 0 ). Multiplying
2-in

(formally - but this can be justified) (65) by uj we obtain

f u-m(xt)fx)dx + (2-m)m ftf iVu l2$dxdx
3-mi + 0j

I 3 f u3jn(xO)$(x)dx + ! ft f u2  .

3-rn j 2 0

If j is large enough - so that Supp * n B 2/j(0) = 0 - we see, using (96),

that ft f IVu1 
2 dxds < C. Therefore (uj) is compact in L2 (W x (0,T))

for W CC R\{} (by Aubin's compactness Lemma, see e.g. J. L. Lions [201).

The limit u satisfies

A

(100) u(x,t) < Ct a.e. on Rn x (0,T)

(101) f u(x,t)dx % Ct for ae. t

Since uj u in L (W x (0,T)) for W CC RR\{O), the function u also

verifies

(102) a um  0 in D'((n\'o}) A (0,T))

The same argument as in Section 5.1 leads from (102) to

(103) - Au' = 0 in V,(In x (0,T)

-27-



[use the sequence n (Ixl) and notice that by H8lder,

k 2  ft f, k2(f f u 2)m(-ntO
1-m + n as k +

Therefore 
k

(104) (Emu) + m 0 in D,( n x (0,T))

C
where E*u = C-A)lu .. _ u

ixl
n -2

We conclude from (101) and (104) that (E*u) 4 0 and consequentiy

E*u E 01 thus u 2 0.

Ste 2,. Proof of Theorem 8 concluded in the general case.

From Step I we deduce that u (x,t) * 0 a.e.

Indeed, by comparison we have

lu 1 1 s(t) luoj I

where S(t) denotes the semi group generated in LI(Rn) by Alul' u; by

Step I we know that S(t)Iu0 I 0 a.e. on Rnx (0,T).

We have for every C e DO x [0,T])

ff u - ff IuI ujAC - <Uol, €  ,0)>

Since lu m-lu* 0 in LI(Q) we obtain at the limit

(104) - 3f uj.+ (Oo) v C e (0 x (0,T))

Given 0 e D(O x (0,T)) we set

-(xt) f- O(x,s)ds(x~t}

and we Find

If u + 3(D,s)ds = <8(x) 9 1(t), O> V 0 eD(2 x (O,T))

Since uj is bounded in L (Q) we conclude by density that

u (x,t) + 6(x) 6 1(t) in the w* topology of M(Q).

Remark 11. The two essential ingredients in the proof of existence (Theorem

7), namely the L 1 L M soothing andI the LI compactness of S(t) fail

when 0 < m n-2. hs s a clear consequence of Theorem 8. Another view
n

-28-
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point is the Following. Consider in a hounded domain the L1  m-accretive

operator Au - -A(ulm-I u) with zero Dirichlet boundary condition. Its

resolvent JA = (I + AA)- (A > 0) is not compact in L1 (); this follows

from the fact that the equation -Au + luP-lu 6 has no solution when

p)n
p n, see Rrezis-Veron [12]. On the other hand it is easy to show that

J maps bounded sets from any Lq(Q}, q > 1 into compact sets of L().

We deduce that:

i) S(t) is not compact in L (Z); indeed when a semi-group S(t) is

compact, then the resolvent J is also compact, see Brezis [9].

ii) S(t) is not smoothing from L (9) into any Lq("), q > 1. Suppose, by

contradiction, that there is a q > I such that

(105) IS(t)u 0 ( C(t) V t e (0,T), V u0 e L
I with lu I ( ML0(1 ) oL I

From the regularizing effect of Benilan-Crandall [71 we know that

tUCA 2lu I
- S- 1t4uwhere C - 0 L I

S~~0  0 LmI l

It follows that S(t) is compact in L1 (9. Indeed fix 0 < t < T and fix

tc {~~ ° (
£ > 0Y set A - -. By assumption (1051 the set C - !(tu lu I 4 M)

2C 0 01LL
is bounded in Lq(9) and so the set 0 - 0JA S(tu0; lu 0l 1 M is compact

in L . Therefore the set D (resp. C) may be covered by a finite collection

of balls of radius i (resp. C) in L1(9).
2

The preceding argument shows nevertheless that S(t) enjoys two

compactness properties:

a) 8(t) maps bounded sets From any L(g), q > 1, into compact sets of

LI (Q).

b) S(t) maps hounded sets from LI(9) into compact sets of Lq(Q) for

any 0< < 1.
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[The lack of regularizing effect of 5(t from LI into Lq for any

q> I when m 4 - had been obtained earlier by Bentlan and C~randall in
n

10R using a simple homogeneity argument-]
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