
Nonlinear Parameter Estimation Using Spreadsheet Software
Jon M. Wraith* and Dani Or

ABSTRACT

Many fundamental processes in the natural and physical
sciences exhibit substantial nonlinear relations among the com-
ponent variables. Instructing students on how to identify para-
meters in models for such relations based on measured data,
and providing a means to illustrate the impacts of specific com-
ponents on the behaviorof nonlinear relationships, is therefore
a critical element of university science training. Commercially
available spreadsheet software programs offer convenient and
effective means for performing nonlinear parameter estima-
tion. Among the advantages of the spreadsheet approach to
nonlinear optimization and parameter estimation are its rela-
tive ease of use, general applicability, demonstration or rein-
forcement of least-squares principles, and the ability to inter-
actively alter selected parameter values and immediately view
the results via embedded graphics. In this paper we provide a
brief discussion of nonlinear least-squares optimization,
demonstrate its application within the context of some com-
mercial spreadsheet software packages, and illustrate some of
the capabilities of this approach using examples from our
respective upper division Soil Physics lecture/laboratory cours-
es. Our experiences indicate that students learn spreadsheet
techniques more readily than often specialized mathematical
or statistical programs, and that they provide a valuable tool in
their future endeavors.

MANY fundamental processes in soil physics exhibit
highly nonlinear relationships among the component

states and/or rates. This is true of many other disciplines as
well. The ability to determine or estimate the value of com-
ponent parameters is a critical aspect in the practical appli-
cation of these relationships, and thus is an important aspect
of university instruction. Effective parameter estimation
typically requires use of numerical optimization techniques
or specialized software (e.g., SAS, MathCAD, Mathe-
matica)1. However, recent versions of many commercial
spreadsheet software programs offer powerful and flexible
means of performing nonlinear optimization. This offers a
functional alternative to the use of more specialized mathe-
matical or statistical software, while providing skills and
abilities having potentially much wider application to stu-
dents’ future endeavors. We have found through conversa-
tions with colleagues at other institutions that, although
many of them use commercial spreadsheets extensively in
teaching and research, the capacity to perform advanced

nonlinear optimization within this context is not well recog-
nized. A contributing factor may be the fact that explicit
instructions or potential applications are generally not
emphasized in the spreadsheet software manuals.

We encourage our students to use spreadsheet software
extensively. Specific applications include homework prob-
lem sets and a variety of laboratory exercises. Advantages of
spreadsheets for these assignments include their general
facility for data entry and/or transfer from other sources,
data management, ease in performing simple or complex
calculations, and often advanced graphics and reporting
capabilities. These provide an effective tool for student use
in many other venues, as well as for the immediate demands
we place on them.

Our objectives in this paper are to outline the methods of
performing nonlinear parameter optimization using the
commercial spreadsheet software with which we are most
familiar, to illustrate the approach using a few specific
examples from our courses, and to discuss advantages of
this approach relative to the use of more specialized mathe-
matical/statistical software packages. Our treatment of non-
linear optimization itself is intended to serve only as a brief
overview of the subject, and of the relevant options com-
monly available in the spreadsheet environment. More
exhaustive treatments are available elsewhere (e.g., Press et
al., 1986; Luenberger, 1984).

GENERAL APPROACH

Nonlinear Optimization by Least Squares
Minimization of an Objective Function

In nonlinear parameter estimation we wish to fit N data
points {(xi, yi ); i = 1,…,N} to a model having M adjustable
parameters {aj ; j = 1,…,M}. The functional relationship
predicted by the measured independent and dependent
model variables is then (Press et al., 1986)

y(x) = y(x;a) [1]

A merit function is often defined to measure the agreement
between the data and model (usually, small values in the
merit function represent close agreement). The best fit para-
meters are obtained by adjusting the model parameters to
achieve the minimal merit function value. The most com-
mon approach to the problem of parameter estimation is the
Gaussian least-squares minimization, where the merit func-
tion to be minimized is the sum of squared error terms,

N

c2 (a) = S [yi - y(xi;a1…aM)]2 [2]
i=1

with a = a1,…aM, the vector of model parameters. With non-
linear model dependencies, the minimization must proceed
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iteratively (i.e., there is no closed-form solution) starting
with a set of initial or trial parameter values denoted a0. At
each iteration, the trial solution is improved until the c2(a)
effectively stops decreasing. The challenge from a mathe-
matical point of view is to devise efficient methods for min-
imization of the merit function c2(a). Most algorithms rely
on approximation of the merit function c2 by its second
order Taylor series about a0:

1c2(a) » g - da + aDa [3]
2

where d = Ñc2|a is an M vector (the gradient of c2), D is an
M × M Hessian matrix with

[D]ij =
¶2 (c2)

|a,¶ai¶aj

and g = c2(a0) is a constant. The minimization schemes dif-
fer in the way information is used to drive the iterative
process, or in finding betterestimates of a than the current
one in pursuit of a minimum c2(a). One of the most efficient
schemes for minimization in the least squares context is the
Levenberg-Marquardt algorithm (Press et al., 1986). Be-
cause the optimization routines in commercial spreadsheets
are designed to efficiently handle a broader class of prob-
lems than solely least squares minimization, the algorithms
used are somewhat less efficient in their minimization
search and updating schemes for least-squares problems
than the Levenberg-Marquardt. This has little effect on the
solution to the minimization problem and the user may
choose between conjugate gradientor Newton (variable
metric) methods, both of which are considered equal alter-
natives for the multidimensional minimization problem
(Press et al., 1986, p. 277).

Brief Description of the Optimizer

Recent versions of several commercial spreadsheet soft-
ware programs include convenient and effective nonlinear
optimization tools. We will focus on those in Quattro Pro
and Excel, with which we are most familiar. The nonlinear
optimizers in current versions of Quattro Pro, Excel, and
Lotus 1-2-3 are nearly identical in terms of overall
approach, options, and even menu structure. This facilitates
a common instructional approach while providing students
some flexibility in their choice of software based on previ-
ous experience, general preference, or availability/accessi-
bility. The initial optimizer (solver in Excel) menu panel
includes input locations to specify the solution or target cell
location, and whether the goal is to maximize, minimize, or
attain a specific value for this cell. The location of the vari-
able cell(s) whose value(s) may be altered to achieve the
desired target cell goal is specified, and constraints may be
imposed on any cells involved in the problem (Fig. 1).
Constraints take the form of a relationship among a variable,
an arithmetic operator (£, =, ³, integer), and a constant. An
example might be (variable cell) D4 ³ 1 (Fig. 1b); a given
cell may be assigned up to two constraints, for example to
bracket allowable values between lower and upper limits.

Several options are available to control or fine tune the
optimizer. The maximum time, maximum iterations, preci-

sion, and tolerance of the iterative optimization process may
be specified. For one-dimensional minimization (a subalgo-
rithm), a user may use a tangent or quadratic approach to
obtain the local minimum of basic variables in each itera-
tion. Forward or central (finite) differencing options are
available for estimates of partial derivatives (this is particu-
larly important for an unspecified model structure). The
search directions and updating schemes based on conjugate
gradient or variable metric (Newton) methods may also be
specified. We find that the default settings work well for
most parameter estimation problems, but students or
instructors may wish to explore conceptual or practical dif-
ferences among these approaches. Once an optimization
model has been developed using these menu options, it may
be saved and subsequently reloaded from a user-specified
location in the spreadsheet. The concepts described above
will be illustrated in the following section using examples
taken from our laboratory courses.

APPLICA TIONS IN THE SPREADSHEET
ENVIRONMENT

Stepwise Approach to Parameter Estimation of Soil
Water Retention—Illustrative Example

A soil water retention curve describes the functional rela-
tionship between soil water content (q) and matric potential
(y) under equilibrium desorption conditions. It is an impor-
tant soil property affected by soil structure and texture, and
is critical for computer simulation modeling, estimating
unsaturated hydraulic conductivity, and for related applica-
tions where inference of y based on q or vice versa is
required. A retention curve is a highly nonlinear function,
and is relatively difficult to obtain accurately. Measured
q–y pairs are often fragmentary, and usually constitute rel-
atively few measurements over the wetness range of inter-
est. It is therefore beneficial to represent retention curves in
a continuous and parametric form. An effective and com-
monly used retention model was proposed by van
Genuchten (1980):

q(y) = qr + (qs - qr)[1 + (a|y|)n]-m [4]

where y is the matric potential, qr and qs are the residual and
saturated water contents, respectively, and a, n, and m are
fitting parameters directly dependent on the shape of the
q(y) curve. A considerable simplification is gained by
assuming that m = 1 - 1/n. Thus, the basic model parame-
ters are: qr, qs, a, and n. Because qs is often known and reli-
able values may be easily obtained experimentally, only
three unknown parameters often need be estimated from the
measured data.

Estimating retention curve parameters from experimental
data requires: (i) sufficient data points (at least 5 to 8 q–y
pairs); and (ii) a program for performing nonlinear parame-
ter estimation. The steps for fitting van Genuchten’s reten-
tion equation to experimental data in Quattro Pro follow;
these are nearly identical to those for Excel. The basic pro-
cedures will be the same for fitting other parametric models,
or for any nonlinear least squares optimization of equation
parameters to measured data.
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1. Enter the measured data in two columns corresponding to
q and |y|.

2. Establish a cell for each parameter in the model (qs, qr, a,
n, m), and assign an initial value (estimate) to each. Note
that reasonable initial estimates for all variables are often
critical for proper convergence of nonlinear models. That
is to say, if initial estimates are not reasonably near their

true values, the fitting algorithm may converge on a local
rather than the true global minimum, or even fail to con-
verge on a solution at all. Consulting the literature for
reasonable initial estimates may be appropriate in some
cases.

3. Write the desired prediction model (i.e., equation) in a
third column. Refer to the preassigned cells containing

Fig. 1. (a) menu structure for the optimizer in Corel Quattro Pro (v. 7); and (b) the optimizer menu for defining the solution cell, variable range, and
constraints.



your initial guesses for the fitting parameters, and to
measured q or y cells where appropriate in the equation.
Note that Eq. [4] may be stated in terms of y(q) as:

|y(q)| =
1 éæ q - qr ö -1/m

-1 ù 1/n
[5]a ëè qs - qrø û

We will assume for the current exercise that we are using
Eq. [4]. The third column will thus contain predicted q
values (qmodel) for each measured value of |y|.

4. Form in a fourth column a deviate (or error) squared
between q and qmodel , i.e., (qmeasured- qmodel)2, for each
data point.

5. Establish a cell containing the sum of squared deviations
(errors) between measured and predicted values (sum the
entire column of error-squared values using the @SUM()
function). This is the merit function to be minimized.

6. Apply the nonlinear solver (Optimizer) to the problem by
minimizing the sum of squared errors (SSE) cell using
variable cells as defined in Step 2. You should include the
following constraints: 0 £ m £ 1, qr ³ 0. The spreadsheet

menu structures for performing these steps are illustrated
in Fig. 1.

7. Compute the varianceof the measured q column (anoth-
er built-in spreadsheet statistical function). The coeffi -
cient of determination (r2) for the resulting curve fit may
then be calculated using:

r2 = 1 - SSE [6]
N sq

2

where s2
q denotes the variance of the measurements on

the independent variable, q. The @COUNT() function
may be used to incorporate the number of data points, N,
in Eq. [6]. Note that you may maximize the r2 value as an
alternative to minimizing the SSE in the Optimizer. An
alternative to Eq. [6] is to use the @CORREL(array1,
array2) function.
A modification that is sometimes useful is to assign a col-
umn of weights (e.g., ¹ 1) to the right of the squared
errors (Step 4 above), and multiply the original squared
errors by higher weights for data points you wish the fit-
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Fig. 2. Spreadsheet for optimization of van Genuchten (1980) equation parameters to measured soil water retention data. Step labels correspond with
the description in the text.



ted relationship to be forced through, or to which greater
emphasis should be placed (e.g., when data of varying
degrees of reliability are being used). Then make the sum
of these weighted deviates squared (or the r2 based on
these) the solution cell to be minimized (maximized).
This approach may also be effective in cases where a
range of substantially greater numeric values in the mea-
sured data dominate the error squared term, thus making
it desirable to decrease their overall effects on the opti-
mization process by assigning smaller weighting factors.

Figure 2 illustrates a spreadsheet page developed by a
former student as part of a laboratory report covering mea-
surement and characterization of soil water retention. Best-
fit values for parameters of van Genuchten’s (1980) equa-
tion were evaluated for a series of measured q(y) data pairs.
Embedded graphics provide immediate feedback for the stu-
dent, and confirm the goodness-of-fit for student and
instructor.

Additional Example Applications

Among the other applications of this technique in our
laboratory courses are fitting nonlinear empirical or theoret-
ical parametric expressions to measured data for one-dimen-
sional infiltration and for miscible displacement of nonreac-
tive solutes. We briefly explore each of these here to provide
examples of the sort of disciplinary problem solving that
may be easily presented to students having little previous
experience or training in nonlinear optimization. Finally, we
illustrate the important ability to interactively alter the value
of selected equation parameters and view their effects using
embedded graphics.

One-Dimensional Infiltration into Initially Dry Soil

An important class of flow events involves downward
water movement through the soil surface in a process known
as infiltration. The rate of this process relative to the rate of
water supply determines how much water will enter the soil,
and how much (if any) will pond and perhaps create over-
land flow (runoff). Based on field observations, the infiltra-
tion rate (denoted as i) is found to be dependent upon the ini-
tial soil water content, the hydraulic conductivity of the sur-
face soil, and the elapsed time since the onset of water appli-
cation. In most situations the infiltration rate is highest when
water first enters the soil, and gradually decreases with time
until a constant final rate is attained. This behavior is also
reflected in the cumulative infiltration (I) showing a rapid
increase in the volume of infiltration at short times, then
decreasing gradually to a nearly linear time dependence at
large times.

Based on a predictable and well-behaved shape of the
infiltration rate vs. time relationship, several functions hav-
ing shapes similar to the expected behavior have been pro-
posed as predictive equations. Attempts were later made to
attach physical significance to the various parameters of
these empirical equations. Philip (1957, 1969) presented the
first analytical solution to the Richards equation for vertical
and horizontal infiltration. For vertical infiltration, Philip’s
solution describes the time dependence of cumulative infil-
tration as an infinite series in powers of t1/2. In practice, the

series is truncated and only the first two terms are retained,
resulting in the following equations:

Cumulative: I = St1/2 + At;

Rate: dI = i = 1 St-1/2 + A [7]
dt 2

where S is the sorptivity, t is time since water application,
and A is a coefficient dependent upon the soil properties and
on initial and boundary water contents. The first term in
each describes the influence of the sorptive forces of (rela-
tively) dry soil, and the second term the contribution of
gravity. The influence of the first term diminishes with time
and reflects the reduction in the hydraulic gradient as the
surface soil becomes wetted.

In the laboratory exercise, a permeameter is used to sup-
ply water to the top of a cylindrical column packed with air-
dry soil. The elapsed time, wetting front position with
respect to the soil surface (i.e., depth of wetting front), and
the water level in the permeameter reservoir are monitored
at predetermined time intervals during the experiment using
a ruler and stopwatch. Changes in reservoir water level are
subsequently converted to depth of water infiltrated across
the soil surface area based on diameters of the water reser-
voir and soil column. From the measured data, cumulative
infiltration, infiltration rate, and wetting front depth are cal-
culated with respect to time. These relationships are then
used to derive the relevant parameters in Eq. [7] (as well as
for several empirical and quasi-analytical infiltration rela-
tionships), and plots of measured vs. predicted infiltration
(cumulative, rate) and wetting front position are developed
(e.g., Fig. 3).

J. Nat. Resour. Life Sci. Educ., Vol. 27, 1998 � 17

Fig. 3. (top) Measured and predicted one-dimensional infiltration rate
and (bottom) cumulative infiltration into an initially dr y soil col-
umn.



Estimation of Convection–Dispersion Model Parameters
from Measured Breakthrough Curves

When a solution of different chemical concentration from
the resident soil solution is passed through the soil, the
chemical concentration in the composition of drainage water
(effluent) will gradually change. The process of replacing
the resident soil solution with a different solution is termed
miscible displacement and is demonstrated by the leaching
of salts, the distribution of fertilizer, pesticides, waste prod-
ucts, and other chemicals, and the use of tracers for follow-
ing water movement through porous materials. By measur-
ing the concentration change of the effluent of a soil col-
umn, information about the transport properties of the
porous soil medium and the behavior of the solution moving
through the soil can be obtained.

The convection–dispersion (model) equation (CDE) is
often used to describe solute transport through soils. A com-
mon form of the CDE is:

¶ c ¶2 c ¶ cR ___ = D ___ - v ___ [8]
¶ t ¶ x2 ¶ x

where c is solute concentration, t is time, D is the dispersion
coefficient, v is pore water velocity, R is the retardation fac-
tor (R= 1 means no interaction of the solution with the solid
matrix), and x represents a spatial coordinate (distance).
Analytical solutions to Eq. [8] have been developed for a
number of specific initial and boundary conditions, and
many important soil science problems involve estimating
solute transport parameters based on fitting analytical solu-
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Fig. 4. Portion of nonlinear optimization spreadsheet for miscible displacement laboratory exercise with embedded graphic. The potential for visu-
al feedback concerning the impacts of various parameters is illustrated by the predicted breakthrough curves for R = 1.0 and R = 2.0.



tions of the CDE or alternative models to measured break-
through curves from miscible displacement experiments.
Butters and Bandaranayake (1993) have provided an excel-
lent discussion of this approach in the context of Soils labo-
ratory instruction.

The solute concentration distribution in a soil column
with uniform initial (resident) concentration ci under steady
state flow replaced at t = 0 with a solution of constant con-
centration c0 is amenable to an analytical solution. The ini-
tial and boundary conditions are given by:

c(x,0) = ci

c(0, t) = co [9]

¶c (¥,t) = 0
¶x

The solution to Eq. [8] subject to these initial and boundary
conditions is (Nielsen and Biggar, 1963; van Genuchten and
Wierenga, 1986):

c(x,t) - ci 1 é Rx - vt ù 1 éRx+ vtù________= _ erfc ______ + _ evx/D erfc _____ [10]
c0 - ci 2 ë Ö4DRt û 2 ë Ö4DRt û

where erfc(u) is the complementary error function and the
remaining components were defined previously. Many
spreadsheet software programs include a built-in erfc(u)
function. Note that when u assumes negative values, erfc(u)
will return an error message. To overcome this potential
problem the relationship erfc(-u) = 1 + erf(u), based on the
identities erfc(u) = 1 - erf(u) and erf(-u) = -erf(u), may be
used within an @IF() statement. Other transformations are
also available.

A simpler solution commonly used in displacement
experiments is obtained by retaining only the first term on
the right-hand side of Eq. [10]:

c 1 éRx - vtù__ = __ erfc _____ [11]
co 2 ë Ö4DRtû

for negligible ci. The solution presented in Eq. [11] may be
derived by either neglecting molecular diffusion, or by con-
sidering an infinite system (-¥ < x < ¥).

The laboratory exercise involves changing the inlet solu-
tion salt concentration to a soil column during saturated,
steady vertical flow. The electrical conductivity (a rapidly
and easily obtained measure of salinity) is monitored for
discrete fractions of the column outflow, to produce the
breakthrough curve for the saline solution. Transport para-
meters D, R, and v are then estimated based on optimization
of the measured data to Eq. [11]. Figure 4 shows a portion
of a student’s worksheet which addresses this problem.
Cassel and Elrick (1992; Example 3) illustrated the use of
MathCAD for nonlinear optimization of a similar miscible
breakthrough problem.

Visual Feedback Concerning the Impacts
of Nonlinear Coefficients

Visual feedback concerning the specific effects or
impacts of individual or combinations of equation parame-

ters is an effective means of communicating the feelof often
complex nonlinear equations integral to the natural and
physical sciences. This may be easily accomplished as part
of the sort of instructional exercises noted above. Students
may choose to interactively alter the value of single or mul-
tiple equation parameters, and view the resulting changes in
one or more embedded graphic charts. Alternatively, a num-
ber of predicted graphic series may be produced by copying
the range of cells containing the model equation, and refer-
encing a specific set of nonlinear parameters for each series.
An example of the latter approach as applied to the CDE is
presented in Fig. 4, where predictions based on two values
for the retardation factor (R), which bracket the optimal
solution have been included, and their effects on the result-
ing predicted chemical breakthrough curve are visually evi-
dent.

SUMMARY AND CONCLUSIONS

Many commercial spreadsheet software programs offer
convenient and effective means to perform nonlinear para-
meter estimation. Among the advantages of the spreadsheet
approach to nonlinear optimization and parameter estima-
tion are its relative ease of use, general applicability, demon-
stration or reinforcement of least-squares principles, and the
ability to interactively alter selected parameter values and
immediately view the results via embedded graphics.

Our experiences indicate that our students are able to
learn rudimentary and advanced spreadsheet techniques
more easily than for often specialized mathematical or sta-
tistical programs, and that very few possess requisite pro-
gramming skills to develop their own parameter estimation
routines. Several former students have indicated that their
exposure to basic and advanced spreadsheet skills, including
nonlinear parameter estimation, have proven to be among
the most valuable tools gleaned from our courses. They have
gainfully applied these tools in other university courses, in
their own research, and in a variety of employment opportu-
nities following graduation.
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