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ABSTRACT

Many fundamental processes in the natural and physical
sciences exhibit substantial nonlinear relations among the com-
ponent variables. Instructing students on how to identify para-
meters in models for such relations based on measured data,
and providing a means to illustrate the impacts of specific com-
ponents on thebehaviorof nonlinear relationships, is therefore
a critical element of university science training. Commercially
available spreadsheet software programs offer convenient and
effective means for performing nonlinear parameter estima-
tion. Among the advantages of the spreadsheet approach to
nonlinear optimization and parameter estimation are its rela-
tive ease of use, general applicability, demonstration or rein-
forcement of least-squares principles, and the ability to inter-
actively alter selected parameter values and immediately view
the results via embedded graphics. In this paper we provide a
brief discussion of nonlinear least-squares optimization,
demonstrate its application within the context of some com-
mercial spreadsheet software packages, and illustrate some of
the capabilities of this approach using examples from our
respective upper division Soil Physics lecture/laboratory cours-
es. Our experiences indicate that students learn spreadsheet
techniques more readily than often specialized mathematical
or statistical programs, and that they provide a valuable tool in
their future endeavors.

ANy fundamental processes in soil physics exhibit

highly nonlinear relationships among the component
states and/or rates. This is true of many other disciplines as
well. The ability to determine or estimate the value of com-
ponent parameters is a critical aspect in the practical appli-

nonlinear optimization within this context is not well recog-
nized. A contributing factor may be the fact that explicit
instructions or potential applications are generally not
emphasized in the spreadsheet software manuals.

We encourage our students to use spreadsheet software
extensively. Specific applications include homework prob-
lem sets and a variety of laboratory exercises. Advantages of
spreadsheets for these assignments include their general
facility for data entry and/or transfer from other sources,
data management, ease in performing simple or complex
calculations, and often advanced graphics and reporting
capabilities. These provide an effective tool for student use
in many other venues, as well as for the immediate demands
we place on them.

Our objectives in this paper are to outline the methods of
performing nonlinear parameter optimization using the
commercial spreadsheet software with which we are most
familiar, to illustrate the approach using a few specific
examples from our courses, and to discuss advantages of
this approach relative to the use of more specialized mathe-
matical/statistical software packages. Our treatment of non-
linear optimization itself is intended to serve only as a brief
overview of the subject, and of the relevant options com-
monly available in the spreadsheet environment. More
exhaustive treatments are available elsewhere (e.g., Press et
al., 1986; Luenberger, 1984).

GENERAL APPROACH

Nonlinear Optimization by Least Squares
Minimization of an Objective Function

In nonlinear parameter estimation we wish to fit N data

cation of these relationships, and thus is an important aspect | . . ;
of university instruction. IOEf“fective parameterIO estimaticl)on points {(, i ); i = 1,... N} to a model havingl adjustable
typically requires use of numerical optimization techniques Parameters g ; j = 1,...M}. The functional relationship

or specialized software (e.g., SAS, MathCAD, Mathe- predicted .by thg measured independent and dependent
matica}. However, recent versions of many commercial MOdel variables is then (Press et al., 1986)

spreadsheet software programs offer powerful and flexible
means of performing nonlinear optimization. This offers a
functional alternative to the use of more specialized mathe-
matical or statistical software, while providing skills and
abilities having potentially much wider application to stu-
dents’ future endeavors. We have found through conversa

y(X) = y(x;a) (1]

A merit function is often defined to measure the agreement
between the data and model (usually, small values in the
merit function represent close agreement). The best fit para-

tions with colleagues at other institutions that, although Meters are obtained by adjusting the model parameters to

many of them use commercial spreadsheets extensively iichieve the minimal merit function value. The most com-

teaching and research, the capacity to perform advancedgon approach to the problem of parameter estimation is the
aussian least-squares minimization, where the merit func-

1 Mention of company names or products is for the convenience of the tion to be minimized is the sum of squared error terms,
reader and does not imply endorsement by the authors or their respective
institutions. N
: : S—— . 72 @ = Z [y - Y04ay...av)]? [2]
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iteratively (i.e., there is no closed-form solution) starting sion, and tolerance of the iterative optimization process may
with a set of initial or trial parameter values dendaigdAt be specified. For one-dimensional minimization (a subalgo
each iteration, the trial solution is improved until §¥éa) rithm), a user may use a tangent or quadratic approach to
effectively stops decreasing. The challenge from a mathe obtain the local minimum of basic variables in each dtera
matical point of view is to devisef&fient methods for min tion. Forward or central (finite) dérencing options are
imization of the merit functiory?(a). Most algorithms rely  available for estimates of partial derivatives (this is particu
on approximation of the merit functioyf by its second larly important for an unspecified model structure). The

order Tylor series aboud: search directions and updating schemes based on conjugate
gradient or variable metric (Newton) methods may also be
2a) =y - da+ 1 .pa [3] specified. V& find that the default settings work well for
2 most parameter estimation problems, but students or

instructors may wish to explore conceptual or practical dif
ferences among these approaches. Once an optimization
model has been developed using these menu options, it may

whered = Vy?|,is anM vector (the gradient gf?), D is an
M x M Hessian matrix with

32 (2 be saved and subsequently reloaded from a user-specified
[Dlij = — la location in the spreadsheet. The concepts described above
0808, will be illustrated in the following section using examples

. L .. taken from our laboratory courses.
andy = x%(ag) is a constant. The minimization schemes dif y

fer in the way information is used to drive the iterative
process, or in findindgpetterestimates o# than the current APPLICATIONS IN THE SPREADSHEET

one in pursuit of a minimung?(a). One of the most &tient ENVIRONMENT

schemes for minimization in the least squares context is the

Levenbeg-Marquardt algorithm (Press et al., 1986).- Be Stepwise Appioach to Parameter Estimation of Soil
cause the optimization routines in commercial spreadsheets Water Retention—Illustrative Example

are designed to ®&fiently handle a broader class of prob
lems than solely least squares minimization, the algorithms
used are somewhat lessfi@ént in their minimization
search and updating schemes for least-squares proble
than the LevenbgrMarquardt. This has little fefct on the
solution to the minimization problem and the user may
choose betweeronjugate gradientor Newton (variable
metric methods, both of which are considered equal-alter
natives for the multidimensional minimization problem
(Press et al., 1986, p. 277).

A soil water retention curve describes the functional rela
tionship between soil water contefij and matric potential
mg\p) under equilibrium desorption conditions. It is an impor
tant soil property décted by soil structure and texture, and
is critical for computer simulation modeling, estimating
unsaturated hydraulic conductivitgnd for related appliea
tions where inference off based or® or vice versa is
required. A retention curve is a highly nonlinear function,
and is relatively dffcult to obtain accuratelyMeasured
06—y pairs are often fragmentargnd usually constitute rel
atively few measurements over the wetness range of inter
est. It is therefore beneficial to represent retention curves in

Recent versions of several commercial spreadsheet softa continuous and parametric form. Areefive and com
ware programs include convenient anteetive nonlinear monly used retention model was proposed by van
optimization tools. W will focus on those in Quattro Pro Genuchten (1980):
and Excel, with which we are most familidihe nonlinear
optimizers in current versions of Quattro Pro, Excel, and O(y) =6, + 05— 06,)[1 + (ctfy )™ 4]
Lotus 1-2-3 are nearly identical in terms of overall
approach, options, and even menu structure. This facilitatesvherey is the matric potential, ando, are the residual and
a common instructional approach while providing students saturated water contents, respectivelyda, n, andm are
some flexibility in their choice of software based on previ fitting parameters directly dependent on the shape of the
ous experience, general preference, or availability/accessio(y) curve. A considerable simplification is gained by
bility. The initial optimizer golverin Excel) menu panel  assuming tham = 1 - 1/n. Thus, the basic model parame
includes input locations to specify the solution ogé¢icell ters aref,, 65, o, andn. Becausé is often known and reli
location, and whether the goal is to maximize, minimize, or able values may be easily obtained experimentalhyy
attain a specific value for this cell. The location of the-vari three unknown parameters often need be estimated from the
able cell(s) whose value(s) may be altered to achieve themeasured data.
desired taget cell goal is specified, and constraints may be  Estimating retention curve parameters from experimental
imposed on any cells involved in the problem (Fig. 1). data requires: (i) sfi€ient data points (at least 5 t008y
Constraints take the form of a relationship among a variable,pairs); and (ii) a program for performing nonlinear parame
an arithmetic operatog( =, >, integer), and a constant. An ter estimation. The steps for fitting van Genuclgerten
example might be (variable cell) D41 (Fig. 1b); a given  tion equation to experimental data in Quattro Pro follow;
cell may be assigned up to two constraints, for example tothese are nearly identical to those for Excel. The basic pro
bracket allowable values between lower and upper limits. cedures will be the same for fitting other parametric models,

Several options are available to control or fine tune the or for any nonlinear least squares optimization of equation
optimizer The maximum time, maximum iterations, preci parameters to measured data.

Brief Description of the Optimizer
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1. Enter the measured data in two columns corresponding to

6 and Yy|.

2. Establish a cell for each parameter in the madigb( o,
n, m), and assign an initial value (estimate) to each. Note
that reasonable initial estimates for all variables are often
critical for proper convgence of nonlinear models. That 3.
is to say f initial estimates are not reasonably near their

CACLAS S S EEY WE LA Wi

true values, the fitting algorithm may congeron a local
rather than the true global minimum, or even fail to-con
verge on a solution at all. Consulting the literature for
reasonable initial estimates may be appropriate in some
cases.

Write the desired prediction model (i.e., equation) in a
third column. Refer to the preassigned cells containing
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Fig. 1. @) menu structure for the optimizer in Corel Quattro Pro (v. 7); and () the optimizer menu for defining the solution cell, variable range, and

constraints.
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your initial guesses for the fitting parameters, and to
measured or y cells where appropriate in the equation.

Note that Eq. [4] may be stated in termsygd) as: 7.

1 0-0 -1/m 1/n
wor =5 {(6=¢) 1]

We will assume for the current exercise that we are using
Eq. [4]. The third column will thus contain predictéd
values @,04e) for each measured value off |

. Form in a fourth column a deviate (or error) squared
betweend andOqgel, 1-€., Omeasured— Omode)?> fOr €ach
data point.

. Establish a cell containing the sum of squared deviations
(errors) between measured and predicted values (sum the
entire column of error-squared values using the @SUM()
function). This is the merit function to be minimized.

. Apply the nonlinear solver (Optimizer) to the problem by
minimizing the sum of squared errors (SSE) cell using
variable cells as defined in Step 2uyshould include the
following constraints: & m< 1,6, > 0. The spreadsheet

(5]

menu structures for performing these steps are illustrated
in Fig. 1.

Compute thevarianceof the measureé column (anoth

er built-in spreadsheet statistical function). The Geef
cient of determinationrf) for the resulting curve fit may
then be calculated using:

SSE
N o§

(6]

r’=1-

wherecj denotes the variance of the measurements on
the independent variabl®, The @COUNT() function
may be used to incorporate the number of data pdints,

in Eq. [6]. Note that you may maximize tifevalue as an
alternative to minimizing the SSE in the Optimiza&n
alternative to Eq. [6] is to use the @CORREL(array1,
array?2) function.

A modification that is sometimes useful is to assign a col
umn of weights (e.g# 1) to the right of the squared
errors (Step 4 above), and multiply the original squared
errors by higher weights for data points you wish the fit

Nonlinear Optimization of Water Retention Data to van Genuchten's Eq.

Fitting parameters

Step2  theta_r 0.029
theta_s 0.403
alpha 2.917
n 1.576
m=1-1/n 0.365 E 05
et
Step5 Step7 8 0.4
SSE Var. r? C os
0.000587 0.014899 0.99821 o
©
Step 1 Step 3 Step 4 3 02
Matric Pot. Measured Modeled Squared g
[-m] Wtr. Cont. Wir. Cont.  error 5 01
o
440.00 0.03 0.0346 2.11E-05 > 04
170.00 0.04 0.0390 9.36E-07
70.00 0.05 0.0460 1.56E-05
34.00 0.06 0.0551 2.42E-05
13.00 0.08 0.0747 2.84E-05
4.50 0.10  0.1131 0.000172
3.30 0.12  0.1292 8.54E-05
2.59 0.14  0.1438 1.43E-05 0.5
2.09 0.16  0.1582 3.32E-06 ="
1.68 0.18 0.1744 3.18E-05 o
1.34 020 0.1927 5.31E-05 S 0.4
1.06 0.22 0.2133 4.45E-05 o
0.78 0.24  0.2422 4.83E-06 5
0.64 0.26 0.2614 2.08E-06 e
0.53 028 0.2798 597E-08 2
043 0.30 0.2995 291E-07 o
0.34 0.32 0.3201 8.18E-09 £
0.26 0.34 0.3408 6.44E-07 =
0.18 0.36  0.3632 1.03E-05 9 0
0.10 0.38  0.3853 2.83E-05 1
0.03 0.40  0.4003 1.13E-07
0.00 0.41  0.4032 4.57E-05

the description in the text.
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Fig. 2. Spreadsheet for optimization of van Genuchten (1980) equation parameters to measdisoil water retention data. Step labels coespond with



ted relationship to be forced through, or to which greater series is truncated and only the first two terms are retained,
emphasis should be placed (e.g., when data of varyingresulting in the following equations:
degrees of reliability are being used). Then make the sum

of these weighted deviates squared (orrthbased on Cumulative:l = S&2 + At;

these) the solution cell to be minimized (maximized).

This approach may also befesftive in cases where a Rate:dl = j= 1 gr124 p [7]
range of substantially greater numeric values in the mea dt 2

sured data dominate the error squared term, thus making ) L ) o

it desirable to decrease their overafeefs on the opti whereSis the sorptivityt is time since water application,

mization process by assigning smaller weighting factors. @1dAis a coeficient dependent upon the soil properties and
on initial and boundary water contents. The first term in
Figure 2 illustrates a spreadsheet page developed by @ach describes the influence of the sorptive forces of (rela
former student as part of a laboratory report covering- mea tively) dry soil, and the second term the contribution of
surement and characterization of soil water retention. Best-gravity. The influence of the first term diminishes with time
fit values for parameters of van Genuchse(f980) equa  and reflects the reduction in the hydraulic gradient as the
tion were evaluated for a series of measé(ed data pairs.  surface soil becomes wetted.
Embedded graphics provide immediate feedback for the stu  |n the laboratory exercise, a permeameter is used o sup
dent, and confirm the goodness-of-fit for student and ply water to the top of a cylindrical column packed with air-
Instructor dry soil. The elapsed time, wetting front position with
respect to the soil surface (i.e., depth of wetting front), and
Additional Example Applications the water Iev_el in t_he permeameter reservoir are monito_red
at predetermined time intervals during the experiment using
Among the other applications of this technique in our a ruler and stopwatch. Changes in reservoir water level are
laboratory courses are fitting nonlinear empirical or theoret subsequently converted to depth of water infiltrated across
ical parametric expressions to measured data for one-dimenthe soil surface area based on diameters of the water reser
sional infiltration and for miscible displacement of nonreac voir and soil column. From the measured data, cumulative
tive solutes. W briefly explore each of these here to provide infiltration, infiltration rate, and wetting front depth are-cal
examples of the sort of disciplinary problem solving that culated with respect to time. These relationships are then
may be easily presented to students having little previousused to derive the relevant parameters in Eq. [7] (as well as
experience or training in nonlinear optimization. Finalig for several empirical and quasi-analytical infiltration rela
illustrate the important ability to interactively alter the value tionships), and plots of measured vs. predicted infiltration

of selected equation parameters and view thégcefusing  (cumulative, rate) and wetting front position are developed
embedded graphics. (e.g., Fig. 3).

One-Dimensional Infiltration into Initially Dry Soil —
Philip's 1-D Infiltration

An important class of flow events involves downward - =058t + A
water movement through the soil surface in a process known £ 3
as infiltration. The rate of this process relative to the rate of E
water supply determines how much water will enter the soil, r ey S =0.9958 cm min‘1/2
and how much (if any) will pond and perhaps create-over § A =0.0199 cm min”
land flow (runof). Based on field observations, the infiltra < = 0.999
tion rate (denoted ayis found to be dependent upon the ini g 1]
tial soil water content, the hydraulic conductivity of the sur £ g}%
face soil, and the elapsed time since the onset of water appli =

cation. In most situations the infiltration rate is highest when 0
water first enters the soil, and gradually decreases with time
until a constant final rate is attained. This behavior is also
reflected in the cumulative infiltratiorl)(showing a rapid
increase in the volume of infiltration at short times, then
decreasing gradually to a nearly linear time dependence at
large times.

Based on a predictable and well-behaved shape of the
infiltration rate vs. time relationship, several functions-hav
ing shapes similar to the expected behavior have been pro
posed as predictive equations. Attempts were later made to

I =5t + At

Measured
Fitted

Cumulative Infiltration (cm)
[o2]

attach physical significance to the various parameters of 0 : : \ ‘
these empirical equations. Philip (1957, 1969) presented the 0 10 20 30 40 50
first analytical solution to the Richards equation for vertical Time (min)

and horizontal infiltration. For vertical infiltration, Philgp’ . . . o

uti d ibes the ti d d f lati infil Fig. 3. top) Measured and predicted one-dimensional infiltration rate
SOlj' 1on escrl es e '_me, ependence o Cuml_J atve Ini and (botton) cumulative infiltration into an initially dr y soil cot
tration as an infinite series in powerstH. In practice, the umn.
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Estimation of Convection—Dispersion Model Parameters The convection—dispersion (model) equation (CDE) is
from Measured Breakthrough Curves often used to describe solute transport through soils. A com

When a solution of diérent chemical concentration from mon form of the CDE is:

the resident soil solution is passed through the soil, the

chemical concentration in the composition of drainage water R Jdc _n 9%c _dc 8]
(effluent) will gradually change. The process of replacing dt G d X

the resident soil solution with a fiifent solution is termed

miscible displacement and is demonstrated by the leachingvherec is solute concentrationjs time,D is the dispersion

of salts, the distribution of fertilizepesticides, waste prod  coeficient, vis pore water velocityR is the retardation fac
ucts, and other chemicals, and the use of tracers for follow tor (R= 1 means no interaction of the solution with the solid
ing water movement through porous materials. By measur matrix), andx represents a spatial coordinate (distance).
ing the concentration change of théefnt of a soil col Analytical solutions to Eq. [8] have been developed for a
umn, information about the transport properties of the number of specific initial and boundary conditions, and
porous soil medium and the behavior of the solution moving many important soil science problems involve estimating
through the soil can be obtained. solute transport parameters based on fitting analytical solu

Miscible Displacement - Kidman Sand Using Step Solute Application

Area of column 21.2 cm”2 Fitting Parameters

Flow rate 0.02 om/s P 30.98887

Volume water content 0.42 R 1.308675

Flow velocity (v) 2.88 cm/min D 1.812263 cm”2/min
Column length 19.5 cm

SSE 0.0017
rh2 0.999483
Measured Cumulative

Time EC C/Co outflow  T=vt/L u Predicted Error’2
(min) (dS/m)  (rel. EC) (cm"3)

0.19 0.000 214 0.148 7.3503 0.0000 2.08E-43
0.285 0.002 44.6 0.295 45362 0.0000 6.09E-06
0.294 0.003 67.2 0.443 3.1640 0.0000 7.27E-06
0.294 0.003 90.3 0.591 22726  0.0007 4.19E-06
0.461 0.007 114.4 0.738 1.6145 0.0112 1.74E-05
2.32 0.055 135.9 0.886  1.0921 0.0612 3.52E-05
6.98 0.176 158.7 1.034 06576 0.1762 2.11E-08
13.4 0.343 181.5 1.182 0.2846  0.3437 4.18E-07
20.3 0.522 204.9 1.329 -0.0434 0.5245 5.09E-06
10 26.3 0.678 228.3 1477 -0.3368 0.6831 2.59E-05
11 31.8 0.821 251.4 1625 -0.6031 0.8031 0.000313
12 34.9 0.901 2745 1772 -0.8473 0.8846 0.00028
13 357 0.922 299.8 1920 -1.0734 0.9355 0.00018
14 373 0.964 321.2 2.068 -1.2843 0.9653 2.86E-06
15 36.9 0.953 3458 2.215 -1.4822 0.9820 0.000824

OCO~NOO P WN =

Step Application - Kidman Sand
— | / sevses ﬁ"‘"“—

: ) I
,go.s— —————— 1ef SRRl EEEEE T
[
= ©ORE10 Y/ !
Soe6 - - — 1 L ___. [R—
e A w Measured
o |
(8] A I
g 04 - iV | Fitted
£ . S
EO'ZT """ o /”“"""’;’”“ Predicted -

0 | |

0 1 5

2 3
Pore Volumes (T=vt/L)

Fig. 4. Pottion of nonlinear optimization spreadsheet for miscible displacement laboratgrexerise with embedded graphic. The potential for visu
al feedback concerning the impacts of various parameters is illustrated by the g@dicted breakthrough curves forR = 1.0 andR = 2.0.
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tions of the CDE or alternative models to measured break ters is an déctive means of communicating tfeelof often
through curves from miscible displacement experiments.complex nonlinear equations integral to the natural and
Butters and Bandaranayake (1993) have provided an-excelphysical sciences. This may be easily accomplished as part
lent discussion of this approach in the context of Soils-labo of the sort of instructional exercises noted above. Students
ratory instruction. may choose to interactively alter the value of single or mul
The solute concentration distribution in a soil column tiple equation parameters, and view the resulting changes in

with uniform initial (resident) concentratianunder steady

state flow replaced dt= 0 with a solution of constant con

centrationcy is amenable to an analytical solution. The ini
tial and boundary conditions are given by:

c(x,0)=¢
c(0,t) = ¢, [9]
ac -
ox 0 =0

The solution to Eq. [8] subject to these initial and boundary
conditions is (Nielsen and Biggdr963; van Genuchten and
Wierenga, 1986):

whereerfcu) is the complementary error function and the
remaining components were defined previoudiyany
spreadsheet software programs include a buikiic(u)
function. Note that when assumes negative valuesfc(u)
will return an error messageo Tovercome this potential
problem the relationshierfo(—u) = 1 +erf(u), based on the
identitieserfc(u) = 1— erf(u) anderf(—u) = —erf(u), may be
used within an @IF() statement. Other transformations are
also available.

A simpler solution commonly used in displacement
experiments is obtained by retaining only the first term on
the right-hand side of Eq. [10]:

Rx - vﬂ
VADRt
for negligiblec;,. The solution presented in Eql]imay be
derived by either neglecting molecularfdgion, or by con
sidering an infinite system¢ < X < oo).

The laboratory exercise involves changing the inlet-solu
tion salt concentration to a soil column during saturated,
steady vertical flowThe electrical conductivity (a rapidly
and easily obtained measure of salinity) is monitored for
discrete fractions of the column outflowo produce the
breakthrough curve for the saline solutiomarisport para
metersD, R, andv are then estimated based on optimization
of the measured data to Eql]1Figure 4 shows a portion
of a studens worksheet which addresses this problem.
Cassel and Elrick (1992; Example 3) illustrated the use of

MathCAD for nonlinear optimization of a similar miscible
breakthrough problem.

c(x,p) — g

—lerfc +1
Co— G

2

Rx—vt}

wx/D
VADRt € erfc[

2

[11]

C 1
— = — erfc
C, 2 [

Visual Feedback Concerning the Impacts
of Nonlinear Coeficients

Visual feedback concerning the specifideefs or
impacts of individual or combinations of equation parame

one or more embedded graphic charts. Alternatigehum

ber of predicted graphic series may be produced by copying
the range of cells containing the model equation, and-refer
encing a specific set of nonlinear parameters for each series.
An example of the latter approach as applied to the CDE is
presented in Fig. 4, where predictions based on two values
for the retardation factorRj, which bracket the optimal
solution have been included, and thefeefs on the result

ing predicted chemical breakthrough curve are visually evi
dent.

SUMMARY AND CONCLUSIONS

Many commercial spreadsheet software prograrfes of
convenient and &fctive means to perform nonlinear para
meter estimation. Among the advantages of the spreadsheet
approach to nonlinear optimization and parameter estima
tion are its relative ease of use, general applicaldéypon
stration or reinforcement of least-squares principles, and the
ability to interactively alter selected parameter values and
immediately view the results via embedded graphics.

Our experiences indicate that our students are able to
learn rudimentary and advanced spreadsheet techniques
more easily than for often specialized mathematical er sta
tistical programs, and that very few possess requisite pro
gramming skills to develop their own parameter estimation
routines. Several former students have indicated that their
exposure to basic and advanced spreadsheet skills, including
nonlinear parameter estimation, have proven to be among
the most valuable tools gleaned from our courses. They have
gainfully applied these tools in other university courses, in
their own research, and in a variety of employment opportu
nities following graduation.
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