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\| ST
We first consider the Cauchy problem for CﬂﬂL““ ‘%f*h"f)
(1) u, - Au + Iulp-1 =0 on & x (0,T)
> with a boundary condition and té: initial condition,
(2) u(x,0) = §(x) on 9////>
where £ R" is domain conta;n;ng 0, D ¢p¥ o, QM: T <a;awfnd §(x) is

o
the Dirac mass at 0, We prove that‘a solution of 44} -322+ exists if and

only Lf 0 <p<« Eia When 0 < p < Eia we actually prove a more general

existence and unlquene::\;Eselt in which (2) is replaced by

(3) u(x,O) =w,(x) on a

where ug is a measure. = o /ng'fsiﬁ
Next, we discuss the Cauchy problem for

(4) u, = 8(1ul™ e =0 on 8 x (0,m)

where 0 < m < *®, with a boundary condition and the initial condition (3}.

We prove that a solution of (4) = (2) exists if and only if m > Eil. when

m> ﬂgz we actually prove existence for the problem (4) - (3).

AMS(MOS) Subject Classifications: 135K15, 35KS5

Xey Words: MNonlinear parabolic equations; Measures as initial conditioms;
Nonexistence; Roundary layer; Removable singularities; Porous
media equation; Reqularizing semigroups; Compact semigroups.

Work Unit Number 1 - Applied Analysgis
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SIGNIFICANCE AND EXPLANATION

Nonlinear evolution equations of the form
u, - Au + lul;F1u =0 on R X {0,T) )
or

%
- 8(fui™ M) =0 on ®” x (0,m) Fl{

arise in a large variety of problems in physics and mechanics. This paper

Ye

deals with the question of existence égnd uniqueness) when the initial data is
a meagure, for example a Dirac mass. Physically this corresponds to the

important case !hen the initial temperature (or initial density etc. ..) is *

! extremely high pear one point. The main novelty of this paper is to show that

a solution exists only under some severe restrictions on the parameter p j

-~

+ ~2
(or m); namely p must be less than E;a (m > 2;*). For example, one -

/
T AP RN (I (i )

striking conclusion Eeached is the fact that é;; equation\

3 n //
" (1) u, - Ay + 4 =0 in R X (0,7) ~
- u(x,0) = §(x) ‘
dor =
7 ‘,\possesses no solutioné\ any dimension n ® 1 and on any time interval

(0,T). This result pinpoints the sharp contrast ggtween linear and nonlinear

equations from the point of view of existence._ It also implies that

linearijzation is meaningless for equations of e type (1) ever - . small

: }(ﬁ time interval.

The responsibility for the wording and views expressed in this descriptive
gummary lies with MRC, and not with the authors of this report.
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, NONLINEAR PARABOLIC EQUATIONS INVOLVING MEASURES
; AS INITIAL CONDITIONS

Haim Brezis and Avner Friedman
1. Introduction
In this paper we first consider the Cauchy problem for the nonlinear

parabolic equation

(1N u, - Au + |ulp-1u =0 on & x (0,T) ﬁ
with a boundary condition and the initial condition
(2) u(x,0) = 8(x) on & 15
v F)
where @ R” is a domain containing 0, 0 < p < ®, 0 < T <® and &( "'QQ') 21 o -?,5133
St CL'\
Lo 5
denotes the Dirac mass at 0.. \\’Vcﬁq”q
3 ; \ \”13‘7 3 i
' We prove that a solution of (1) - (2) exists if and only if 1yg\\\ \\\:?
lf"‘ -
0 <p<« E:Z. In particular the equation ‘06-1 "%:\\\\ o
3 ; n X J} . ~
&g ﬂ'o N
3 R
{ u, = 8u+u =0 on & x (0,T) ap Tea T
u(x,0) = §(x) on 2 s
~ 4

has no solution in any dimension n * 1. We derive the nonexistence claim

from a statement about "removable singularities"; we show that there is a

+2 INSPECTED
local obstruction to the existence of a solution of (1) - (2) when p ? E;—

+
no matter what conditions we impose on the boundary 3%, when 0 < p < 2;2

we actually prove a more general existence and unigueness result in which (2)

is replaced by

(3) u(x,0) = uo(x) in @

where uo(x) is a measure.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. The
second author is partially supported by the National Science Foundation under
Grant No. MCS 7915171,




Next we discuss the Cauchy problem for the equation

(4) u, - A(lulm-1ul =0 on 2 x (0,T)

where m > 0, with a boundary condition and the initial condition (2). We . |

prove that a solution of (4) - (2) exists if and only if m > 2&3 (any m > 0

when n =1 or 2). We actually prove an existence result for (4) - (3) when

m)E-:z-.
n

The solvability of (4} - (3) when ug is a measure has been considered

by various authors. 1If § = RP, uo(x) = 0(x) and m > Eig, an explicit

solution of (4) ~ (3) was given by Barenblatt [4] (see also Pattle [21]). If
Q= Rn, m> 1, uo ? 0 is a bounded measure, existence and uniqueness was
obtained by M. Pierre {23], even §9r more general nonlinearities ¢(u) - not
s just |u|m-1u [the case n = 1 had been treated earlier by S. Kamin [18]).
The non existence aspect seems however to be new. Non existence results for
(1) = (2) (or (4) - (2)) are somewhat surprizing in view of the following
facts:

} i) solutions of (1) - (3) [or (4) - (3}] are known to exist for any

u, e L‘(Q) under no restriction on p > 0 (or m > 0)

ii}) a priori estimates do not "distinguish" between L functions and
measures.

This apparent contradiction will be explained in Sections 3 and 4.

Exigtence and non existence results for elliptic equations of the form

-An + |u|p_1u =f on 2

where € is a measure have heen ohtained by Bamberger [2], Benilan-Brezis [6]

and Brezis-Veron [12]. Our approach borrows some ideas from these papers.
The results concerning equation (1) are presented in Section 2, 3 and 4.

In Section 2 we prove non existence and removable singularities for (1) -

(2) when p ? Eﬁa.




In Section 3 we prove existence and uniqueness of a solution of (1) - (3)

when p < 2%3.

B2 and we study the limiting behavior of a

In Section 4 we assume p ?
sequence uj of solutions of (1) corresponding to a sequence of swooth
initial data o4 + §. We exhibit a boundary layer phenomenon at_t = 0; in

the process of passing to the limit one loses the natural initial condition.

In Section 5 we Adiscuss the properties of equation (4).




+
2. Non existence and removable gingularitieg for equation (1) when p > 2;3.

n+2

n
. b —
Let @ CR be any open set with 0 @ &, Assume p -

Definition. A solution of (1) is a function u(x,t) € 124 (8 x (0,7)) such

Loc
that (1) holds in the sense of distributions i.e.
-JJ u$, dxdt - [f ub¢ axat + [f 1ulP"u gaxat = 0 w ¢ e D(R x (0,7)) .
The main results of Section 2 are the following
Theorem 1. There is no solution of (1) such that

ess 1lim [ u(x,t)é(x)dx = ¢(0) ¥ ¢ € cc(ﬂ)(”

t*0
Theorem 1 is an immediate consequence of
Theorem 2. Assume u is a solution of (1) such that

(5) ess lim [ u(x,t)¢(x)ax = 0 ¥ ¢ e c (d\{o}) .
t*0 ¢

(2) and u(x,0) =0 on R,

Then u e ¢’ ' x fo,17))
Remark 1. Theorem 2 implies in particular the following. Let u be a
classical solution of (1) on # x (0,T). Assume that u is continuous on

f x [0,T) except possibly at the point (x,t) = (0,0) and that u(x,0) = 0
on \{o0}. conclusion: u has no sinqularity at (0,0).

Note the sharp contrast with the behavior of solutions of linear
parabolic equations. For example the fundamental solution E(x,t} of the
heat equation satisfies:

i) E, -8E=0 in R" x (0,T)
ii) E(x,t) is smooth on R x [0,T) except at the point (x,t) = (0,0)

and E(x,0) = 0 for x#¥ 0

(1)

CC(Q) denotes the space of all continuous functions with compact support
in Q.
(2) 2,1

cer denotes the space of all continuous functions u(x,t) having

continuous derivatives Qs u‘i' uxixj‘

-4-




1ii) E . has a singularity at (0,0).

Remark 2. In Theorem 2 one may replace condition (5) by the weaker condition

(5*) ess lim | u(x,t)¢(x)dx = 0 ¥ ¢ e D(Q\{o})
£*0

provided u ? 0 (because, in that cage, (5) <==> (5'))}. However if u

changes sign we don't know whether the conclusion of Theorem 2 is still valid

under the assumption (5').
The proof of Theorem 2 is divided into 6 steps. In what follows u
denotes a solution of (1) satisfying (S).
2,1
Step 1. We have uec”’ (R x (0,T)).
Proof. We shall use a parabolic version of Kato's inequality.
Lemma 1. Let Q C R X R be any open set. Let u € L;OC(Q) be such that
u, - Au = £ in D'(Q)

1
with f e Lloc(Q)' Then

lul, - 8lul € £ signu in D'(Q) SN

Since the proof is almost identical to the proof in the elliptic case (see
Kato [19]) we shall omit it.
From (1) and lLemma 1 we deduce that
(6) lal, = Alul + [ulP €0 in '@ x (0,7))
and in particular
(7) lul, = &Jul €0 in DR x (0,T)) .
Therefore |u| is subcaloric in @ x (0,T) and consequently
ue ﬁ:oc(ﬂ X (0,T)). Indeed a mollifier U_ of lul still satisfies (7).

Representing it in terms of Green's function in a cube X, with sides

(1)
1 if ud>0
Ssign u = 0 if u=0

-1 if u<0




parallel to the axes we ohtain (see Friedman [17§ p. 130)

<
U (x,t) S C Ia . ]
pr

where 3pxr is the parabolic boundary of K. and (x,t) is the center of

€

its top face., Integrating with respect to r in some interval

0<r,<r<r, and taking € * 0 we obtain that u e Lzoc(ﬂ x (0,T)).

1
Using (1) and the standard regqularity theory for the heat equation we
conclude that u € C2'1(9 X (0,T)). In fact, u is as smooth as the function
ut |u|p-1u permits. In particular if p is an integer then

o
ue (qx(0,T)).
Step 2. Let wCC ano} ", rix Ty < T. Then we have

® 1
(8) uelL (0,T,; L (W)

1

(9) ue LP(O,T17 tPiwy)) .

Proof of (8). Suppose by contradiction that for a sequence t, in (0,T4),

Tu(-,t )1 1 + @,
L (W)
w
Since u € Lloc(n X (0,T)) we have tn *+ 0. On the other hand, we deduce
from (5) and the uniform boundedness principle that ltu(e,t )I 1 remains
L (w)

bounded as tn + 0.

Proof of (9). Let [ e D% {0}) be such that 0 < Z €1, L =1 on w,

From (6) we deduce that for 0 < € < T'

T
[ e izoax + [ lu, e 1Prxaxar <
(10)

T
< f lu(x,€) 18(x)dx + fe1 f fu(x,t) |8%(x)ax

(1) -
As usual this notation means that w is an open set such that w C Q\{0}.

-6=




oA

Ao L

From (8) we know that the right hand side in (10) remains bounded as € + 0
and thus (9) holds.

2,1
Step 3. Let ® CC 2\{0}. Then uec”™ (ux [0,7)) with u(x,0) = 0 on
w,

Proof. Conslider the function ;(x,t) defined on ® X (=T,+T) by“’

~ u(x,t) if 0 <t < T
u(x,t) =

0 if -T <t <0

so that by Step 2 u @ Lfoc(u X (~T,+T)). We claim that

(11) u -8u+ 19T =0 in D' x (-r4m)
Indeed let ¢ € D(w x (=-T,+T)); we must check that

(12) = ff b - [f wto + [[ PN =0 .

Let nN(t) be any smooth non decreasing function on R such that

1 for t > 2
n{e) =

0 for t € 1

and set nk(t) = N(kt).

Since u is a solution of (1) we know that

- - p-1 -
(13) [ agm, = [f udcony + ff 1ol Tu gn =0 .
In order to deduce (12) it suffices to verify that
(14) /] ub(n ), * 0 as k> .
We have

(15) [ wein ), = [ utxt) 100x,£)-01x,003 0 )+ [f uix,t)eix,00(n )
By assumption (5) f u(x,t)p(x,0)dx * 0 as t * 0 and thus
(16) /] ulx,t)4(x,0)(n )+ 0 as k> = .

On the other hand, by (8) we see that

(1)
We thank M. S. Baouendi for sugges ing this device which led to a
simplification of our ori¢ '~ pro




(17) I wtx e 180x,8) = 0(x,003(n) | < § >0 as k* = .

Combining (15), (16) and (17) we obtain (14). Therefore (11) is proved. It

2,1

follows (as in Step 1) that u € C°''(w X (-T,+T); in particular

c2,1

ue (w x [0,7)) and u(x,0) = 0 on w,

Let us summarize; so far, we have shown - without any restriction on p - ‘

that any solution of (1) satisfying (5} is smooth on & x [0,T), except

possibly at the point (x,t) = (0,0), and that u(x,0) = 0 for x ¥ 0. It
+

remains to prove that u is smooth near (0,0); the restriction p ? E;E is

now essential.

Step 4. There are constants C, ¢ > 0 and 0 < T1 < T such that ]
(18) Ja(x,t)]| € ¢ for x|l <p and 0 <t<T

2 L ]
(Ix)24e)?/2 !
Proof. Let P > 0 be such that B, (0) C @ fix ¥ e ' with
0 < lxol <P and fix R < lxol. Set

2
G={(x,t)s Ix=-x"12cR%+ ¢t with 0 ¢t < T,} . .

By choosing T4 > 0 small enough we may assume that G C @ x (0,T). In the ﬁ!
region G we define
;]
C‘Rz+t! /2
2 0
with © = ;:;, r=|x~-x]| and C a positive constant. We compute 1
o, |
p _ 6 c(R%+t)? 4co(6+1)r2 (k%+¢) /2 ]
Uy -~ AU+ U = o = " 2 2. 042
(R7=r +t) (R =xr +t)
] o
6
_ c(2n+1)8(r%4+t) /2 . P (r24t)?
[}] 2] ¢
(R2-r24¢) 1 (R%-r24+¢)°P ,
Note that 0p = 0 + 2 and therefore
(19) u, - AU+ uP > 0 holds in &

3 LY
e e - ———— ———— -

-

...




provided
(20) Cp-1(R2+t) > 46(6+1)r2 + (2n+1)9(R2-r2+t)
i.e.

cP”1 > (2n+1)8
(21)

P 5 a8(641)

(it suffices to check (20) at the end points r =0 and r = Rz+t).
We choose C 1large enough (depending on p and n) so that (21) - and
consequently (19) - holds. Clearly
u(x,t) € U(x,t) if (x,t) € 3G and 0 € t < T,

i (recall that U(x,t) = # if (x,t) € 3G and 0 < t < T4, while

R

u(x,0) = 0 € U(x,0)). By a standard comparison argument we obtain
u€<U on G .

In particular
C

u(xo,t) < U(xolt) =

- (R%+¢)%/2

Since R is any number less than lxol we have
C

03 for |x°| <P and 0 Ct<T
(Ix"]17+¢)

0
u(x ,t) €

8/2 1

+
Finally since 9 < n (i.e. p ? 2;31 we get ?

with C4 = C(a2+T1) 2 « We conclude the proof of Step 4 by changing u

X

into =-u.

Step 5. We have

T
(22) Ji Io' lu(x,t)|Paxdat < = .

Ix|<p

¥ NP PO U

-9




Proof. An easy computation based on (18) shows that

T
(23) flxl(p foi Ju(x,t)]dxat ¢ =

Fix a function { @ (R x (=T,+T)) with 0<€ <1, =1 on Bp(O) x (0,Ty)
and set
2
¢k(x:t) = nk(lxl + t)T(x,t)
({the same functlion n

as in Step 3). Since ¢ vanishes on a nelghborhood o

k k
of (0,0) we deduce from Steps 1 - 3 that
(24) =[] ety = 1] taide, + [ 1uiPe, < 0
i.e.
P
(25) I 1al®e, <[] talcor, + [ tulse, . N

2

1 2
Set D, = {(x,t) L <X +te< ;J. We have

- ]
(¢k)t n kc 0 ct

- Vn v
A°x (Anklc + 2" Vg + Ag

and so
‘ .
(26) I(¢k)t| c outside Dk R
<
(27) |(¢k)t| C(k+1) on D, o |
(28) |A¢kl <c outside Dk . j
< .
(29) |A¢k| C(k+1) on D,

Combining (25), (23), (26), (27), (28), (29) we obtain

(30) I/ |u|1"¢k <ck [f, lul+c .
k
On the other hand, by Step 4
!/D lul € ¢C !fD d;dt ™72 < Ckn/2 meas D = % meas D, .
k k (Ix]“+t)

Therefore ff Iulpok remains bounded as k * ® and (22) follows. . !
Step 6. u is smooth on & x {0,T) and u(x,0) = 0 on .

Proof. Consider the function ; defined on R x (=T,+T) bhy

~10=-




R : Z’

- ul{x,t) if t > 0
u(x,t) =

0 if t<0 .

In view of Step 5 we know that u & Lfoc(n x (=T,+T)). We claim that
~ ~ ~p-1~ .
(31) u, - du + |u] u=0 in D'(w X (-T,+T))
from which we derive - as in Step 1 - that ue C2'1(9 X (-T,+T)) and so

2"(9 x [0,T)) with u(x,0) =0 on .

uec
Let G € (R x (~T,+T)); we must check that

(32) = Jfut, =[] wtz+ ] " v =0 .

We already know that

(33) - [ uce, - fS ube + ) 11T g, =0

where ¢k(x,t) = nk(x2 + t)olx,t).

It is therefore sufficient to verify that as k * +°

(34) /] u(n ) & *0
(35) /[ u on ¢ *0
(36) /[ u n Ve >0 .
We have

[/ u(n ), ¢] < ck fkaluI
|JJ wan £l <cx IIDklul
1[] w¥n_ vz} < o'k ffokm .

Finally, by H8lder we get

r
ffoklul < (ffoklulp)1/p |meas Dklp' '

(o]

1 n . n+2
Recall that [meas D, | = and that o 3+ 1) 21 (i.e. p? -;—):

(11

+1
k

therefore k ff luf <€ C(ff Iulp)vp + 0 (by Step S5).
Dy Dy

-11-




+
3. Existence and uniqueness for equations (1) - (3) when 0 < p < !;g.

We assume now for simplicity that & CR® is a bounded domain with a
+0 +
boundary 382 of class c2 (¢ >0), Let 0 < p < 5;3.

Consider the initial value problem

(37) v, - Ay + lulp-1u = 0 on & x (0,%)
(38) u(x,t) = 0 on 3Q x (0,%)
(39) u(x,0) = uo(x) on &

The initial data u,(x) is a bounded measure on 8 i.e.
[
(40) u, € M®) = c @)

.here co(ﬁ) denotes the space of continuous functions on f which vanish on
R,
Theorem 3. There is a unique function u € c2‘1(§ x (0,+*)) solving (37),
(38) and such that
(41) lim [ u(x,t)é(x)ax = <u > v dec @ .
t*0

In addition f: [q lulPaxat <=
Remark 3. The conclusion of Theorem 3 is also valid for some unbounded
domains R, for example & = R".
Remark 4. It is presumably possible to solve (37) - (38) - (39) for some
values of p ? Eia and some measures ug less sinqular than § (for example
a spherical distribution of charges) under some appropriate relation hetween
p and the singular part of dpe

Let S(t) = etA denote the contraction semigroup generated in L‘(Q) by
A with zero Dirichlet boundary condition.

Let 0 <T<*® and gset Q =& x (0,T)e We shall need the following
Lemma 2. Consider the mapping K defined by

[uo,f} » u = S(tluy + f: S(t-s)f(s)ds




i.e. u 1is the solution of the linear equation

u - by = £ on 2 x (0,T)
u{x,t) =0 on 3 x (0,T)

u(x,0) = uo(x) .

Then K is a compact operator Ffrom L‘(Q) x L‘(Q) into Lq(Ql for every

n+2
< ~—.
q n

Proof of Lemma 2. We already know (see Baras [3]) that K is a compact

operator from L‘(Q) x L1(Q) into L1(Q). Therefore it suffices to check

that X is a bounded operator from L’(Q) x L1(Q} into 19(Q) for every

n+2

£ ——,

n
Recall that for every 1 € g € ® ywe have

] C
' (42) Is(t)u ! < Iu !} '
0199 2a-d e
t q

inequality (42) follows by HBlder's inequality from the extreme cases q=1, Il
q = ® (and the case q =*® jg obtained, via the maximum principle from the

A
explicit representation of et in RY).

We deduce from (42) (and Young's inequality) that

fTul < c(liu ¥ + 1£0 1 )
3 ° L' L (Q)

n 1
n+2 2 (71 ¢ a)
provided q < - (in order for the function ¢ to lie in

L9(0,T)).

Proof of Theorem 3

Existences Let u_ . €@ D(2) be a sequence such that

0j
(43) fa_ .8 <c
03 L'(Ql
»
(44) uoj > u in the w topology of M(Q) .
-13~
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Let uj be the solution of (37) - (38) corresponding to the initial data
“Oj' One has the following estimates

(45) fu l <\ <c

ua 1!
o,y o3 LV

(46) I3 Ia Iujlpdxdt < 1 <c

ole1(9)
indeed, multiply (37) by em(uj) where Om is a sequence of smooth
nondecreasing functions converging to sign. It follows from Lemma 2 that uy
is compact in 19(Q) for every q < Eiz. We choose a subsequence still

+
denoted by uj such that u, * u in LY9(Q) for every gq < 2;3; and thus

3

(47) Iujlp-1u +> Iulp-1u in L‘(Q) .

3

On the other hand an easy comparison argument shows that

(48) Iuj('.t)l < s(t) '“0j| on Q
and therefore
c c
la (s,e)0 < tu .1 < S,
v@) ™2 03l /2

ad [ -]
Consequently u @ 1L ((§,7); L ()} for every § > 0 and u satisfies

u(t) = st - f; S(t-s) Iu(s)lp-1u(s)ds .

We conclude - via a standard bootstrap - that u e C2'1(§ x (0,T}) (and in
fact u is as smooth as the function u ™ Iulp-1u permits). Here S(tlug
is defined on M(fl) as the adjoint of the continuous contraction semigroup
etA on co(ﬁly as such S(t) is not a continuous semi~groap on M(R) bdbut
S(t)u, *+ u, in the w' topology of M(R} as t *+ 0.

Remark 5. Assume u, is an L! function instead of a measure. Then,
problem (37) - (38) - (39) has a solution for every 0 < p < ®. This is a
consequence of the Crandall-Lliggett Theorem (see [15]) applied in L‘(Q) to

-1
the m-accretive operator Au = -8u + |ulP” 'u (see Brezis-Strauss [11j). The

same conclusion can also be obtained directly as follows: let u_. @ ) be

03

-14-




1
»> :
a sajquence such that qu u, strongly in L (2). Multiplying (37) by

9 (u, - u, ) we obtain
mj k

- T p-1 - p-1
/ Iuj(x,T) u, (x,T)lax + fo ]Q| Iujl u la, 177 ", laxae

3

< f Iuoj(x) - uOk(x)Idx +0 as j,k** .

Therefore Iujlp'1uj is a Cauchy sequence in L‘(Q) and converges strongly
in L‘(Q). Thus we have proved (47) without any restriction on p (note that
the assumption p < Eii enters in the proof of Theorem 3 only in order to
obtain (47)).
Uniqueness. Here we need no restriction on p; so let 0 < p < *® be
arbitrary. First, observe that if u € C2'1(§ x (0,T)]) satisfies (37), (38)
and (41), then
(49) wesr'@ and f: Jq lulPaxar < =
and
so) - [ I u, - [y Iq bt + I3 I JulP tug = < vy, S0 >¥Lew
where

w=1{cec? @ x (0,71); T(x,T) =0 on R, L(x,t) =0 on 3% x [0,1} .
Indeed from (41) and the uniform boundedness principle we see that
wer (0, van. Next, we have for € > 0

IQ fu(x,T)jdx + fz IQ Iulpdxdt < fg Ju(x,€)]dax
(multiply (37) by em(u) and integrate over f x (€,T)) and thus
[g [q 1u1Paxae < =,
Finally in order to prove (50) multiply (37) by §, integrate on

 x (g,7), and pass to the limit as € * 0 (naotice that
f u(x,€)L(x,e)dx * <uo,C(',0)>). We shall now establish uniqueness within the

clags of function u satisfying (49) - (50). et g, Uy be two solutions

and set Vv = uy = uge We have

-]




- v, +85) = [T L view
0’‘d t 0°‘R

where f = -Iu,lp'1u1 + luzlp'1u2. Uniqueness is a direct consequence of the
following

Yiemma 3. Assume v @ L‘(Q), fe L‘(Q) satlisfy

T T
(51) - fo In vig, + Ag) = fo ]‘2 £ v Zew .
Then
t
(52) [ I £ sign v axds > [g Iv(x,t)|ax for a1l t e [0,7] .

Proof of Lemma 3. Notice that for any given f € L’(Q) there is a unique

v e L1(Q) satisfying (51). Indeed if
T
fo Ia vt +482) =0 Vv Cew

then take § such that

ct +47 =h on § x (0,T)

C(x,t}) = 0 on 92 x (0,T)

; L(x,T) = 0 on S

(where h(x,t) is arbitrary and smooth) to deduce that f: IQ vh = 0,

From the preceding remark on uniqueness it follows that if we solve

( dv

- A = 9]
sgi vj fi on X (0,T)

(53) < vi(x,t) =0 on 9% x (0,T)

i v.(x,0) =0 on &
i

with fi * € in L'(Q), then vj * v in C([0,T]: L1(9l). Multiplying
e N
(534) by m(vj) we obtain

t
[ Xgtvyxseriax € [o fo €, 0 (v,)axds

3
where x; = em' Taking €first j * ® and then sm * sign we get (52).




PPT—

4. The limiting behavior of u, as ugy * 8 in case p? B2

n
We return now to the cagse p ? ﬁil. Let 8 CR” be a bounded domain

with smooth boundary with 0 e 8,

Consider a segquence uj of solutions of (37) - (38) corcresponding to a
seguence of smooth initial data Yoy which converges to &. Since we know
that the limiting initial value problem has no solution (with u, = §), it is
interesting to study what happens to the sequence uy as j * =,

Theorem 4. Assume ugj 18 a sequence in L‘(Q) such that

(54) <c

| ETONN |
03 L‘(R)

(55) u . * 0 strongly in L‘(Q\Br(O)) for every r > 0 .

0)
Let uy be the solution of (37) - (38) corresponding to the initial data

\Iojo

Then u, * 0 uniformly on 8 x [€,T] for every € > 0.

p

Proof. As in the proof of Theorem 3 (existence part] we know that

(56) LI , ¢
L (0,T;L)

(57) lujl T <e
tP(0,1;LP)
(58) lu (o,t)0 , € -°-75 vV t>0 .
L (%) ¢ ‘

From standard linear parabolic estimates we gsee that

| IR | 1 <€C vVeE>Oo .
3 eV @ixge,m

In particular
(59) u, * u uaniformly on qx [e,T] v €>0

3
W
with uer (0,7:L") N tPio,1,tP).

— - —————— ——

- aiiea. aienacnsittis
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Also we know that u, * u in LY(Q) for every q < 953 and in

3
particular

(60) “j > a in L‘(Ql .

Next we show that

(61) lujlp-1u +> Iulp-1u in L1(0,T1L1(ﬂ\3r(0)) ¥r>90

3
Indeed fix { € Cz(ﬁ) such that

0<% <1

=1 on J\ﬁg;‘«r-

§=0 on B _,.:v- .
E e

Multiplying the equation
1>
k

] . p-1
3 9y -y - A(uj - ui ot Iuj| uy - lu u =0
through by Ce(uj - ) and letting © * sign we find
T 1 1 T
fo Ja 1uyl¥ uy = 1o 0P 08 € fg tugy = w18+ [0 Jg luy = uise .
Since the right hand side tends to 0 as j,k * ® we obtain (61).

As a consequence of (59), (60}, (61) we have

(62) I3 Jg uts, + 881 + [5 Jo 1al® lu g =0

-

0 near (0,0). Since u € LP(Q) and

"

for every § € W such that ¢
n+2 .
p° o e deduce as in Step 6 of Section 2 that
T T p-1
(63) Iy fa u@, +80) + [ fatal® ug=0 veoew .
We conclude by unigueness (see the proof of Theorem 3) that u = 0.
Remark 6. Assume in addition to (54) - (55) that ug, > § in the w
topology of M(f}). Then we have
(64) I3 1 |ujlp"u ¢+ 5(0,0) ¥Zec(@ .

3
Indeed let € W; we have

p-1
[fg tag1® uy ¢ = [lq uste, + 881 + [g uy (x)C{x,0)dx + £(0,0)

-18=-




since u, * 0 in L’(Q) (see (60))« We derive (64) from (59), (61), (57)

J
and a density argqument. Notlce that (64) is not in contradictlon with the
fact that uj * 0 in Lq(Q) for q < 2%3.

Remark 7. The conclusion of Theorem 4 may be viewed as a boundary layer
phenomenon at t = 0. In the process of passing to the limit, equation (37)
has been preserved, as well as the boundary condition (38); however the
initial condition has been lost. More generally the argument above shows that
if u, L‘(Q) and if Ug4 is a sequence of initial data such that
Iuole1(n) < C and “Oj > u, in L‘(R\BI(O)) for evecry r > 0, Then the
corresponding solutions uy coaverge to u [uniformly on 8 x {e,1, for
each € > 0] where u 1is the unique solution of (37) -~ (38) - (39). Again
one may lose the "natural®” initial condition (for example when u_ _ * uo + 6

03
in the w' topology of M(fl) then u takes the initial value ug)e




5. The porous medium equation

Consider the equation

(65) u, - A(lul™'a) = 0 on @ x (0,T)
(66) u(x,t) = on 9% x (0,T)
(67) u(x,0) = uo(x) on 9

with 0 < m <%,

There is extensive literature dealing with equation (65); see e.g. the
expository paper of Peletier [22] and recent contributions by Caffarelli-
Friedman [13], [14], Aronson-Benilan {1], Benilan-Crandall (7], Benilan [5],
Veron [24], Brezis-Crandall [10], Pierre [23], Crandall-Pierre [16]. The
case m < 1 corresponds to a "fast diffusion process"; equations of this type
appear in plasma problems, see e.g. Berryman-~Holland [8].

When § = RP, uo(x) =§(x) and m > Eia (no restriction on m if

n =1 or 2) an explicit solution of (65) was found by Barenblatt (4] (see

also Pattle [21]), namely

u{x,t) = ir G(i%};)

1

+ m-
where G(s) = [(B2 - csz) " !
£(m=-
c = -éﬁ;ll , = > and B is a positive constant such that

m=-1 4+ =
n

f n G(|x])dx = 1. A direct calculation shows that u(x,t) * §(x) @ 1(t) as

m ¢ (Eig). This suggests that no solution of (65) exists, in the sense of

. , . n=2 .
distributions, when m = —;— and u0 = § (since one cannot make sense out of

™).

We shall now proceed to prove that indeed when 0 < m € 2&3 (n? 3) no

solntion of (65) exists fnr u, = 5. On the other hand when m > (Eia] a

sniution nf (A51 exists for any measice Uge

-20-




5.1, Non existence when 0 < m € Eiz.

Agssume 0 < m € Eiz (n?3); let 9 CR® bhe any open set with 0 e i.

L)
Definition. A strong solution of (6%5) is a function u € Lzoc(ﬂl such that
1 ]
u, e Lloc‘Q, and such that (65) holds in D'(Q).

Theorem 5. There exists no strong nonnegative solution of (65} such that

(68) ess 1im [ u(x,t)d(x)ax = ¢(0) v ¢ e C (?) .
t+0 ¢

Remark 8. It is reasonable to believe that there is no weak solution of (65)
(i.e. a function u @€ L;oc(Q) such that (65) holds in D'(Q)) satisfying
(68).

Theorem 5 is a direct coasequence of

Theorem 6. Let u be a strong solution of (65) such that

(69) ess 1lim fu(e-,t)! 1 =0 v wcc N{o}.
0 L (w)
Then
(70} ess 1lim fu(e°,t)! =0 for some r >0 .

1
t*0 L (Bt(o))

Proof of Theorem 6.

Let 0 <P < 1 be such that B, (0) C % Let x* e ;' with

n ]
0 ¢<|x | ¢<P. Let 0 < R< |x'| and set

o Rp-Z

2 0 -2
(R? - 1x=x"1%)"

Vix) = for x € BR(xo) .

V7 is a positive smooth function in BR(xo) and V = on QBR(xo). The

same computation as in Brezis-Veron [12] shows that for some appropriate

positive constaair & (depending only on 1) one has
0 n
7 -Av + VP > > = .
(71) \'4 0 on BR(x }o ¥ p oy

Set p = %, A= 1%; and

(72) U(x,t) = txvp(x) on BR(xo) X (9,°)

T+ follows from (71) that

——




(73) v, - 80" >0 on BR(xo) x (0,%) .

Also
(74) Ulxet) == on 38 (x") x (0,%)
(75) U(x,0) = 0 on BR(xo) .

By comparison of (65) and (73) we shall deduce that
(76) u<U on BR(xo) x (0,T) .
Indeed, Kato's lnequality - which is valid since u and U are strong
solutionsg - asserts that
m=-1 m=-1_+ m=1 m-1 + m-1 m-1
A(lul” uw = 1ul” u) > [A(lul u - Ul Wisign (lul u - Ul ©)

and

) + 9 +

It (u-U) = 3; (u - U) sign (u -U) .

+ m-1 m=1 +

Since sign (Jlul” u - |U|" U) = sign (u - U) we conclude that

m=-1
u

]
(77) % (u - U)+ - A(Iulm-1u - vl )+ €0 in D'(BR(xo) x (0,T)) .

-1+
On the other hand (Iulm-1u - IUIm 1U) 2 0 1in a neighborhood of

38_(x’) x (g, T-€).
R
Thus by integrating (77) we find, for € < t < T-¢€,
+
(u({x,€) - U(x,€e) dx .

(78) 4 et - U(x,t)) Tax < [ o

BR(x ) BR(x )

Ags € * 0, the right hand side in (78) tends to 0 (by assumption (69)) and

(76) is proved. Similarly we obtain |ul € U on BR(xo) x (0,T) and in

A
particular Iu(xo,t)l < U(xo,t) = -Tﬁfiis' Since R < Ixol is arbitrary we
R
have
0 CtX
<
fu(x,t)] 5 (207 on B, (0) x (0,T)
and therefore
n th
R T —— x .
(79) lu(x,t)} c o2 on B, (0) x (0,T)
Finally we claim that
A
(80) IB lu(x,t)|dx € C ¢

p/2
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which proves (70).
Indeed, by Kato's inequality we have
(31) %; tul - 81ui™ <0 in DQ) .
Fix a smooth function ¢(x), 0 € ¢ € 1 with support in Bp(O) such that

$=1 on 2(0).

B
P/
Let nk be a sequence of functions as in Step 3 of Section 2.
Multiplying (81) by ¢(x)nk(lxl) we find

[alutx,e)1ecxim, (Ixyax < 5 folal™ien, )axas =
= ft [olul™(n A¢ + 29n 94 + An_¢)axdx
0’9 k k k

m
1 2Iul dxds .

<c f; IB (O)Iulmdxds + c(k+k?) f; /
p ;(le(;

Using (79) we find that
A
fnlu(x,t)|¢(x)nk(lxl)dx <ct .

We obtain (80) by letting k * *,

5.2, Existence when m > Eig.

Assume (for simplicity) that £ C R is a bounded domain with smooth

-2
boundary. Let m > E;- (any m> 0 if n=1 or 2).

Theorem 7. For every u_ € M(R) there exists a functinn a{x,t) satisfying

]
1 © 1 o
(82) uec(o,m]; L)NL(0, T L)INEL (] x (e, T)) $¥€>0 ,
(83) i™e L)
(84) -, -] lal™ Yuag = wgsG(+,00 > ¥ C e Wt

{1
Recall that _
wa=1{zec (g x [0,7]1 ¢(x,T) =0 on Q z(x,t) =0 on 32 x [0,7]}

-23-
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In particular we have
(85) Lim [o n(x,t)d(x)dx = w > Ve co(ﬁ) .
t*0

Remark 9. When 8 = n?, m> 1 and u, 2 0 an existence and uniqueness

result has been obtained by Pierre [23] for the equation (65) - (66) - (67).
We suspect that under the assumptions of Theorem 7 the solution is also
unique.

Remark 10. It is presumably possible to solve problem (65) - (66) - (67) for

some values of 0 < m < 2%3 and some measures u, less sinqular than §
(for example a spherical distribution of changes) under some appropriate
relation between m and the singular part of Uge

Proof of Theorem 7.

1

3 We denote by S(t) the L contraction semigroup generated by

-1
A(|u|m u} via the Crandall-Liggett Theorem. We recall some properties of

S(t):

1 o

i) s(t) is gmoothing from L' into L . More precisely we have

3 : 2

b (36) Is(tiugt, < Era ™ 1K ves> 0, with k=@ + 37
| L (@) L' (@)

see Benilan [5]) (and also Veron [24]).

‘ ii) s(t) is compact in L1; that is, for each fixed t > 0, S(t) maps L'-

bounded sets into L‘-compact sets, see Baras ([3].

#* (s(t)u } maps L! bounded sets into compact

iii) The mapping u 0 0St<T

0
subsets of L'(Q), see Baras (3].
Given u0 e M() we consider a sequence uOj of smooth functions such
[ ] [ ] < hd H » M - , =
that unj L1 C and uOj a, in the w topology of M(.) Set uJ

S(t)unj so that

(87) Iuj(‘,t)| 3 < c
L (5

-)l=




_ -
e B e e e

C
(88) ot , <& veso
L () t
(89) ay *u i C((0,T1 LY
(90) u;*u in v o)

with u satisfying (82).

Next, we deduce from HBlder's inequality, (87) and (88) that

(91) bay (e, C—fem ¥ 18 gc@
L@ k(1 -
t q
and therefore
(92) a1 € C provided g <m+ % .

LA ITY

In particular we derive from (90) and (92) that

(93) uj *+ u in Lq(Q) for every q < m + % ;
thus
(94) lau Im-1u * lulm—1u in L‘(Q) .

3 3
Using (90) and (94) we obtain (84]).

Finally we show that (84) implies (85). 1Indeed in (84} choose
T(x,t) = ¢(x)n(t) with ¢ e Cz(ﬁ). $=0 on 92 and n e C‘([O.T]) with
n(T) = 0.
Setting g(t) = [o u(x,t)é(x)ax and h(t) = fnlulm-1uA¢dx we have
ger (T nc(o,7l}, het(om
and by (84),
- f: g(tin'(tiat - fgh(tln(t)dt = <ug,$> n(0) vne cliioTy .

Consequently 1lim g(t) = <u_,¢>, that is
t*0 0

lim [ ulx,t)bx)ax = a,0> ¥ deci@nc @ .
t*0

i
¢
!
i
H

[ S




s o

a0
We derive (85) using a density argument and the fact that u € L (0,7, L‘).

$5«3. The limiting behavior of uj as “Oj + § in case m € Eil_ E
We return now to the case 0 < m < Eig {(n? 3).

Let @ CR" be either a bounded domain with smooth houndary or % =g,

Theorem 8. Assume uoj is a sequence in L‘(ﬂ) such that uoj + 8 in the

w* topology of M(fl) and that Supp o4 c By/y(00.

Let uj be the (semi-group) solutinn of (65) - (66) corresponding to the
initial data ugye

Then uylx,t) * S(x) @ 1(t) in the w* topology of M(Q).
Proof

Step 1. Assume & = R, u_. 20, bu I <¢c and Supp Up4 C By,3(0). Then

03 03, 1
(95) u (x,t) > 0 a.e. on R" x (0,T) .
Indeed, by the techniques of Section 5.1 we obtain '
A
(96) lu (x,8)) & ~—=% for Ixl > 2, &5 0

b '(n~2lp b

ix

(notice that in the present context comparison is not a difficulty since uj

is the semi group solution; therefore uj ls obtained by some limiting
procedure and the comparison can be made at each step of the aApproximation).

Thus

Am
m . Ct

p
Ixl|

(97) |uj(x,t)l for |x| > %, t>0

2

Next we claim that
(98) J Ju,(x,t)]dx € cr.A for t >0 .

§<|x|<4j 3

Indeed we have for every ¢ € D(ln)

3 3

(99) [ n uj(x,t)¢(x)dx = IR" u

{x,0)¢(x)ax + f; f n um(x,s)AO(xldxds .
R R




We choogse ¢ in such a way that

4
d(x) = 0 for Ix| < % and for Ix| > 83
4
¢(x) = 1 for 3 < Ix] < 43
J
|8} < Cj2 for 2 . Ix] < 4

3 3

1ag) < 95 for 45 < Ix| <8 .
3

Then, we derive (98) from (97) and (99). Next, we extract a subgequence -

still denoted by uj such that uj(x,t) converges to some limit u(x,t)
a.e. on Q.
This is justified as follows. Llet ¢ € D+(RF\(0}). Multiplying

(formally - but this can be justified) (65) by w>™ we obtain

j
1 3-m t 2
o [ oy tieaax + 2-mim [of 1Va,|%edxax
1 3-m m rt 2
= 5 f uy " (x,0)0(x)ax + 3 fo f ST

If 3 is large enough - so that Supp $n Bz/j(O) = g - we see, using (961},
that f; / IVuj|2¢dxds € C. Therefore (uj) is compact in Lz(w x (0,T))
for w cc R™\{0} (by Aubin's compactness Lemma, see e.g. J. L. Lions [20]).

The limit u satisfies

A
(100) ulx,t) € —S& a.e. on R® X (0,T)
(n-2)p
x|
A
(101) f u(x,t)dx € Ct for a.e. t
Since uj + u in L1(w x (0,T)) for wCC RF\{O}, the function u also
verifies
9
(102) 5% - 8™ =0 in D ((R™\{o}) < (0,T)) .

The same argument as in Section S.1 leads from (102) to

(103) i Aw™ = 0 in D'(R" x (0,T)) .

.




{Use the sequence nk(lxl) and notice that by H8lder,

K, eI w JM T ™ 0 e ke
;<|x|<; ;<|xl<;
Therefore )
(104) g; (E%u) + u" = 0 in D'(R" x (0,T))

1 (o]
where E*u = (-A) 'u = 2
‘n=-2
1x]

*a .

)
We conclude from (101) and (104) that 3: (E*u) € 0 and consequentiy

E*u 2 0; thus u = 0.
Step 2. Proof of Theorem B concluded in the general case.

From Step 1 we deduce that u,(x,t) * 0 a.e.

3

Indeed, by comparigson we have
u,| € s(e) |u
lu, | lag, |
where S(t) denotes the semi group generated in L'(IP! by Alulm-1u;
Step 1 we know that S(t)luojl +0 a.e. on R" X (0,T).

We have for every ¢ € (& x [0,T])

-J u, §%- /] Iujlm'1ujAc = <ug., B0 .

3

Since Iujlm-1uj + 0 in L‘(Q) we obtain at the limit
3
(104) -/ u, 5{- *7(0,0) vZeD( x [0,7)) .

Given 0 e D@ x (0,T)) we set
3(x,t) = f: 8(x,s)ds
and we find
[/ w0 » [7 9(0,81a8 = <B(x) @ 1(t), O> v 0 eD(® x (0,T)) .
Since uj is bhounded in L‘(Q) we conclude by density that

uj(x,t) * 8(x) @ 1(t) in the w* topology of M(Q).

Remark 11. The two essential ingredients in the proof of existence (Theorem

7Y, anamely the L1 * L, smonthing and the !

by

compactness of S(t) fail

when 0 < m¢¥ E:3. This is a clear consequence of Theorem 8. Another view

n
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poiant is the Ffollowing. Consider in a hounded domain & the L' m-accretive
operator Au = -A(Iulm-1u) with zero Dirichlet boundary condition. 1Its
resolvent JA = (I + XA)-1(X > 0) is not compact in L1(9): this follows
from the fact that the equation ~8u + |u|p-1u -6 has no solution when
p? ;%5, see Brezis-Veron [12]. On the other hand it is easy to show that
Jk maps bounded sets from any Lq(ﬂ), q > 1 into compact sets of L1(Q).
We deduce that: |

i) S(t) is not compact in L1(9); indeed when a semi-group S(t) is
compact, then the resolvent JA is also compact, see Brezis [9].
ii) s(t) is not smoothing from L’(Q) into any q), q > 1. Suppose, by
contradiction, that there is a q > 1 such that

(105) 1s(t)u ! <c(t) vee(0,7), Vu eL' with lul _SM .
0 Lq(ﬂ) 0 o L1

From the regularizing effect of Benilan-Crandall (7] we know that

CcA '0' 1
] - g = = ——— .
JA S(t)uo S(t)uol 1 where C | 1] L

L
1
It follows that S(t) is compact in L (2). 1Indeed fix 0 < t < T and fix

€
€>0; set A= %E' By assumption (105) the set C = {S(tluo; luol 1 < M}
L

is bounded in L7(2) and so the set D = {JA S(tlugs fu b < M} is compact
L

in L', Therefore the set D (resp. C) may be covered by a finite collection
of balls of radius % (resp. €) in L1(9).

The preceding argument shows nevertheless that S{(t) enjoys two
compactness properties:
a) S(t) maps hounded sets from any Lq(Q), q > 1, into compact sets of
ATUTR
b) S(t) maps bhounded sets from L1(9) into compact sets of Lq(ﬂl for

any 0 ¢ q ¢ 1,
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A

[The lack of regularizing effect of S(t) from t! into 13 for any

n=2

q> 1 when m € had been obtained earlier by Benilan and Crandall in

2 =g using a simple homogeneity argument.)
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