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We present a generalized nonlinear susceptibility retrieval method for metamaterials based on transfer
matrices and valid in the nondepleted pump approximation. We construct a general formalism to describe the
transfer matrix method for nonlinear media and apply it to the processes of three- and four-wave mixing. The
accuracy of this approach is verified via finite element simulations. The method is then reversed to give a set
of equations for retrieving the nonlinear susceptibility. Finally, we apply the proposed retrieval operation to a
three-wave mixing transmission experiment performed on a varactor loaded split ring resonator metamaterial
sample and find quantitative agreement with an analytical effective medium theory model.
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I. INTRODUCTION

Metamaterials are artificially and purposefully structured
materials whose electromagnetic responses are described by
effective, homogenized constitutive parameters. Such mate-
rials have generated interest due to their ability to display
properties that are either limited or entirely unachievable in
naturally occurring materials �1–3�. Recently, many research-
ers have begun to investigate the effects of integrating non-
linear elements into metamaterials �4–9�. This research has
been sparked, in part, by the observation that in many exist-
ing and proposed resonant metamaterials, the incident fields
are found to have highly nonuniform distributions over a unit
cell, leading to significant confinement of electromagnetic
energy in small, critical volumes �1�. Many metamaterials,
for example, are based on metal-patterned substrates that op-
erate analogously to RLC circuits, such as the split ring reso-
nator �SRR� and the electric-field-coupled resonator �ELC�.
When these metamaterials are operated near their resonance
frequencies, the electric field in the capacitive gaps is much
stronger than the macroscopically averaged value. Thus, the
nonlinear properties of any material placed into these critical
volumes are enhanced considerably �4,10�. Additionally, at
radio and microwave frequencies, it is possible to utilize
nonlinear electronic components for this purpose �11–17�.
The canonical example is the varactor loaded split ring reso-
nator �VLSRR�, formed by integrating a varactor diode into
the capacitive gap of the SRR.

For the vast majority of metamaterials, a method of ho-
mogenization is necessary to describe the effective response
of their engineered structure. This process of effective pa-
rameter retrieval is vital for the characterization of fabricated
metamaterials, as well as for the design of potential metama-
terials relevant to specific applications. In essence, the re-
trieval process consists of equating the unit cell of the
metamaterial to a congruently sized homogeneous material
with an unknown set of parameters. In the linear case, the
system is commonly solved by finding the equivalent permit-
tivity and permeability that replicate the scattering param-
eters of the metamaterial �18–20�. This retrieval method has
the added advantage of being easily applicable in practice by
implementing transmission and reflection experiments on a

metamaterial sample. In order to effectively describe and de-
sign nonlinear metamaterials, a similar process is needed.

To this end, Larouche and Smith have recently proposed
the use of a modified transfer matrix method for the retrieval
of effective nonlinear susceptibilities in metamaterials �21�.
The transfer matrix method for nonlinear media is described
by Bethune for the calculation of third harmonic generation
�THG� �22�. Larouche and Smith adapt the transfer matrix
approach to the particular case of second harmonic genera-
tion �SHG�, demonstrating that, for a layered system with
known properties, the output harmonics can be accurately
and efficiently computed from the incident fields in the non-
depleted pump approximation—that is, under the assumption
that higher-order harmonics do not perturb the field pattern
of the fundamental mode. The transfer matrix method can
then be reversed to perform the opposite operation, in which
the output harmonics, determined from simulation or experi-
ment, are used to retrieve an effective nonlinear susceptibil-
ity. The usefulness of this method has been recently demon-
strated at microwave frequencies using a VLSRR medium
�23�, where excellent agreement between the measured and
theoretically predicted properties of a VLSRR medium was
found.

The characterization of harmonics such as SHG or THG
for nonlinear metamaterials represents only a subset of the
applicability of nonlinear retrieval methods to metamaterials.
In this paper, we extend the transfer matrix method formal-
ism to incorporate an arbitrary-order nonlinearity and arbi-
trary input waves. We then explicitly apply the method to
three- and four-wave mixing processes, validating the deter-
mined field distributions of the sum and difference modes via
finite element time-domain simulations. The extended trans-
fer matrix method is then reversed, and the generalized non-
linear retrieval operation is demonstrated in the analysis of a
three-wave mixing transmission experiment performed on a
VLSRR sample.

II. THEORY

The configuration of numerous recent nonlinear metama-
terial experimental and theoretical studies has been a one-
dimensional system composed of layered slabs, in which at
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least one layer possesses a significant nonlinear susceptibil-
ity. A reasonable goal, given such a system, is to determine
the steady-state complex field amplitudes at all positions for
a given set of incident waves. The presence of the nonlinear-
ity precludes the use of most conventional methods of solu-
tion, including transfer matrices, as these methods rely on the
linear properties of a system. However, in many such experi-
ments the nonlinear processes are weak enough that their
effect on the incident waves is negligible, leaving the fields
at these frequencies nearly identical with those expected in a
linear system. This is known as the nondepleted pump �NDP�
approximation, and, in this limit, an exact method of evalu-
ation can be formulated. Hence, the NDP approximation is
assumed in the following analysis. In this section, we outline
a general formalism for the modified transfer matrix method,
apply it to three- and four-wave mixing, and present the re-
sulting nonlinear retrieval equations. The following analysis
assumes an electric nonlinearity, but can be carried through
identically for a magnetic nonlinearity, replacing references
to the electric field with the magnetizing field, the polariza-
tion with the magnetization, and swapping all occurrences of
the permittivity and the permeability.

A. Overview of the transfer matrix method

In essence, the transfer matrix method for nonlinear pro-
cesses involves three steps �22�. First, the incident waves are
linearly propagated by the usual transfer matrix operations,
giving the electric fields at the fundamental frequency�ies�
everywhere in the system. Second, the fields are used to cal-
culate the material’s nonlinear polarization, which in turn can
be treated as a field-generating source term. Finally, the
fields thus created are propagated via transfer matrices to
both boundaries of the system, yielding the reflected and
transmitted field amplitudes at the generated frequencies.
The system under consideration in this paper is presented in
Fig. 1.

1. For linear materials

To demonstrate the transfer matrix approach, we consider
a uniform slab of thickness d, permittivity �2���, and perme-
ability �2���, bounded on the left by a semi-infinite layer
with permittivity �1��� and permeability �1���, and on the
right by another semi-infinite layer with permittivity �3���
and permeability �3���, where �=2�f is the angular fre-
quency corresponding to frequency f . For now, all three lay-
ers are assumed to be linear and isotropic, but are free to
exhibit loss in the form of complex material parameters. The
system is excited by a plane wave at normal incidence, trav-
eling in the positive ẑ direction with angular frequency �q,
and originating from a source at z=−�. Without loss of gen-
erality, the polarization of the wave can be neglected. The
one-dimensional wave equation in layer i has the solution

Ei�z,t� = Re�Ei
+ exp�− i�qt� + Ei

− exp�− i�qt�� , �1�

where Ei�z , t� is the real electric field and Ei
�

=Ai
� exp��iKiz� is the complex amplitude of the electric

field traveling in the �ẑ directions. Ki is the wave vector
given by

Ki = ni
�q

c
, �2�

where

ni =
���i�i

��0�0

�3�

is the index of refraction, c is the speed of light in vacuum,
and �0 and �0 are the permittivity and permeability of free
space, respectively. Note that the � in Eq. �3� allows for the
possibility of negative refractive materials in the case where
both �i and �i are negative �24�. Thus, the three layers and
two interfaces form a boundary value problem that can be
solved by finding relations between the fields in the different
regions. Writing the complex amplitudes in vector notation
as

E� i�z� = �Ei
+�z�

Ei
−�z�

	 , �4�

the fields on either side of the interface between the layers i
and j at position zi↔j are related by

E� j�zi↔j� = Mi→jE� i�zi↔j� . �5�

In this last equation we have introduced the interface transfer
matrix

ẑ �

d
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FIG. 1. �Color online� The system considered in this paper is
composed of a central slab possessing an arbitrary electric nonlin-
earity of order �, bounded by two semi-infinite linear media. Inci-
dent on this slab is an arbitrary number of normally propagating
plane waves. The boundary conditions at the fundamental frequen-
cies ��q� are presented on top �blue�, while the boundary conditions
at the nonlinear-generated frequency ��nl� are shown below �red�.
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Mi→j =
1

tj→i
� 1 rj→i

rj→i 1
	 , �6�

with the amplitude transmission and reflection coefficients of
the interface given by

tj→i =
2yj

yi + yj
and rj→i =

yj − yi

yi + yj
, �7�

where yi=��i /�i is the admittance of medium i. Note that
the interface transfer matrix, defined here in the positive di-
rection, depends on the amplitude coefficients in the opposite
direction. Similarly, the electric field at opposite ends of the
same layer follows the relation

E� j�zi↔j� = 	 jE� j�zj↔k� �8�

where i, j, and k refer to consecutive layers,

	 j = �
 j 0

0 
 j
−1	 , �9�

is the propagation transfer matrix for layer j, 
 j =exp�
+iKjdj� is the phase shift and attenuation factor from positive
ẑ propagation across layer j, and dj is the layer thickness.

The transfer matrix of a composite system is found by
multiplying its individual transfer matrices in the appropriate
order. Returning to the three-media example, we see that the
composite matrix is

M = �M11 M12

M21 M22
	 = M2→3	2M1→2. �10�

Given that there is no negatively propagating field in the
third layer, the fields incident on and exiting from the com-
posite system are related by

�E3
+�z2↔3�

0
	 = M�E1

+�z1↔2�
E1

−�z1↔2�
	 , �11�

yielding amplitude reflection and transmission coefficients

r = −
M21

M22
and t =

det�M�
M22

, �12�

respectively. Assuming that the incoming wave amplitude E1
+

is known, the fields in layer 2 at its interface with layer 1 are
given by

E� 2�z1↔2� = M1→2�1

r
	E1

+�z1↔2� . �13�

If a total of N waves at different frequencies are incident on
the system, this procedure can be carried out independently
for each frequency �q corresponding to q=1,2 , . . . ,N, taking
care to evaluate the transfer matrices appropriately.

2. For an arbitrary nonlinear polarization

As stated above, in the NDP limit, the presence of a non-
linearity in one or more layers is assumed to have a negli-
gible effect on the incident waves, but will give rise to ra-
diation at other frequencies. In this subsection, we derive the

transmitted and reflected fields generated by an arbitrary
higher-order polarization.

Let us consider an arbitrary higher-order polarization of
order �, generated by the medium in layer 2, at the angular
frequency �nl. The presence of interfaces and reflections in
the system leads to polarizations with multiple wave vectors
at a single frequency. Thus, we introduce the decomposition
by wave vector Q,

P2
����z,�nl� = 


Q

P2
��,Q��z,�nl� , �14�

such that the summation is over all existing wave vectors of
the polarization at �nl in layer 2. In examining an individual
term of this summation, we note that while the phase distri-
bution of the polarization and thus the electric field source is
determined by the wave vector Q, the subsequent linear
propagation of the fields generated by that source follow the
appropriate wave vector K2=n2

�nl

c . For clarity, we denote all
terms involving the source distribution in layer 2 by the sub-
script s, while referring to the forward and backward propa-
gating fields in the usual notation E� 2��nl�. As shown in the
Appendix, the electric field source produced by a higher-
order polarization is given by

Es
�Q��z,�nl� =

P2
��,Q��z,�nl�

�s
�Q���nl� − �2��nl�

, �15�

where

�s
�Q���nl� =

Q2

�nl
2 �2��nl�

. �16�

It is important to emphasize the dependence of this electric
field source on the specific wave vector of the nonlinear po-
larization, as this equation is, in part, a statement of the
phase-matching condition. The interface transfer matrix for
the electric field source is evaluated as

Ms→2
�Q� =

1

t2→s
�Q� � 1 r2→s

�Q�

r2→s
�Q� 1

	 , �17�

with reflection and transmission coefficients

r2→s
�Q� =

��2 − ��s
�Q�

��s
�Q� + ��2

and t2→s
�Q� =

2��2

��s
�Q� + ��2

. �18�

Likewise, the propagation transfer matrix is given by

	s
�Q� = �exp�+ iQd� 0

0 exp�− iQd� 	 . �19�

Taking into account both the source and the propagating
fields, the constraint of continuity across each interface leads
to

E� 1�z1↔2,�nl� = M2→1E� 2�z1↔2,�nl� + 

Q

Ms→1
�Q� E� s

�Q��z1↔2,�nl�

�20�

and
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E� 3�z2↔3,�nl� = M2→3	2E� 2�z1↔2,�nl�

+ 

Q

Ms→3
�Q� 	s

�Q�E� s
�Q��z1↔2,�nl� , �21�

where all transfer matrices must be evaluated at �nl, and we
have used Ms→1

�Q� =Ms→2
�Q� M2→1 and Ms→3

�Q� =Ms→2
�Q� M2→3. Elimi-

nating E� 2 from these equations and dropping the explicit z
and �nl dependence gives

E� 3 = M2→3	2�M1→2E� 1 + S�2� , �22�

where we have introduced the source term vector,

S�2 = 

Q

�	2
−1Ms→2

�Q� 	s
�Q� − Ms→2

�Q� �E� s
�Q�. �23�

Since there are no incident fields at �nl, we can rewrite this
as

R�E3
+

0
	 − L� 0

E1
−	 = �R11 − L12

R21 − L22
	�E3

+

E1
−	 = S�2, �24�

where R=	2
−1M2→3

−1 and L=M1→2 are the transfer matrices
on the right and left of the source term, respectively.

Thus, the total output fields at �nl resulting from a non-
linearity of order � are given by the equation

�E3
+��nl�

E1
−��nl�

	 = �R11 − L12

R21 − L22
	−1

S�2��nl� . �25�

It should be noted that in the limit of perfect phase match-
ing, the magnitudes of the components of Eq. �23� inside and
outside of the parentheses approach zero and infinity, respec-
tively. However, their product has a finite value in this limit
�22�. In a numerical realization of these equations, this sin-
gularity can be avoided by imposing a small mismatch in the
relevant material parameters.

B. Three-and four-wave mixing

A host of nonlinear electromagnetic phenomena are un-
derstood in relation to a material’s second and third-order
nonlinear susceptibilities and, thus, the material’s second and
third-order polarizations �25�. The second-order interaction
is carried out by the process of three-wave mixing of three
waves satisfying the frequency-matching relation

�q + �r = �q,r, �26�

where the subscripts q and r denote the contributing funda-
mental frequencies, and �q,r is the frequency of the gener-
ated wave. Note that the fundamental frequencies are free to
be negative, as in the case of difference frequency generation
�DFG�, and degenerate, as in SHG. Similarly, the third-order
process consists of four-wave mixing satisfying the relation

�q + �r + �l = �q,r,l. �27�

All second- and third-order nonlinear phenomena can be de-
scribed through these two processes. Furthermore, a given
set of fundamental frequencies inside a second- or third-
order nonlinear material will generate radiation at all fre-
quency combinations satisfying the respective matching re-

lation. In this section, we explicitly derive the nonlinear
polarizations involved in the three- and four-wave mixing
processes.

Since the formalism of nonlinear polarization is invari-
ably messy, with multiple existing conventions, we will be-
gin by defining some notation and relations. We consider a
real electric field E�z , t� and polarization P�z , t�, both of
which can be transformed to the frequency domain with an-
gular frequency �q and complex amplitudes E�z ,�q� and
P�z ,�q�, respectively. Dropping the explicit z dependence,
we define E�−�q��E��q��, P�−�q�� P��q��, �−q�−�q,
and K−q�−Kq

�, which leads to the relations

E�t� = E0 + 

q

1

2
E��q�exp�− i�qt� and

P�t� = P0 + 

q

1

2
P��q�exp�− i�qt� ,

where E0 and P0 are the zero-frequency �dc� amplitudes for
the electric field and polarization, respectively. Both summa-
tions are over all values of q� �−N , . . .N�, excluding zero,
where the magnitudes of E�t� and P�t� are split evenly be-
tween the positive and negative frequencies, resulting in the
1
2 coefficient before each element. To make the dc terms
compatible, the zero-frequency wave amplitudes in the fol-
lowing equations should be interpreted as E�0�=2E0 and
P����0�=2P0.

Starting from the formal definition of the second-order
polarization and utilizing the permutation symmetry of the
second-order nonlinear electric susceptibility
�e

�2���q,r ;�q ,�r�, we have

P�2���q,r� =
1

2
�0 


�q,r�
�e

�2���q,r;�q,�r�E��q�E��r�

=
D

2
�0�e

�2���q,r;�q,�r�E��q�E��r� , �28�

where the parentheses denote that the summation is over all
possible permutations of the subscripts for a given value of
�q,r, and D is the total number of permutations. With this last
statement is the implicit assumption that only one nonlinear
process contributes to a specific frequency of polarization. In
the case of degeneracy, and in the NDP approximation, the
contribution from each process can be calculated individu-
ally, and then summed, giving the total polarization at the
degenerate frequency. Similarly, it can be shown that the
third-order polarization term at �q,r,l is given by

P�3���q,r,l� =
D

4
�0�e

�3���q,r,l;�q,�r,�l�E��q�E��r�E��l� .

�29�

For convenience, the nonlinear susceptibilities will be re-
ferred to without explicit indication of their frequency de-
pendence, but should not be assumed dispersionless.

The electric fields in each layer can be written in terms of
both forward and backward propagating waves, which pro-
duce nonlinear polarizations that propagate with multiple
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wave vectors and corresponding amplitudes. For compatibil-
ity with the transfer matrix method, the polarizations must be
separated by wave vector and represented in a vector form.
Thus, we substitute into these last two expressions E��q�
=Aq

+ exp�+iKqz�+Aq
− exp�−iKqz�, where Aq

� is the complex
amplitude of the wave propagating in the �ẑ-direction at
frequency �q. Note that here we are making an exception
and using the subscript of the wave amplitude and wave
vector to denote frequency and not layer. This results in a
second-order polarization given by

P� �2���q,r� = P� �2,Kq+Kr���q,r� + P� �2,Kq−Kr���q,r� , �30�

where, in vector notation,

P� �2,Kq+Kr���q,r� = �0�e
�2�D

2
�Aq

+Ar
+ exp�+ i�Kq + Kr�z�

Aq
−Ar

− exp�− i�Kq + Kr�z�
	 ,

�31�

P� �2,Kq−Kr���q,r� = �0�e
�2�D

2
�Aq

+Ar
− exp�+ i�Kq − Kr�z�

Aq
−Ar

+ exp�− i�Kq − Kr�z�
	 .

�32�

Similarly, the third-order polarization is found to be

P� �3���q,r,l� = P� �3,Kq+Kr+Kl���q,r,l� + P� �3,−Kq+Kr+Kl���q,r,l�

+ P� �3,Kq−Kr+Kl���q,r,l� + P� �3,Kq+Kr−Kl���q,r,l� ,

�33�

where

P� �3,Kq+Kr+Kl���q,r,l�

= �0�e
�3�D

4
�Aq

+Ar
+Al

+ exp�+ i�Kq + Kr + Kl�z�
Aq

−Ar
−Al

− exp�− i�Kq + Kr + Kl�z�
	 , �34�

P� �3,�−Kq+Kr+Kl����q,r,l�

= �0�e
�3�D

4
�Aq

−Ar
+Al

+ exp�+ i�− Kq + Kr + Kl�z�
Aq

+Ar
−Al

− exp�− i�− Kq + Kr + Kl�z�
	 , �35�

P� �3,Kq−Kr+Kl���q,r,l�

= �0�e
�3�D

4
�Aq

+Ar
−Al

+ exp�+ i�Kq − Kr + Kl�z�
Aq

−Ar
+Al

− exp�− i�Kq − Kr + Kl�z�
	 , �36�

P� �3,Kq+Kr−Kl���q,r,l�

= �0�e
�3�D

4
�Aq

+Ar
+Al

− exp�+ i�Kq + Kr − Kl�z�
Aq

−Ar
−Al

+ exp�− i�Kq + Kr − Kl�z�
	 . �37�

It should be noted that this matrix form is imprecise, in
that the ordering of the terms in each individual matrix is not
fixed but rather determined by the direction of energy propa-
gation, such that, in each layer, the wave carrying energy in
the +ẑ�−ẑ� direction is always on top �bottom�. This can be
handled by checking the sign of the quantity

���,Q� =
Q

n�Q� ,

where

n�Q� =
���s

�Q��2

��0�0

is a pseudo-index of refraction describing the phase distribu-
tion of the nonlinear polarization. Correct propagation is en-
sured by reordering the vector elements such that ���,Q� is
positive �negative� for the top �bottom� element. For ex-
ample, if ��3,Kq+Kr−Kl� is negative, then the two terms in Eq.
�37� must be flipped to ensure appropriate propagation.
Mathematically, this can be accomplished by multiplying
each vector term by the corrective matrix

1

2
�1 + sgn����,Q�� 1 − sgn����,Q��

1 − sgn����,Q�� 1 + sgn����,Q�� 	 , �38�

where sgn�x� is the signum function.
We are now able to fully solve the forward problem of

calculating the output fields generated by an arbitrary set of
waves incident on a slab with a second-or third-order non-
linearity, in the NDP limit. In the context of our three-layer
system, the decomposed polarizations in Eqs. �30� and �33�
are evaluated from the fields given by Eq. �13�. These, in
turn, are used in Eqs. �15�–�25� to find the reflected and
transmitted field amplitudes at each of the generated frequen-
cies.

C. Nonlinear parameter retrieval

As stated in the introduction, our goal is to formulate a
method for the homogenization of nonlinear metamaterials,
extracting an effective nonlinear susceptibility from the re-
sults of simulation or experiment. However, the nonlinear
susceptibility is only one of many factors determining the
magnitude and phase of the generated fields. A homogeniza-
tion method must normalize for these extraneous factors, iso-
lating the value of the effective nonlinear susceptibility.

Let us return to our three-layer system, but under the as-
sumption that the nonlinear susceptibility of the middle slab,
�e

�����nl ; . . .�, is unknown, where ��nl ; . . .� represents the de-
pendence of the nonlinear susceptibility on the generated and
fundamental frequencies. On the other hand, we assume that
the transmitted field at �nl has been measured by experiment
or simulation. For clarity, this field will be denoted by
E3,exp

+ ��nl�, where the subscript exp has been included to sig-
nify that this is a measured quantity.

From the equations of the previous section, we see that
the nonlinear polarizations are directly proportional to the
appropriate nonlinear susceptibility. This implies that the
field sources, source terms, and generated fields are all di-
rectly proportional to the nonlinear susceptibility, as well. As
such, the ratio of any of these quantities to the nonlinear
susceptibility is, in fact, independent of the nonlinear suscep-
tibility, and can be readily determined from the system’s lin-
ear and dimensional properties. In particular, the ratio of the
transmitted field to the nonlinear susceptibility, given by
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E3
+��nl� /�e

�����nl ; . . .�, can be calculated by another set of
equations similar to those presented in sections 2.A and 2.B
for the generated fields, but with the nonlinear susceptibility
factored out in each case. Thus, we arrive at a procedure for
determining the field-to-susceptibility ratio.

First, the linear and dimensional parameters of the system
under consideration are determined by conventional meth-
ods. These are used in the equations of section 2.A.1 to find
the fundamental fields in the nonlinear layer. Then, the ratios
of the nonlinear polarization terms to the nonlinear suscepti-
bility, P� 2

��,Q� /�e
���, are calculated simply by factoring the non-

linear susceptibility out of Eqs. �30�–�37�. Similarly, we
modify Eq. �15� to

E� s
�Q�/�e

��� =
P� 2

��,Q�/�e
���

�s
�Q� − �

, �39�

and, in turn,

S�2/�e
��� = 


Q

�	2
−1Ms→2

�Q� 	s
�Q� − Ms→2

�Q� �E� s
�Q�/�e

���, �40�

where we have dropped the explicit frequency dependence
for convenience. This, at last, is used to calculate the field-
to-susceptibility ratios,

�E3
+/�e

���

E1
−/�e

��� 	 = �R11 − L12

R21 − L22
	−1

S�2/�e
���. �41�

It is worth restating that these ratios are independent of the
nonlinear susceptibility, but are otherwise calculated by the
same procedure outlined at the end of Sec. II B.

We are now in a position to determine the nonlinear sus-
ceptibility of our sample. For consistency between our ex-
perimental and analytical results, we must have

E3,exp
+ ��nl� = �e

�����nl; . . .�E3
+��nl�/�e

�����nl; . . .� . �42�

Rearranging this statement, we arrive at our final retrieval
equation,

�e
�����nl; . . .� =

E3,exp
+ ��nl�

E3
+��nl�/�e

�����nl; . . .�
. �43�

The numerator of Eq. �43� is determined directly from a
nonlinear transmission experiment or simulation performed
on the system, while the denominator is analytically derived
from the system’s linear and dimensional properties. Thus,
Eqs. �39�–�43� constitute the generalized nonlinear suscepti-
bility retrieval equations.

Numerically, the situation is even simpler, as a little
thought reveals that computing the ratios of the various
quantities to the nonlinear susceptibility is equivalent to cal-
culating those same quantities with the substitution �e

���

=unity. This gives the alternative retrieval equation,

�e
�����nl; . . .� =

E3,exp
+ ��nl�

E3
+��nl���e

���=1
, �44�

where the denominator can be calculated from the forward
nonlinear transfer matrix equations, but with the aforemen-
tioned substitution for the nonlinear susceptibility. In addi-

tion, it is clear that Eqs. �43� and �44� can be written in terms
of the reflected amplitude E1,exp

− ��nl� and its corresponding
field-to-susceptibility ratio, if, alternatively, a reflection ex-
periment is implemented.

III. NUMERICAL VALIDATION

The validity of the previous equations can be confirmed
through comparison with an independent method of calcula-
tion. To this end, we have implemented time-domain finite
element simulations using the COMSOL3.5a software package
�26�.

To test the second-order equations, we return to the three-
layer system. We let �1=�3=�0 and �1=�3=�0, so that the
nonlinear slab is sandwiched by semi-infinite regions of
vacuum. The nonlinear material is assigned a permittivity
�2=7�0, permeability �2=3�0, and constant nonlinear sus-
ceptibility �e

�2�=10−12 m /V. The thickness of this material is
varied over multiple simulations from 1 to 10 mm. The input
port generates a plane wave excitation according to E�t�
=E1 cos��1t�+E2 cos��2t�, using the values E1=10 GV /m,
E2=7 GV /m, �1=2�
10 GHz, and �2=2�
6 GHz. In
order to avoid the transient effects and achieve an approxi-
mate steady-state solution, the sources are turned on for 1 ns
before data is collected. This time-domain data is then Fou-
rier transformed to obtain its spectrum amplitudes and
phases.

The resulting field magnitudes for sum frequency �SFG�,
DFG, and SHG are compared in Fig. 2 for both approaches.
The agreement between these two methods is excellent.
Equally high agreement is also found between the computed
phases �not shown�.

The same procedure as above is implemented for a third-
order nonlinear material, using a nonlinear susceptibility of
�e

�3�=10−22 m2 /V2. The incident radiation takes the form of
E�t�=E1 cos��1t�+E2 cos��2t�+E3 cos��3t�, with E1
=10 GV /m, E2=7 GV /m, E3=5 GV /m, �1=2�

10 GHz, �2=2�
6 GHz, and �3=2�
9 GHz.

The results for four different frequency combinations are
displayed in Fig. 3, once again showing excellent agreement
between the two approaches despite considerable sensitivity
to the thickness of the nonlinear slab. The transfer matrix
method for nonlinear media is thus shown to be highly ac-
curate in the NDP limit, especially with respect to the com-
plicated contributions from the multiple reflections occurring
at both the fundamental and the generated frequencies.

IV. APPLICATION TO EXPERIMENT

It is highly desirable for a retrieval method to be experi-
mentally practicable. In this section, we demonstrate the ap-
plicability of the transfer matrix retrieval by analyzing wave
mixing measurements taken on a fabricated VLSRR
medium.

We consider the same VLSRR metamaterial sample used
by Huang et al. to study the power-dependent resonance fre-
quency shift proportional to the third-order magnetic nonlin-
ear susceptibility �17�. The unit cell is composed of a singly
split copper ring on a 0.2 mm thick FR4 PCB substrate. The
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ring is 17 �m thick and 0.5 mm wide, with an inner radius
of 4 mm. The ring’s gap is 1 mm across and loaded with a
Skyworks SMV1231 varactor �27�. The varactor’s capaci-
tance is given by

C�VD� = C0�1 − VD/VP�M , �45�

where VD is the bias voltage, C0 is the zero bias capacitance,
VP=1.5 V is the intrinsic potential, and M =0.8 is the gradi-
ent coefficient.

A metamaterial slab is created by arranging multiple
VLSRR cubic unit cells, 10 mm on a side, into a 3
15

1 periodic structure. The rings are all oriented in the same
direction so that the incident magnetic field will be along the
SRR axes, while the direction of propagation is parallel to
the sample’s third dimension. This structure is placed in a
transmission line optimized for TEM propagation below 2
GHz, and shown via numerical simulations in CST Micro-
wave Studio to exhibit a near-uniform concentration of 49%
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FIG. 2. �Color online� Comparison of the am-
plitudes of transmitted �a� and reflected �b� waves
generated by three-wave mixing as calculated by
the transfer matrix approach �lines� and finite el-
ement simulations �circles�.
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of the incident power between the top and bottom plates
�23�. The system is excited by Agilent N9310A and N5181A
PSG vector signal generators operating at variable angular
frequencies �1 and �2, respectively, each with an output
power of 15 dBm. The harmonics created by the generators
are eliminated by a Mini Circuits VLF-800+filter. The trans-
mission line and the connecting cables are calibrated with
standard techniques. In accordance with these measurements,
we find that the pump signal attenuates by 7.5� .5 dB be-
fore the sample, and the sum frequency wave attenuates by
1.3� .2 dB after the sample. The transmitted signals are
measured using an Agilent E4404B PSA spectrum analyzer.

The linear response of the sample is measured and fitted
using a Lorentz oscillator model, sufficiently described by
permittivity

���� = 1.63�0, �46�

and permeability

���� = �0
1 +
F�2

�0
2 − i�� − �2� , �47�

where F=0.142 is the oscillator strength, �0=2�

813 MHz is the angular resonance frequency, and �=2�

36 MHz is the damping coefficient.

The frequency of the first signal generator is swept from
540 MHz to 1000 MHz at intervals of approximately 2 MHz,
while the second signal generator operates at a constant fre-
quency of f2=780 MHz. The sum frequency transmission
data is shown in Fig. 4. The oscillations are a Fabry-Pérot-
like resonance induced by reflections of the backward gen-
erated sum frequency wave off of the VLF-800+filter. These
are removed via Fourier processing, resulting in the
smoothed transmission spectrum shown against the raw data
in Fig. 4.

For compatibility with our method, we can approximate
the experimental setup as a d=1 cm slab of homogeneous
material, bounded by semi-infinite regions of vacuum, with
linear properties given by Eqs. �46� and �47�, and an un-
known nonlinear susceptibility �m

�2���1,2 ;�1 ,�2�. The magni-
tudes of the incident fields are given by

�H1
+��1�� = �H1

+��2�� =� 2I

z0S
, �48�

where z0=377 � is the impedance of vacuum, S=18 cm2 is
the cross-sectional area of the waveguide, and I is the input
power of each signal generator corrected for the cable and
waveguide losses. The nonlinearity in the VLSRR is mag-
netic in nature, originating from the relation between the
inductive coupling of the copper ring and the nonlinear ca-
pacitance of the varactor-loaded gap. As stated earlier, the
retrieval equations can be applied to a magnetic nonlinearity
by replacing references to the electric field with the magne-
tizing field, the polarization with the magnetization, and
swapping all occurrences of the permittivity and the perme-
ability. Thus, we perform the nonlinear retrieval by evaluat-
ing the magnetic equivalent of Eq. �43�, using the Fourier
processed spectrum, corrected for cable losses, as an ap-
proximate measurement of H3,exp

+ ��1,2�. On the other hand,
we calculate H3

+��1,2� /�m
�2���1,2 ;�1 ,�2� according to Eqs.

�39�–�41�, using the second-order polarizations given by Eqs.
�30�–�32�. Despite the anisotropy of the sample, the method
is still valid because only a single term of the permittivity,
permeability, and susceptibility tensors is probed signifi-
cantly. The experimental constraint of detecting the magni-
tude and not the phase of the outgoing wave means that,
likewise, only the magnitude of the nonlinear susceptibility
is retrieved. In addition, the uncertainty in the incident power
results in an error of �15% in the retrieved susceptibility.

For comparison, we refer to the analytical expression re-
cently presented by Poutrina et al. �28�. In this paper, the
authors implement a perturbative solution of the nonlinear
oscillator model to describe the effective RLC circuit of the
VLSRR medium. The resulting form of the nonlinear suscep-
tibility is given in terms of the unit cell geometry and the
varactor’s intrinsic properties. This model was shown previ-
ously to quantitatively predict the second-order nonlinear
susceptibility involved in SHG from this same VLSRR me-
dium with high accuracy �23�. Poutrina et al.’s expression for
the three-wave mixing nonlinear susceptibility is given by

�m
�2���1,2;�1,�2� = − ia

�0
4�0FA�1�2�1,2

D��1�D��2�D��1,2�
, �49�

where A is the area of the ring, a=−M /2Vp is the second-
order coefficient in the perturbative expansion, D���=�0

2

−i��−�2 is the denominator of the Lorentz oscillator at an-
gular frequency �, and F is the oscillator strength extracted
from the previous linear retrieval. The magnitudes of the
nonlinear susceptibility obtained by experimental retrieval
and by Eq. �49� are both displayed in Fig. 5, showing excel-
lent agreement.
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FIG. 4. �Color online� Plot of the transmitted SFG magnetic
field spectrum. The red �solid� line is the raw data from experiment,
while the black �dashed� line is the corresponding Fourier processed
signal used in the retrieval.
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V. CONCLUSION

We have demonstrated a generalized, transfer matrix-
based nonlinear retrieval method that is exact in the limit of
the NDP approximation. Furthermore, this method is proven
highly applicable to metamaterial characterization, requiring
only a transmission or reflection wave-mixing experiment to
extract the effective nonlinear susceptibilities.

However, as with all metamaterial homogenization meth-
ods, the effective parameters are only valid when the wave-
lengths considered are much larger than the unit cell of the
metamaterial. This can be a stricter limit for nonlinear phe-
nomena, as the generated wavelengths may be several times
smaller than those of the fundamental waves, as is the case in
SFG and harmonic generation.

Due to the NDP approximation, this method is only valid
for nonlinear phenomena in which the fundamental input
waves are negligibly affected by the presence of the nonlin-
earity. As such, phenomena like the electro-optic effect and
hysteresis, wherein the input wave is obviously and signifi-
cantly altered, cannot be directly analyzed with this method.
On the other hand, it should be possible to retrieve any non-
linear susceptibility whose generated frequency is not equal
to one of its fundamentals by adjusting the input power to a
level that satisfies the NDP approximation, notwithstanding
the availability of appropriate power sources and detectors. A
quick comparison of the magnitudes of the generated and
fundamental waves implies that this approximation is reason-
able for the presented experiment. Ideally, the validity of the
retrieved nonlinear susceptibility can be rigorously con-
firmed by repeating the experiment over a wide range of
input intensities. The results from this series of experiments
should provide an NDP power threshold, below which the
retrieved parameter is intensity independent and reliable.

In this retrieval, we assume that the second-order process
is the only significant contributor to the SFG signal. How-
ever, all even higher-order terms also contribute. For high
enough intensities of the fundamental waves, this retrieval

method will return a second-order susceptibility that is inten-
sity dependent, violating the usual power-series interpreta-
tion of susceptibility. This problem imposes a stricter con-
straint on the incident power than the NDP limit, but is also
easily avoided by repeating the experiment for varying inten-
sities of the fundamental waves.

In addition, we assumed an isotropic medium at the start
of the analysis. However, careful control of the polarizations
at the input and output allow this method to be used for
anisotropic materials as long as only one term of the suscep-
tibility tensor is being probed at a time. In this way, the entire
tensor can be determined methodically, including the cross
terms. It is often the case with metamaterials that only a
small number of these terms are ultimately important. For
non-normal incidence, on the other hand, a more complete
formalism is necessary �29�.

The original suspicion of nonlinear enhancement in
metamaterials is confirmed by the remarkably large value of
the nonlinear susceptibility retrieved from the VLSRR me-
dium. Even when operated off resonance to avoid the large
inherent losses, the nonlinear susceptibility is shown to be
many orders of magnitude larger than that of naturally oc-
curring materials. This opens the door for exciting applica-
tions, especially when considering the possibility of analo-
gous metamaterials tuned to operate in the infrared and
optical regimes.
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APPENDIX: GENERALIZED WAVE EQUATION FOR
NONLINEAR MEDIA

Presented here is the derivation of Eqs. �15� and �16�.
In the absence of free charge and current, and assuming a

steady-state solution proportional to exp�−i�t�, Maxwell’s
equations in layer i are

�� 
 E� i = i�B� i, �A1�

�� 
 H� i = − i�D� i, �A2�

�� · D� i = 0, �A3�

�� · B� i = 0, �A4�

while the material equations are

D� i = �i���E� i + P� i
���, �A5�

B� i = �i���H� i, �A6�

where E, D, B, and H are the complex electric, displacement,
magnetic, and magnetizing fields, respectively, and P� i

��� is a
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FIG. 5. �Color online� Comparison of the experimentally re-
trieved �black diamonds� and the theoretical �red line� second-order
nonlinear susceptibility of the VLSRR medium.
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polarization of order ��1. We assume that the material pa-
rameters �i and �i are time and space invariant so that they
can be factored out of the curl and divergence operators.

Inserting Eq. �A6� in Eq. �A1� gives

�� 
 E� i = i��i���H� i. �A7�

Taking the curl of this equation and inserting Eqs. �A2� and
�A5� results in

�� 
 �� 
 E� i = �2�i����i���E� i + �2�i���P� i
���. �A8�

Using the identity

�� 
 �� 
 E� i = �� ��� · E� i� − �2E� i �A9�

and the fact that �� ·E� i=0, this can be rearranged to yield a
wave equation according to

��2 + �2�i����i����E� i = − �2�i���P� i
���. �A10�

Let us consider a polarization of the form P� i
���

= �P� i
����p̂ exp�i�Qz−�t�� and, similarly, an electric field E� i

= �E� i�ê exp�i�Qz−�t��. Substituting these into Eq. �A10�
gives

�− Q2 + �2�i����i����E� i = − �2�i���P� i
���, �A11�

or equivalently

E� i =
P� i

���

�s − �i���
, �A12�

where we have defined

�s =
Q2

�2�i���
. �A13�

Note that, due to the dependence of �s on Q, polarizations
that propagate with multiple wave vectors at a single fre-
quency, within the same layer, must be separated and
handled individually.
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