
NONLINEAR PARALLEL AND PERPENDICULAR DIFFUSION OF CHARGED
COSMIC RAYS IN WEAK TURBULENCE

A. Shalchi,
1
J. W. Bieber,

1
W. H. Matthaeus,

1
and G. Qin

2

Receivved 2004 May 3; accepted 2004 August 2

ABSTRACT

The problem of particle transport perpendicular to a magnetic background field is well known in cosmic-ray
astrophysics. Whereas it is widely accepted that quasi-linear theory (QLT) of particle transport does not provide
the correct results for perpendicular diffusion, it was assumed for a long time that QLT is the correct theory for
parallel diffusion. In the current paper we demonstrate that QLT is in general also incorrect for parallel particle
transport if we consider composite turbulence geometry. Motivated through the recent success of the so-called
nonlinear guiding center theory of perpendicular diffusion, we present a new theory for parallel and perpendicular
diffusion of cosmic rays. This new theory is a nonlinear extension of QLT and provides us with a coupled system
of nonlinear Fokker-Planck coefficients. By solving the resulting system of integral equations we obtain new
results for the pitch-angle Fokker-Planck coefficient and the Fokker-Planck coefficient of perpendicular diffusion.
By integrating over pitch angle we calculate the parallel and perpendicular mean free path. To our knowledge the
new theory is the first that can deal with both parallel and perpendicular diffusion in agreement with simulations.

Subject headinggs: cosmic rays — diffusion — turbulence

1. INTRODUCTION

Recent numerical studies (Qin 2002; Qin et al. 2002a,
2002b) have demonstrated that theoretical results of quasi-
linear theory (QLT; Jokipii 1966) for the parallel mean free
path do not agree with results from simulations (see Minnie
2002 for a detailed review) if a general turbulence geometry
is assumed. In Figure 1 we show QLT results for the parallel
mean free path in comparison with simulations (Qin 2002,
Fig. 6.6). It is obvious that there is a disagreement for medium
and small rigidities. The well-accepted assumption that the
parallel mean free path becomes a factor 5 larger if we turn
from pure slab geometry to 20% slab/80% two-dimensional
composite geometry seems to be incorrect except for special
values of the parameters (e.g., high rigidities).

In a recent study of quasi-linear perpendicular diffusion (see
Shalchi & Schlickeiser 2004b) it was demonstrated that QLT
cannot be the correct theory to describe perpendicular transport
in magnetostatic turbulence. So far only the nonlinear guiding
center (NLGC) theory (Matthaeus et al. 2003; Shalchi et al.
2004) is able to describe cosmic-ray transport perpendicular to
the magnetic background field. Motivated through the success
of the NLGC theory we come to the conclusion that nonlinear
effects are key input to understanding cosmic-ray perpendic-
ular diffusion and maybe also to understanding parallel diffu-
sion in nonslab geometries.

A further problem of QLT is particle transport in pure two-
dimensional geometry. As demonstrated in Appendix A of the
current paper, all Fokker-Planck coefficients are equal to zero
or infinity if we consider magnetostatic two-dimensional tur-
bulence. Consequently the parallel mean free path is zero and
the perpendicular mean free path is equal to infinity (compare
with Shalchi & Schlickeiser 2004b). These theoretical results
also suggest that QLT is not valid for pure two-dimensional or
any nonslab geometry.

In QLTwe replace the particle orbit through the unperturbed
particle trajectory if Fokker-Planck coefficients and transport
parameters are calculated. In this paper we demonstrate that
perpendicular diffusion itself is a key input if we calcu-
late Fokker-Planck coefficients in nonslab geometries. Instead
of assuming strict unperturbed motion along the magnetic
background field, we allow the guiding centers to move also
perpendicular to the background field. We demonstrate that
nonlinear effects are indispensable if one calculates Fokker-
Planck coefficients and transport parameters for general tur-
bulence geometry. We call our new theory weakly nonlinear
theory (WNLT) because the theory is based on QLT but con-
tains nonlinear extensions.

The organization of the paper is as follows: in x 2 we discuss
the correlation functions of the magnetic field fluctuations. In
x 3 we derive general expressions for the nonlinear pitch-angle
Fokker-Planck coefficient DNL

�� . This derivation is very similar
to the quasi-linear derivation of Teufel & Schlickeiser (2002),
but in the current paper we include nonlinear effects. In x 4 we
repeat our analysis for the nonlinear Fokker-Planck coefficient
of perpendicular diffusion DNL

? . The new nonlinear effects lead
to a Breit-Wigner type resonance function, which is discussed
in x 5. In x 6 we apply the new theory to calculate both Fokker-
Planck coefficients DNL

�� and DNL
? for composite turbulence

geometry. In x 7 we use these results to calculate the parallel
and perpendicular mean free path. We discuss the new results
and compare them with results from simulations, QLT, and
NLGC.

2. THE CORRELATION FUNCTIONS OF THE MAGNETIC
FIELD FLUCTUATIONS

To calculate the Fokker-Planck coefficients of spatial diffu-
sion we need a relation between the velocity of the guiding
center and the velocity of the particle. In our following dis-
cussions we consider the case of weak turbulence amplitudes
(�BTB0) and we assume purely magnetic fluctuations (�E ¼
0). Motivated by recent simulations (Qin 2002; Qin et al. 2002a,
2002b) we assume in the current paper that guiding centers
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follow field lines. As derived in Appendix B, the guiding-center
velocity can then be related to the particle velocity as follows:

ṽx ¼ vz
�Bx

B0

;

ṽy ¼ vz
�By

B0

;

ṽz ¼ vz þ vx
�Bx

B0

þ vy
�By

B0

� vz: ð1Þ

In Matthaeus et al. (2003) the Ansatz ṽx ¼ avz�Bx=B0 was
used to derive the NLGC theory. Therefore we come to the
conclusion that in the weak-turbulence limit the parameter a
should be equal to 1. Equation (1) can be used to calculate
the Fokker-Planck coefficients of perpendicular diffusion (DXX ,
DYY ) and drifts (DXY ,DYX ) of the guiding center. These Fokker-
Planck coefficients can be calculated using the TGK formula-
tion (e.g., Kubo 1957):

Dij ¼ Re

Z 1

0

dt ṽi(t)ṽ
�
j (0)

D E
; i; j ¼ X ; Y : ð2Þ

The Fokker-Planck coefficient of pitch-angle diffusion can be
obtained directly from the equation of motion (see Schlickeiser
2002),

�̇ ¼ ṗz

p
¼ q

cp
vx�By � vy�Bx

� �
; ð3Þ

where � is the pitch-angle cosine of the particle. In equation (3)
we assume purely magnetic fluctuations, and therefore the
electric fluctuations are �E ¼ 0. The TGK formulation can be
applied again:

D�� ¼ Re

Z 1

0

dt �̇(t)�̇�(0)h i: ð4Þ

All Fokker-Planck coefficients are quadratic forms of the tur-
bulent magnetic fields �Bi. It is usual to replace these fields
through Fourier transforms:

�Bi(x; t) ¼
Z

d3k �Bi(k; t)e
ik = x: ð5Þ

Therefore we must calculate the following ensemble-averaged
products:

�Bi x(t); t½ ��B�
j x(0); 0½ �

D E
¼

Z
d3k

Z
d3k 0

�
�Bi k(t); t½ ��B�

j k
0(0); 0½ �

; exp i k =x(t)� k0x(0)½ �f g
�
: ð6Þ

To proceed it is necessary to specify the position of the particle
x. One possible approach would be to replace the particle po-
sition x through the position of the guiding center x � R. The
motion of the guiding center could be considered as a purely
randomized diffusive motion. This Ansatz was used in the der-
ivation of NLGC theory (see Matthaeus et al. 2003). In the
current paper we use

x ¼ R� 1

�
v < ezð Þ; ð7Þ

with the gyrofrequency � ¼ qB0=mc�. For the velocity of the
particle we use spherical coordinates

vx ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
cos�;

vy ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
sin�;

vz ¼ v�; ð8Þ

with the pitch-angle cosine � and the gyrophase �. To con-
tinue we must also specify the time dependence of �(t) and
R(t) ¼ ½X (t); Y (t); Z(t)�. In QLT the unperturbed orbit

�QLT(t) ¼ �0 � �t;

XQLT(t) ¼ 0;

YQLT(t) ¼ 0;

ZQLT(t) ¼ v�t ð9Þ

is used to replace the exact position of the particle. In this
Ansatz there is no motion of the guiding center in the perpen-
dicular direction. In the current paper we use the more general
assumption

�(t) ¼ �0 � �t;

X (t) ¼ XGC(t) 6¼ 0;

Y (t) ¼ YGC(t) 6¼ 0;

Z(t) ¼ v�t; ð10Þ

where XGC and YGC describe the perpendicular, nonlinear mo-
tion of the guiding center. The parameters XGC(t) and YGC(t) are
random variables whereas the other parameters are nonran-
domized variables as in QLT. Equation (10) does not contradict
any previous assumptions because the vector XGC ¼ ½XGC(t);
YGC(t); 0� is of higher order �B=B0.
In the next step we substitute the particle trajectory through

x ¼ XGC þ xQLT with

xQLT ¼ v�tez �
1

�
v < ezð Þ ð11Þ

Fig. 1.—Simulations for 20% slab/80% two-dimensional composite geom-
etry (Qin 2002; dots) in comparison with QLT results for the parallel mean free
path. Shown are QLT results for pure slab (dotted line) and 20% slab/80% two-
dimensional composite geometry (dashed line) as a function of the dimen-
sionless rigidity R ¼ RL=lslab (RL is the gyroradius and lslab is the slab bend-over
scale).
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to get

�Bi x(t); t½ ��B�
j x(0); 0½ �

D E
¼

Z
d3k

Z
d3k 0 exp ik = xQLT(t)� ik0 =xQLT(0)

� �
; �Bi(k; t)�B

�
j (k

0; 0) exp ik =XGC(t)� ik0 =XGC(0)½ �
D E

: ð12Þ

Without the loss of generality we can set XGC(0) ¼ 0. To pro-
ceed we can simplify the last equation by applying Corrsin’s
independence hypothesis (Corrsin 1959):

�Bi(k; t)�B
�
j (k

0; 0)eik = XGCðtÞ
D E

� �Bi(k; t)�B
�
j (k

0; 0)
D E

eik = XGCðtÞ
D E

: ð13Þ

Using the tensor for homogeneous turbulence Pij,

�Bi(k; t)�B
�
j (k

0; 0)
D E

¼ Pij(k; t) = �(k� k0); ð14Þ

and the characteristic function

�GC(k; t) � eik = XGCðtÞ
D E

; ð15Þ

which describes the nonlinear motion of the guiding center,
we obtain

�Bi x(t); t½ ��B�
j x(0); 0½ �

D E
¼

Z
d3k Pij(k; t)�GC(k; t) exp ik = xQLT(t)� xQLT(0)

� �� 	
: ð16Þ

Now we replace xQLT through (see eqs. [8], [10], and [11])

xQLT(t) ¼ � v

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
sin (�0 � �t);

yQLT(t) ¼ þ v

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
cos (�0 � �t);

zQLT(t) ¼ vkt; ð17Þ

and therefore

exp ik =xQLT(t)� ik =xQLT(0)
� �

¼
Xþ1

n¼�1

Xþ1

m¼�1
Jn(W )Jm(W )

; exp þikkvkt þ in(�� �0 þ �t)
� �

exp �im(�� �0)½ �; ð18Þ

to find for the correlation functions of the magnetic field
fluctuations

�Bi x(t); t½ ��B�
j x(0); 0½ �

D E

¼
Z

d3k Pij(k; t)�GC(k; t)
Xþ1

n;m¼�1
Jn(W )Jm(W )

; exp þikkvkt þ in(�� �0 þ �t)� im(�� �0)
� �

: ð19Þ

In equations (18) and (19) we used

W ¼ v

�
k?

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
ð20Þ

and cylindrical coordinates for the wavevector k:

kk ¼ kz;

k? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
;

� ¼ arccot(kx=ky): ð21Þ

In the following sections we use equation (19) to calculate
nonlinear Fokker-Planck coefficients.

3. THE NONLINEAR PITCH-ANGLE FOKKER-PLANCK
COEFFICIENT DNL

��

To calculate the Fokker-Planck coefficient of pitch-angle
diffusion we have to combine equations (3) and (4). The cal-
culation of DNL

�� can be simplified if we use helical coordinates
for the turbulent fields:

�BL ¼ 1ffiffiffi
2

p �Bx þ i�By

� �
;

�BR ¼ 1ffiffiffi
2

p �Bx � i�By

� �
: ð22Þ

Then the pitch-angle derivative can be rewritten as (see Teufel
& Schlickeiser 2002)

�̇(t) ¼ i�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
ffiffiffi
2

p
B0

eþi�ðtÞ�BR x(t); t½ � � e�i�ðtÞ�BL x(t); t½ �
n o

:

ð23Þ

For the ensemble-averaged product we therefore obtain

�̇(t)�̇�(0)h i¼ �2(1� �2)

2B2
0

;
�
exp þi �(t)� �(0)½ �f g�BR x(t); t½ ��B�

R x(0); 0½ �
� �

� exp þi �(t)þ �(0)½ �f g�BR x(t); t½ ��B�
L x(0); 0½ �

� �
� exp �i �(t)þ �(0)½ �f g�BL x(t); t½ ��B�

R x(0); 0½ �
� �

þ exp �i �(t)� �(0)½ �f g�BL x(t); t½ ��B�
L x(0); 0½ �

� ��
:

ð24Þ

Now we use the replacement �(t) ¼ �0 � �t (see eq. [10]) to
obtain for the Fokker-Planck coefficient

DNL
�� ¼ �2(1� �2)

2B2
0

Re

Z 1

0

dt

;
�
e�i�t �BR x(t); t½ ��B�

R x(0); 0½ �
� �

� e�i�tþ2i�0 �BR x(t); t½ ��B�
L x(0); 0½ �

� �
� eþi�t�2i�0 �BL x(t); t½ ��B�

R x(0); 0½ �
� �

þ eþi�t �BL x(t); t½ ��B�
L x(0); 0½ �

� �	
: ð25Þ

Applying equation (19) we find for the nonlinear pitch-angle
Fokker-Planck coefficient

DNL
�� ¼ �2(1� �2)

2B2
0

Re

Z 1

0

dt

Z
d3k �GC(k; t)

;
Xþ1

n¼�1

Xþ1

m¼�1
exp ikkvktþ in�tþ i�(n�m)� i�0(n�m)

� �
; Jn(W )Jm(W )

h
e�i� tPRR(k; t)� e�i�tþ2i�0PRL(k; t)

� eþi�t�2i�0PLR (k; t)þ eþi�tPLL(k; t)
i
: ð26Þ
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Next we assume that the initial phase �0 of the cosmic-ray
particle is a random variable. Therefore we consider the �0-
averaged Fokker-Planck coefficient and use

1

2�

Z 2�

0

d�0e
iðn�mÞ�0 ¼ �n;m ð27Þ

to obtain

DNL
�� ¼ �2(1� �2)

2B2
0

Re

Z 1

0

dt

Z
d3k

Xþ1

n¼�1
�GC(k; t)e

iðkkvkþn�Þt

;
n
PRR(k; t)J

2
nþ1(W )þ PLL(k; t)J

2
n�1(W )

� Jn�1(W )Jnþ1(W ) PRL(k; t)e
þ2i� þ PLR(k; t)e

�2i�
� �o

:

ð28Þ

In the quasi-linear limit we have �GC ¼ 1, and equation (28)
is then exactly equal to the equation derived by Teufel &
Schlickeiser (2002, eq. [23]).

For the tensor Pij we assume the same temporal behavior for
all components:

Pij(k; t) ¼ P0
ij(k) = �DT(k; t); ð29Þ

where �DT describes dynamical effects. Two prominent models
for the function �DT are the damping model of dynamical tur-
bulence and the random-sweeping model (see Bieber et al.
1994). For the Fokker-Planck coefficient we then obtain

DNL
�� ¼ �2(1� �2)

2B2
0

Z
d3k

Xþ1

n¼�1
Rn(k)

;
n
P0
RR(k)J

2
nþ1(W )þ P0

LL(k)J
2
n�1(W )

� Jn�1(W )Jnþ1(W ) P0
RL(k)e

þ2i� þ P0
LR(k)e

�2i�
� �o

;

ð30Þ
with the resonance function

Rn(k) ¼ Re

Z 1

0

dt �NL(k; t)�DT(k; t)e
iðkkvkþn�Þt ð31Þ

and the function of nonlinearity �NL ¼ �GC, which is dis-
cussed in x 5.

4. THE NONLINEAR FOKKER-PLANCK COEFFICIENT
OF PERPENDICULAR DIFFUSION DNL

?

Applying equations (1) and (2), the Fokker-Planck coeffi-
cient of perpendicular diffusion can be written as

DNL
? ¼ 1

2
DNL

XX þ DNL
YY

� �
¼ 1

2B2
0

Re

Z 1

0

dt
�
vz(t)vz(0)

; �Bx(t)�Bx(0)þ �By(t)�By(0)
� ��

: ð32Þ

If we replace the fourth-order correlation function by a product
of second-order correlation functions, we obtain

DNL
? ¼ 1

2
DNL

XX þ DNL
YY

� �
¼ 1

2B2
0

Re

Z 1

0

dt vz(t)vz(0)h i

; �Bx(t)�Bx(0)h i þ �By(t)�By(0)
� �� �

: ð33Þ

If we were to substitute the vz-correlation function through the
unperturbed orbit

vz(t)vz(0)h iQLT¼ v2�2; ð34Þ

the time integration would yield an infinitely large perpen-
dicular Fokker-Planck coefficient for two-dimensional geom-
etry (compare with Shalchi & Schlickeiser 2004b). Therefore it
is necessary to include a second nonlinear effect, namely the
initial condition decay of the vz-correlation function. In the
current paper we use the model

vz(t)vz(0)h i ¼ v2�2�ICD(t); ð35Þ

where the function �ICD(t), which is discussed in x 5, describes
the initial condition decay. Applying equations (19) and (27)
one gets

DNL
? ¼ v2�2

2B2
0

Re

Z 1

0

dt
Xþ1

n ¼ �1

Z
d3k �NL(k; t)e

iðkkvkþn�Þt

; Pxx(k; t)þ Pyy(k; t)
� �

J 2n (W ); ð36Þ

with the function of nonlinearity �NL ¼ �GC�ICD. With equa-
tion (29) and the resonance function of equation (31), this can
be written as

DNL
? ¼ v2�2

2B2
0

Xþ1

n¼�1

Z
d3k Rn(k) P0

xx(k)þ P0
yy(k)

h i
J 2n (W ): ð37Þ

5. THE FUNCTION OF NONLINEARITY �NL

The key input into WNLT (weakly nonlinear theory) is the
function

�NL(k; t) ¼ �GC(k; t)�ICD(t); ð38Þ

with the characteristic function

�GC(k; t) ¼ eik = XGC
� �

: ð39Þ

If we assume that the guiding centers are distributed like a
Gaussian function and that perpendicular transport is diffusive,
�GC becomes (see Appendix C)

�GC(k; t) ¼ e�D?k
2
?t: ð40Þ

In addition to the diffusive perpendicular motion of the
guiding center we also include the effect of the initial condition
decay. In WNLT we use the following Ansatz for the function
�ICD:

�ICD(t) ¼ e�!t; ð41Þ

with

! ¼
2D��

1� �2
for perpendicular diAusion;

0 for pitch-angle diAusion:

8<
: ð42Þ

If we model the vz-correlation function as described above, the
unperturbed orbit is recovered for small times (t ! 0). For
infinitely large times (t ! 1) we obtain �ICD ! 0 and the vz-
correlation function goes to zero. Physically this model de-
scribes the pitch-angle isotropization process. In principle a
similar model could be used to model the vx- and vy-correlation
functions. In the current paper we still use unperturbed orbits to
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substitute these correlation functions. One reason for doing
this is that in WNLTwe consequently treat the gyromotion un-
perturbed. A second reason is that in general the vx- and vy-
correlation functions can be dependent on pitch-angle diffusion,
gyrophase diffusion, and perpendicular diffusion. Therefore a
realistic model for these correlation functions is difficult to
derive and could make the application of WNLT complicated.

It should be noted that the decay model of equation (41) is
similar to the decaymodel proposed by Owens (1974). Owens’s
argument was that the assumption that the unperturbed orbit
persists for an infinitely long time is incorrect. In reality a par-
ticle can interact resonantly with a given wavelength of the
fluctuations only as long as it is not scattered to another region
of phase space. In that model ! could be identified with the
scattering frequency, which is related to the scattering time
tS ¼ !�1 in which the decay of the unperturbed orbit occurs.

Together with equation (40) we have

�NL(k; t) ¼ e�D?k
2
?te�!t; ð43Þ

and therefore we obtain for the resonance function

RNL ;DT
n (k) ¼ Re

Z 1

0

dt eiðkkvkþn�Þte�D?k
2
?te�!t�DT(k; t): ð44Þ

Because most simulations (e.g., Qin 2002) have been using
a magnetostatic turbulence model (�DT ¼ 1), we consider
this model in the current paper. For results in dynamical tur-
bulence in the quasi-linear limit (�NL ¼ 1), we refer to Bieber
et al. (1994) and Teufel & Schlickeiser (2002, 2003) for pure
slab geometry and to Shalchi & Schlickeiser (2004a, 2004b)
for pure two-dimensional and composite slab/two-dimensional
geometry.

For RNL
n we then find a Breit-Wigner type resonance

function:

RNL
n (k)¼ Re

Z 1

0

dt eiðkkvkþn�Þte�D?k
2
?te�!t

¼ D?k
2
? þ !

D?k
2
? þ !ð Þ2þ kkvk þ n�

� �2 : ð45Þ

In WNLT resonance broadening comes through nonlinear effects.
Further reasons for resonance broadening would be dynamical
effects (Bieber et al. 1994) or plasmawave damping (Schlickeiser
& Achatz 1993). Ng & Reames (1995) obtained resonance
broadening by considering medium-scale fluctuations.

6. THE NONLINEAR FOKKER-PLANCK COEFFICIENTS
FOR COMPOSITE GEOMETRY

In simulations a composite slab/two-dimensional model for
the turbulence geometry was used. Although more general
models are available (e.g., the anisotropic model of Lerche &
Schlickeiser 2001), we assume composite geometry to compare
theory and simulations. If equation (29) holds, the composite
model is defined by

P0
lm(k) ¼ P

0;slab
lm (k)þ P

0;2D
lm (k); ð46Þ

with themagnetostatic correlation tensor for pure slab geometry

P
0;slab
lm (k) ¼ gslab(kk)

�(k?)

k?
�lm � klkm

k2


 �
ð47Þ

and the magnetostatic correlation tensor for pure two-
dimensional geometry

P
0;2D
lm (k) ¼ g2D(k?)

�(kk)

k?

�lm � klkm

k2


 �
; l;m ¼ x; y;

0; l or m ¼ z:

8<
: ð48Þ

In equations (47) and (48) we assume vanishing magnetic
helicity. The tensor for pure two-dimensional geometry was
defined in the same way as in Bieber et al. (1994) and Bieber
et al. (1996). Such a two-dimensional model assumes that
�Bz ¼ 0. This kind of two-dimensional model is slightly dif-
ferent from the model that was used in Shalchi & Schlickeiser
(2004a), where �Bz 6¼ 0. The functions gslab and g2D are thewave
spectra for pure slab and pure two-dimensional geometries:

gslab(kk) ¼
C(�)

2�
lslab�B

2
slab 1þ k2k l

2
slab

� 
��
; ð49Þ

g2D(k?) ¼
2C(�)

�
l2D�B

2
2D 1þ k2?l

2
2D

� ���
; ð50Þ

with

C(�) ¼ 1

2
ffiffiffi
�

p �(�)

�(� � 1=2)
: ð51Þ

Here we introduced the spectral index of the inertial range 2�,
the slab bend-over scale lslab, and the two-dimensional bend-
over scale l2D.

In such a composite slab/two-dimensional model all Fokker-
Planck coefficients can be written as a sum of the slab coeffi-
cient and the two-dimensional coefficient:

D�� ¼ Dslab
�� þ D2D

��;

D? ¼ Dslab
? þ D2D

? : ð52Þ

In turn we derive an integral representation for each of the four
nonlinear Fokker-Planck coefficients.

6.1. The Fokker-Planck Coefficient Dslab
��

For pitch-angle diffusion in pure slab geometry the reso-
nance function is equal to the �-function of QLT,

Rslab
n (k) ¼ ��(kkvk þ n�); ð53Þ

and the pitch-angle Fokker-Planck coefficient can be written as

Dslab
�� ¼ 2�2�2(1� �2)

B2
0

Z 1

0

dkkg
slab(kk)

; �(kkvk þ �)þ �(kkvk � �)
� �

: ð54Þ

To proceed we use the spectrum of equation (49). For conve-
nience, we define the dimensionless parameters

R ¼ RL

lslab
;

� ¼ lslab

l2D
;

!̃ ¼ lslab

v
!;

D̃�� ¼ lslab

v
D��;

D̃? ¼ 1

lslabv
D?; ð55Þ
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with the gyroradius RL ¼ v=�. With these parameters and by
solving the kk-integral we find

D̃slab
�� ¼ �C(�)(1� �2) �j j2��1

R2��2 �B
2
slab

B2
0

�2R2 þ 1
� ���

; ð56Þ

which agrees with earlier results (e.g., Shalchi et. al. 2004).
Therefore QLT is recovered if we calculate the pitch-angle
Fokker-Planck coefficient for pure slab geometry.

6.2. The Fokker-Planck Coefficient D2D
��

For pitch-angle diffusion in pure two-dimensional geometry
the resonance function becomes

R2D
n (k) ¼ D?k

2
?

(D?k
2
?)

2 þ (n�)2
: ð57Þ

According to Shalchi & Schlickeiser (2004a, eq. [16]) the pitch-
angle Fokker-Planck coefficient for pure two-dimensional ge-
ometry has the form

D2D
�� ¼

2��2(1� �2)

B2
0

Z 1

0

dk?
Xþ1

n¼�1
R2D
n (k)g2D(k?)

n2J 2n (W )

W 2
;

ð58Þ

with W given by equation (20). In combination with equa-
tion (57) this can be written as

D2D
�� ¼

4�(1� �2)

B2
0

Z 1

0

dk?g
2D(k?)D?k

2
?

;
X1
n¼1

n2

n2 þ D?k
2
?=�ð Þ2

J 2
n(W )

W 2
: ð59Þ

With the approximation of Shalchi & Schlickeiser (2004a,
eq. [19]),

X1
n¼1

n2

n2 þ y2
J 2n (x) �

x2

2

1

x2 þ 2y2 þ 2
; ð60Þ

we find

D2D
�� ¼

2��2(1��2)

B2
0

Z 1

0

dk?g
2D(k?)

D?k
2
?

W 2�2þ2(D?k
2
?)

2þ2�2
:

ð61Þ

Using equation (50), the parameters of equation (55), and the
integral transformation x ¼ k?l2D, we find

D̃2D
�� ¼ 2C(�)

1� �2

R2

�B2
2D

B2
0

Z 1

0

dx (1þ x2)��

;
D̃?�

2x2

1� �2ð Þ=2½ ��2x2 þ D̃?�2x2
� �2þR�2

: ð62Þ

The QLT result for this Fokker-Planck coefficient is D̃2D
�� ! 0

(see Appendix A).

6.3. The Fokker-Planck Coefficient Dslab
?

For slab geometry the Fokker-Planck coefficient of per-
pendicular diffusion becomes

Dslab
? ¼ 4�v2�2

B2
0

Z 1

0

dkk g
slab(kk)

!

!2 þ k2kv
2
k
: ð63Þ

With the spectrum of equation (49), the parameters of equa-
tion (55), and the integral transformation x ¼ kklslab, this can
be rewritten as

D̃slab
? ¼ 2C(�)�2 �B

2
slab

B2
0

Z 1

0

dx (1þ x2)�� !̃

!̃2 þ �2x2
: ð64Þ

From this result, QLT (field-line random walk) can be re-
covered by taking the limit !̃ ! 0,

D̃FLRW
? ¼ lim

!̃!0
D̃slab

? ¼ �C(�) �j j �B
2
slab

B2
0

; ð65Þ

and we find for the perpendicular mean free path

kFLRW? ¼ 3�

2
C(�)lslab

�B2
slab

B2
0

¼ 3

4
lc
�B2

slab

B2
0

; ð66Þ

where we use k? ¼ (3=2v)
Rþ1

�1
d�D?(�) and the correlation

length lc ¼ 2�C(�)lslab. It seems that we can only obtain the
FLRW limit if we suppress pitch-angle scattering and there-
fore parallel diffusion (compare with Qin et al. 2002a, 2002b).

6.4. The Fokker-Planck Coefficient D2D
?

For two-dimensional geometry the Fokker-Planck coeffi-
cient of perpendicular diffusion (eq. [37]) becomes

D2D
? ¼ �v2�2

�B2
0

Z 1

0

dk? g2D(k?)V H(V ;W ); ð67Þ

where we use

H(V ;W ) ¼
Xþ1

n¼�1

J 2n (W )

V 2 þ n2
; ð68Þ

V ¼ (D?k
2
? þ !)=�;

W ¼ RLk?
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
: ð69Þ

As demonstrated in Shalchi & Schlickeiser (2004b), the func-
tion H can be approximated for different cases:

H(VT1; W 31)� J 20 (W )

V 2

� 2

�WV 2
cos2 W � �

4

� 

� 1

�WV 2
;

H(VT1; WT1) � 1

V 2
;

H(V 3 1; VTW ) � 1

VW
;

H(V 31; V 3W ) � 1

V 2
: ð70Þ

Using the integral transformation x ¼ k?l2D, the parameters of
equation (55), and the spectrum of equation (50), we obtain

D̃2D
? ¼ 2C(�)�2R

�B2
2D

B2
0

Z 1

0

dx (1þ x2)�� Ṽ H Ṽ ; W̃
� �

; ð71Þ
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but now with

Ṽ ¼ RD̃?�
2x2 þ R!̃;

W̃ ¼ R�x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
: ð72Þ

The QLT result for this Fokker-Planck coefficient is D̃2D
? ! 1

(see Appendix A).

7. RESULTS OF WEAKLY NONLINEAR THEORY
FOR THE PARALLEL AND PERPENDICULAR

MEAN FREE PATH

By solving the following system of integral equations
numerically,

D̃slab
�� ¼ �C(�)(1� �2) �j j2��1

R2��2 �B
2
slab

B2
0

�2R2 þ 1
� ���

;

D̃2D
�� ¼ 2C(�)

1� �2

R2

�B2
2D

B2
0

Z 1

0

dx (1þ x2)��

;
D̃?�

2x2

1� �2ð Þ=2½ ��2x2 þ D̃?�2x2
� �2þR�2

;

D̃slab
? ¼ 2C(�)�2 �B

2
slab

B2
0

Z 1

0

dx (1þ x2)�� !̃

!̃2 þ �2x2
;

D̃2D
? ¼ 2C(�)�2R

�B2
2D

B2
0

Z 1

0

dx (1þ x2)�� Ṽ H Ṽ ; W̃
� �

; ð73Þ

we calculate the dimensionless nonlinear Fokker-Planck coef-
ficients D̃�� and D̃?. With these results we can determine the
mean free paths simply by integrating over pitch angle using the
following equations (Jokipii 1966; Hasselmann & Wibberenz
1968; Earl 1974):

kk ¼
3

4
lslab

Z 1

0

d�
(1� �2)2

D̃��

; ð74Þ

k? ¼ 3lslab

Z 1

0

d� D̃?: ð75Þ

For our numerical calculations of the parallel and perpendic-
ular mean free path we use the following set of parameters to
compare our theory with simulations:

�B ¼ B0;

�B2
slab ¼ 0:2 �B2;

�B2
2D ¼ 0:8 �B2;

� ¼ 5

6
;

lslab ¼ 0:030 AU;

l2D ¼ lslab

10
¼ 0:003 AU: ð76Þ

Some figures also show results for different parameters like
pure slab geometry or pure two-dimensional geometry. In this
case we explicitly write down the parameters that are different
from equation (76). Strictly speaking the assumption �B ¼ B0

violates our weak-turbulence assumption (�BTB0). Because
simulations have been mostly done for �B=B0 ¼ 1, we apply
our new theory also for this case but we keep in mind that a
possible disagreement between simulations and theory can oc-
cur because we assumed the limit of weak turbulence during the
derivation of the theory.

7.1. The Nonlinear Fokker-Planck Coefficients DNL
�� and DNL

?

Figure 2 shows the results for the pitch-angle Fokker-Planck
coefficientDNL

�� . All pitch-angle Fokker-Planck coefficients have
the same form, which is a surprising result. Normally the form
of the pitch-angle Fokker-Planck coefficient results from gyro-
resonance. It seems that WNLT provides us with similar results
even in pure two-dimensional geometry, where we do not have
gyroresonance. The QLT result for composite geometry is ex-
actly a factor of 5 smaller than the QLT result for pure slab
geometry, whereas the WNLT result for composite geometry is
nearly equal to the QLT slab result. Figure 3 shows the pitch-
angle dependence of the Fokker-Planck coefficient of perpen-
dicular diffusion DNL

? in comparison with the slab QLT result
(FLRW). The QLT result for composite geometry is D? ! 1
(see also Shalchi & Schlickeiser 2004b).

Fig. 2.—Nonlinear pitch-angle Fokker-Planck coefficient for composite
geometry (solid line) and pure two-dimensional geometry (dotted line) in
comparison with quasi-linear Fokker-Planck coefficients for composite geom-
etry (dashed line) and pure slab geometry (dash-dotted line). For this plot we
use R ¼ RL=lslab ¼ 0:1 and lslab ¼ l2D ¼ 0:03 AU.

Fig. 3.—Nonlinear Fokker-Planck coefficient of perpendicular diffusion for
composite geometry (solid line) and for pure two-dimensional geometry (dotted
line) in comparison with the QLT slab result (FLRW; dash-dotted line). For this
plot we use R ¼ RL=lslab ¼ 0:1 and lslab ¼ l2D ¼ 0:03 AU.
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7.2. kk, k?, and k?=kk for Composite Geometry

Figure 4 shows simulations of the parallel mean free path
(Qin 2002; Qin et al. 2002a, 2002b; dots), magnetostatic QLT
results for pure slab geometry (dotted line), QLT results for
20% slab geometry (dashed line), and the WNLT results for
20% slab geometry (solid line). As demonstrated, the WNLT
agrees much better with simulations than QLT. The rigidity de-
pendence for small and medium rigidities is approximately
kk� R0:6, which is in contrast with the QLT results (kk � R1=3)
but in agreement with the simulations (see Minnie 2002). For
high rigidities (R31), QLT seems to be recovered. Our nu-
merical calculations have also shown that the reason for the
difference between QLT and simulations arises from the per-
pendicular diffusion of the particles. Therefore we come to the
conclusion that perpendicular diffusion has a strong influence
on the parallel mean free path.

It is a well-known result that the pure slab QLT result gives a
too short parallel mean free path compared to the energetic
particle observations (Palmer 1982). Therefore the composite
slab/two-dimensional model was used in Bieber et al. (1994) to
solve this problem. To achieve agreement between QLTand the
Palmer observations, dynamical effects (damping model of dy-
namical turbulence) and a dissipation range were also included.
A comparison between our new theoretical results, which sug-
gest that the parallel mean free path is considerably shorter
for composite geometry, is however premature because a dis-
sipationless magnetostatic model was used in the current paper.
Because of the importance of dissipation and dynamical effects,
a detailed comparison between WNLT results and observations
will be the subject of future work.

In Figure 5 we show the new results for the perpendicular
mean free path. Shown are the results of WNLT (solid line)
in comparison to simulations (dots) and results of the NLGC
theory. To calculate k? with the NLGC theory we need the
parallel mean free path as an input. In the current paper we use
the parallel mean free path from simulations (see Fig. 4). The
NLGC theory contains a fitting-parameter a. We compare our
results with NLGC results for two different values of a: the
value a ¼ 1 (dotted line) is correct in the weak turbulence limit,

whereas the value a ¼ 1=
ffiffiffi
3

p
(dashed line) provides the best

agreement with simulations.
Figure 6 shows the ratio k?=kk. From observations, we know

(e.g., Palmer 1982) that this ratio should be k?=kk� 0:01. Our
new theory can explain these observational results and agrees
also with simulations. Except for NLGC theory, no other theory
is able to explain the observational results of Palmer (1982)
for k?=kk. There are recent reports that k?=kk could approach
or exceed unity (Dwyer et al. 1997; Zhang et al. 2003). Like
NLGC theory (see Bieber et al. 2004), our new theory can
predict rather large values of k?=kk in certain parameter re-
gimes. As noted before, a detailed comparison between theo-
retical results of WNLT and observations will be the subject of
future work.

7.3. The Parallel Mean Free Path as a Function of �B2
slab=�B

2

In Figure 7 we show the parallel mean free path as a function
of the ratio �B2

slab=�B
2 ¼ �B2

slab=(�B
2
slab þ �B2

2D). It is easy to

Fig. 4.—Parallel mean free path WNLT results (solid line) in comparison
with QLT results (dashed line) and simulations (Qin 2002; dots). All results
are for 20% slab/80% two-dimensional geometry. We also show the well
known QLT results for pure slab geometry (dotted line).

Fig. 5.—Perpendicular mean free path WNLT results (solid line) in com-
parison with NLGC results (dotted and dashed lines) and simulations (Qin
2002; dots). All results are for 20% slab/80% two-dimensional geometry.

Fig. 6.—Ratio k?=kk WNLT results (solid line) in comparison with NLGC
results (dotted and dashed lines) and simulations (Qin 2002; dots). All results
are for 20% slab/80% two-dimensional geometry.
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recognize that QLT disagrees with simulations for nonslab
turbulence geometries. The agreement of our nonlinear theory
with simulations is much better. Only for �B2

slab=�B
2 � 0:1 does

WNLT not seem to be very accurate. The key result of Figure 7
is that nonlinear effects are essential to describe parallel particle
transport in nonslab turbulence.

7.4. The Parallel Mean Free Path for Nearly Pure
Two-dimensional Geometry

In Figure 8 we show the parallel mean free path as a func-
tion of rigidity. Shown are the results for 1% slab/99% two-
dimensional composite geometry. The disagreement between
our nonlinear theory andQLT is maximal for pure or nearly pure
two-dimensional geometry. The QLT prediction for pure two-
dimensional geometry is kk ¼ 1 because in this case we have
D2D

��(�) ¼ 0 if we assumemagnetostatic turbulence (see Shalchi
& Schlickeiser 2004a and Appendix A of the current paper).

Mainly in nearly or pure two-dimensional geometry is QLT
not valid. The reason for that is that in pure two-dimensional
we no longer have sharp gyroresonance. Nonlinear effects con-
trol pitch-angle diffusion for such a turbulence geometry.

7.5. The Parallel Mean Free Path as a Function of �B=B0

As demonstrated in Figure 4 QLT seems to be incorrect if we
assume composite geometry. In this section we calculate the
parallel mean free path for different values of �B=B0 to find out
whether the disagreement between QLT and WNLT becomes
smaller for smaller values of �B=B0. In Figure 9 we display the
ratio kQLTk =kWNLT

k as a function of �B=B0 for different values of
the dimensionless rigidity R. It is apparent that even in the limit
of very weak turbulence, QLT is still not recovered. Only for
extremely weak turbulence (�B=B0T0:01) could QLT be cor-
rect, but this limit is not of physical interest.

As demonstrated in the previous subsections, QLT is never
valid for pure two-dimensional geometry independent of whether
the turbulence is strong or weak. As noted before, QLT is
also more accurate for high rigidities. For �B > B0 our WNLT
could become more and more inaccurate. In such a strong tur-
bulence regime equation (74) could become invalid and strong
turbulence theories like NLGC theory might provide a more
accurate description of particle transport.

7.6. The Parallel Mean Free Path for Different Values
of the Two-dimensional Bend-ovver Scale

In this subsection we calculate the parallel mean free path for
different values of the two-dimensional bend-over scale l2D. In
QLT and in the magnetostatic limit, the parallel mean free path
is independent of l2D. In Figure 10 we demonstrate that in
WNLT kk is strongly dependent on the two-dimensional bend-
over scale. For l2D ¼ 0:1 lslab , QLT seems to be accurate for
high rigidities. For larger values of l2D=lslab QLT is not valid
for any values of the rigidity. It seems that in general the two-
dimensional bend-over scale has a strong influence on the par-
allel mean free path if we use WNLT.

8. SUMMARY AND CONCLUSION

With this paper we have presented the weakly nonlinear
theory (WNLT) for diffusion of charged particles. This new

Fig. 7.—Parallel mean free path as a function of the ratio �B2
slab=�B

2 for
moderate-amplitude turbulence (�B=B0 ¼ 1). Shown are results of our weakly
nonlinear theory (solid line), simulations (dots), and QLT (dotted line). For pure
two-dimensional geometry (�B2

slab=�B
2 ¼ 0), the QLT prediction is kk ¼ 1. To

obtain these results we used R ¼ 0:005.

Fig. 8.—Parallel mean free path for 99% two-dimensional geometry.
Shown are the weakly nonlinear theory results (solid line) in comparison with
the QLT prediction (dashed line) and pure slab results (dotted line).

Fig. 9.—Ratio kQLTk =kWNLT
k as a function of �B=B0 for R ¼ 0:01, 0.1, 1 and

composite geometry. The disagreement between QLT and WNLT becomes
smaller for smaller values of �B=B0.
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theory includes the effect of perpendicular diffusion and the
initial condition decay of the vz-correlation function. We have
demonstrated that these nonlinear effects are indispensable
if we calculate Fokker-Planck coefficients and transport pa-
rameters for general turbulence geometry. Only in a few cases
(e.g., extremely weak turbulence, high rigidities) is QLT re-
covered. The new theory provides us with a coupled system of
Fokker-Planck coefficients. To the best of our knowledge this
is the first time that such a theory has been presented. In this
paper we have come to the conclusion that for the under-
standing of cosmic-ray parallel and perpendicular transport,
nonlinear effects are a key input and cannot be neglected. In
general the quasi-linear approach, which neglects all nonlinear
effects, does not provide a reasonable description of particle
transport.

We have demonstrated that for 20% slab/80% two-
dimensional geometry the parallel mean free path for small and
medium rigidities is also controlled by the nonlinear two-
dimensional Fokker-Planck coefficient D2D

��. We have shown
that the nonlinear parallel mean free path is smaller than the
QLT result and that the rigidity dependence is different. The
WNLT result (kk � R0:6) is in contrast to the well-known QLT
result (kk� R1=3). In this paper we come to the conclusion that
the strength of the turbulence and turbulence geometry deter-
mine whether QLT is accurate or not if we calculate the parallel
mean free path.

One important conclusion of this paper is that the new theory
can solve the problem of perpendicular diffusion. The current
theory is the first weak-turbulence approach that provides us
with an accurate description of perpendicular cosmic-ray trans-
port. In the past only the NLGC theory (Matthaeus et al. 2003;
Shalchi et al. 2004) was able to reproduce perpendicular dif-
fusion coefficients obtained from simulations. The NLGC the-
ory describes particle transport in a highly nonlinear regime
where the displacements that describe the statistical motion of
the particles are pitch-angle independent. In this approach the
decorrelation from unperturbed orbits occurs rapidly. In the
current theory we still have a pitch-angle dependent description
of particle transport and we still substitute some parameters
through the unperturbed orbit. We expect that the current theory
is valid in the weak-turbulence regime (�BTB0) whereas
NLGC theory should provide accurate results if the turbulence
is strong (�B3B0). A more detailed discussion of particle
transport in these different regimes will be the subject of future
work.
Because of the accurate agreement between WNLT and

simulations, we also expect completely new and more accurate
results for momentum diffusion and drifts. As demonstrated
in, e.g., Schlickeiser (2002), momentum diffusion is controlled
by the Fokker-Planck coefficients Dpp, D�p, and D��, whereas
drifts are controlled by the coefficients DXY and DYX . It is
straightforward to include nonlinear effects if we calculate these
Fokker-Planck coefficients. The WNLT can be obtained from
QLT by the formal substitution

QLT ! WNLT;

�� kkvk þ n�
� �

! D?k
2
? þ !

D?k
2
? þ !ð Þ2þ kkvk þ n�

� �2 : ð77Þ

Another subject of future work will be to include dynamical
effects into WNLT. Then it will be necessary to revisit the
Palmer consensus (Palmer 1982; Bieber et al. 1994) in light of
these new theoretical results. It will also be a simple matter to
include plasma wave propagation effects or plasma wave damp-
ing into the new theory. It will also be a subject of future work
to include additional nonlinear effects into WNLT in order
to achieve further improvement of the new theory.

This research was supported by the National Science Foun-
dation under grant ATM 00-00315 and by NASA under grant
NAG5-11603. This work profited enormously from the dis-
cussions at the Potchefstroom International Cosmic Ray Work-
shop in 2002 March and the Bochum International Cosmic Ray
Workshop in 2003 March. We thank the referee of the paper for
his helpful comments.

APPENDIX A

QUASI-LINEAR FOKKER-PLANCK COEFFICIENTS IN PURE TWO-DIMENSIONAL GEOMETRY

In this appendix we consider particle transport in pure two-dimensional geometry in the QLT approximation. It can easily be
demonstrated that all 36 Fokker-Planck coefficients can be written as (e.g., Schlickeiser 2002)

D
MS; 2D
ij ¼

Z
d3k

Xþ1

n¼�1
fij(n; k) � kkvk þ n�

� �
; ðA1Þ

Fig. 10.—Parallel mean free path for different values of the two-dimensional
bend-over scale and composite geometry. In WNLT we obtain different results
for different values of l2D=lslab. In QLT the parallel mean free path is indepen-
dent of the two-dimensional bend-over scale if we consider magnetostatic
turbulence.
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with i; j ¼ X ; Y ; Z; �;�; p, if we consider the special case of magnetostatic (MS) turbulence and if we neglect the plasma wave
dispersion relation and any nonlinear effects. For pure two-dimensional geometry, fij has the form

fij(n; k) ¼ hij n; k?ð Þ � kk
� �

: ðA2Þ

Therefore all Fokker-Planck coefficients can be written as

D
MS; 2D
ij ¼

X1
n¼�1

an

Z þ1

�1
dkk �(kk)� kk þ

n�

vk


 �
: ðA3Þ

Applying Z þ1

�1
dx �(x)�(xþ a) ¼ �(a); ðA4Þ

we find

D
MS; 2D
ij �

X1
n¼�1

an �(n�): ðA5Þ

For the Fokker-Planck coefficient of perpendicular diffusion we have a0 6¼ 0 (see Shalchi & Schlickeiser 2004b) and therefore

D
MS; 2D
? � �(0) ! 1: ðA6Þ

The pitch-angle Fokker-Planck coefficient has the property an � n2. A rigorous discussion of products such as n2�(n�) is not
subject of the current paper, but it can be shown that

DMS; 2D
�� ! 0 ðA7Þ

in magnetostatic two-dimensional turbulence. This result was also obtained by Bieber et al. (1994) and Shalchi & Schlickeiser
(2004a). It is straightforward to demonstrate that all 36 Fokker-Planck coefficients D

MS; 2D
ij are equal to zero or infinity. Because of

these results we come to the conclusion that QLT cannot describe particle transport in pure two-dimensional geometry. Therefore it
seems necessary to include nonlinear effects if we calculate Fokker-Planck coefficients in pure two-dimensional geometry and in
the magnetostatic limit.

APPENDIX B

RELATION BETWEEN GUIDING-CENTER VELOCITY AND PARTICLE VELOCITY

In this appendix we derive a relation between the velocity of the guiding center and the velocity of the particle. We need such a
relation to calculate Fokker-Planck coefficients of spatial diffusion. Assuming that there is a magnetic background field (mean
field) that points into the z-direction of our coordinate system, we derive such a relation under the assumption of weak turbulence
(�B=B0T1) and purely magnetic fluctuations (�E ¼ 0). To lowest order in �B=B0 we have

R ¼ xþ c

qB0

p < ezð Þ; ðB1Þ

where R is the position of the guiding center and x the position of the particle. This equation can be used to calculate the speed
vector of the guiding center:

ṽ � Ṙ ¼ vþ c

qB0

ṗ < ezð Þ ¼ vþ 1

B0

v < Bð Þ< ez½ � ¼ vz
B

B0

� v
�Bz

B0

; ðB2Þ

where we use the equation of motion

ṗ ¼ q

c
v < Bð Þ: ðB3Þ

Therefore we can express the components ṽi of the guiding-center speed vector through the components of the particle speed vector
vi and the magnetic field (see, e.g., Schlickeiser 2002):

ṽx ¼ vz
�Bx

B0

� vx
�Bz

B0

;

ṽy ¼ vz
�By

B0

� vy
�Bz

B0

;

ṽz ¼ vz: ðB4Þ

This derivation is not accurate because corrections of first-order �B=B0 in equation (B1) can change the results (eq. [B4]).
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In the current paper we assume that guiding centers follow field lines. Under this assumption we have

ṽ � Ṙ ¼ �B: ðB5Þ

The scalar � can be calculated from the projection of the guiding-center velocity onto the total magnetic field:

ṽ =B ¼ �B2: ðB6Þ

This projection must be equal to the projection of the particle velocity onto the total magnetic field,

ṽ =B ¼ v =B ¼ �B2; ðB7Þ

and we have � ¼ (v =B)=B2. Thus the guiding-center velocity can be related to the particle velocity as

ṽ ¼ (v =B)

B2
B: ðB8Þ

Next we write the total field as B ¼ �Bþ B0ez and assume �BTB0 to find

1

B2
� 1

B2
0

1� 2
�Bz

B0


 �
: ðB9Þ

In lowest order of �B=B0 we then find for the components of the guiding-center velocity vector

ṽx ¼ vz
�Bx

B0

;

ṽy ¼ vz
�By

B0

;

ṽz ¼ vz þ vx
�Bx

B0

þ vy
�By

B0

: ðB10Þ

Analogous to Schlickeiser (2002), we can define the force terms gi ,

gX � ṽx ¼ vz
�Bx

B0

;

gY � ṽy ¼ vz
�By

B0

;

gZ � ṽz � vz ¼ vx
�Bx

B0

þ vy
�By

B0

6¼ 0; ðB11Þ

to calculate Fokker-Planck coefficients of spatial diffusion. The other three force terms (g�, g�, gp) can be simply derived from the
equation of motion. If we consider equation (B11) we notice that there is also a Fokker-Planck coefficient DZZ 6¼ 0 that could be
defined through

DZZ ¼ Re

Z 1

0

dt gZ (t)g
�
Z (0)

� �
: ðB12Þ

In the current paper we neglect DZZ because we assume that in the limit of weak turbulence this additional Fokker-Planck
coefficient is not important.

APPENDIX C

THE CHARACTERISTIC FUNCTION �GC

In the current paper we assume that the guiding centers are distributed like a Gaussian function:

f (x; y) ¼ 1

2�	x	y

exp � (x� xh i)2

2	2
x

� �
exp � ( y� yh i)2

2	2
y

" #
: ðC1Þ

With xh i ¼ yh i ¼ 0 the function �GC can be written as

�GC(k; t) ¼ eik = XGC
� �

¼
Z þ1

�1
dx

Z þ1

�1
dy f (x; y)eikxxþikyy

¼ 1

2�	x	y

Z þ1

�1
dx

Z þ1

�1
dy e� x2=2	2

xð Þe� y2=2	2
yð Þeikxxeikyy: ðC2Þ
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The width of the Gaussian function can be identified with 	2
x ¼ h(�x)2i and 	2

y ¼ h(�y)2i. Therefore we find

�GC(k; t) ¼
1

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�x)2

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�y)2

� �q Z þ1

�1
dx

Z þ1

�1
dy exp � x2

2 (�x)2
� �

" #
eikxx exp � y2

2 (�y)2
� �

" #
eikyy: ðC3Þ

These integrals are elementary and yield

�GC(k; t)¼ exp �
(�x)2

� �
2

k2x

" #
exp �

(�y)2
� �

2
k2y

" #
: ðC4Þ

To express h(�x)2i and h(�y)2i through Fokker-Planck coefficients we assume diffusive perpendicular transport. As noted before
(Jokipii et al. 1993; Kota & Jokipii 2000; Qin 2002; Qin et al. 2002a, 2002b), there are circumstances in which perpendicular
transport is subdiffusive. Because of assuming diffusion perpendicular to the background field, the theory of the current paper
becomes incorrect if perpendicular transport is subdiffusive or superdiffusive.

For the present we simply assume diffusion and proceed as follows:

(�x)2
� �

2
� Dxxt;

(�y)2
� �

2
� Dyyt; ðC5Þ

where we use the Fokker-Planck coefficients of perpendicular diffusion Dxx and Dyy. Therefore we finally find

�GC(k; t)¼ exp � Dxxk
2
x þ Dyyk

2
y

� 

t

h i
: ðC6Þ

If we assume axisymmetric turbulence, the function �GC becomes

�GC(k; t) ¼ e�D?k
2
?t; ðC7Þ

where we use D? ¼ Dxx ¼ Dyy. Note that QLT is recovered if we use

fQLT(x; y) ¼ � xð Þ� yð Þ ðC8Þ

instead of a Gaussian function. Then we would have �GC ¼ 1. As demonstrated, QLT is only recovered for pure slab geometry or if
D? can be neglected.
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