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ABSTRACT

This paper proposes a new family of nonlinear cryptographic functions called parity circuits.

These parity circuits compute a one-to-one Boolean function, and they can be applied to sym-

metric block ciphers. In this paper, parity circuits are first defined. Next, these circuits are

proven to satisfy some of the properties required in cryptography; involution, nonlinearity, the

probability of bit complementation, avalanche effect, equivalent keys and computational effi-

ciency. Finally, the speed of parity circuits implemented using the current hardware technology

is estimated to show they can achieve 160 Mbps with a 64-bit block size, 8 rounds, and 3.2 K

mated

1. Introduction

Although the Data Encryption Standard (DES) [NBS77] is widely used and standardized

today, there is an increasing interest on alternative cryptographic functions. A few DES-type

symmetric block ciphers, for example FEAL [MSS88], or Khufu [Me89], or LOKI [BPS90], have

been proposed. In order to achieve systematic design and exact evaluation of symmetric ciphers,

cryptographic functions may have to be mathematically simple and cryptographically secure, as

well as asymmetric (public key) cryptosystems like RSA.

This paper proposes a new family of nonlinear cryptographic functions called parity circuits.

The proposed functions have a simple structure. These parity circuits compute a one-to-one

function from {0,1}" to {0,1}", and they can be applied to symmetric block ciphers. This

paper first defines parity circuits. Next, their cryptographic properties; involution, nonlinear-

ity, randomness, the probability of bit complementation, avalanche effect, equivalent keys are

clarified. Based on an analysis of these, design criteria are shown for parity circuit parameters

that can keep cryptosystem secure and rapid. Finally, the speed of parity circuits implemented

using the current hardware technology is estimated.

2. Parity Layers and Circuits

First, some basic concepts need to be defined that will be used in later sections.
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Some examples of L(n) parity circuit layers for n = 10 are as follows:

Table 1. L(n)

Example 1. T = 1 (odd event)

Input

Key

Output
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-

0

0

0

0
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0
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Example 2. T — 0 (even event)

Input
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Output
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-
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0

0

0

1
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1

0

+
1

1

1

0

0

1

1

0

-

0
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+
0

2.2 Parity Circuits C(n, d)

To obtain the so-called cascade effect, we compose the parity circuit layers as follows.

Definition 3 A parity circuit of width n and depth d, or simply a C(n, d) circuit, is a matrix

of d L(n) circuit layers with keys denoted by K = K\ \\ K2 || • • • || Kd for which the n output

bits of the (i - l)-th circuit layer are the n input bits for the i-th circuit layer for 2 < i < d.

The key for the C(n, d) circuit is a d x n matrix whose d lines contain the circuit layer keys, a

In other words, given n-bit input A and key K, the C(n, d) circuit computes function

F(K, A) from {0,1}" to {0,1}" and defines it as:

F(K, A) = f(Kd, f{Kd.lt- • •,}(KUA) • - •)

where each f(K;,.) is computed by the i-th circuit layer.

An example of C(n, d) parity circuit is shown below.

Table 2. C(n, d) when n = 10 and d = 3

| Input

IU
Output

K,

Output

K3

Output

1

-

0

+
1

-

1

0

0

0

1

1

0

1

1

0

0

0

1

1

1

-

0

1

1
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0

0

+
0

1

1

+
0

o
+
0

+
1

0

1

1

1

0

0

0

—

0

0

1

1

—

1

+
0

0

—

1

+
0

+
1

1 1
+
1

1
11
-
1

3. Basic Properties of C(n, d) Circuits and Inversion

We must first define the inverse circuit layer in order to decrypt the output of an L(n) circuit

layer. The inverse layer operates exactly the same as the L(n) layer, except that exclusive-or

using the tester cells is performed before the even or odd parity event is computed.
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Definition 4 Function B = f-'(li, A ) .  as computed by an L- ' (n)  inverse circuit layer with 

key 

It = k1 k2 . . .  k, 

is the relation from {0,1}" to {O, I}" defined below. Given input 

A = a1 I . .  a,,, 

it first computes intermediate output: 

A' = u', u: . . .  a:, 

defined by: 
- 
a, if k, = 1 

a, otherwise. 

Then, variable T is computed for A' as in Definition 2, and output B = b 1 4 .  .. b, of the circuit 

layer is then: 

k, = - a n d T =  1 

k, = + and T = 0 

0 

{ b,=i ti; if 

a: otherwise. 

The correctness of this definition is established by the following lemma. 

Lemma 1 Every L(n) circuit Zayer that computes f has  an inverse layer, L-'(n), t o  compute 

f-' (as in Definition 4 above); i.e. , f - l ( I ( , f ( K ,  A ) )  = A, for any n-bit input A and any k e y  

Ii . 

Proof. This lemma is an immediate consequence of Definitions 2 and 4. Notice that  after 

the intermediate output A' is computed as in Definition 4,  the entries in A' affecting parity 

value T (in L-'(n)) are the same as for the input to the L(n)  layer, and so the L-'(n) layer will 

compute the same T value, and Lc-l(n)  will again complement the input bits complemented by 

L(n)  (if any). o 

Lemma 2 Let F ( . )  be the function fmm (0, 1)" to (0, 1)" computed by a C(n,  d )  circuit 

with key K I  11 Kz ) I  ... 11 I C d .  Inverse function F1(.) as computed by the "inverted" cireuit, 
C-'(n, d),  with key: 

Icd 11 I ( d - 1  11 ' ' ' 11 I(1. 

Proof. 

concatenation of the two circuits characterized by: 

This lemma immediately follows from consecutive application of Lemma 1 until 

11 IC2 11 .'. 1) ICd )I .I'd 1) Kd-l 11 " ' 1) 1(1. 
+ 

0 

It can be concluded that: 

Theorem 1 Every C(n,  d )  circuit computes a one-to-one function from (0, l}" to {0,1}". 
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Proof. By Lemma 2. the C ( n ,  d )  circuit computes function F( . ) ,  which always admits an 

inverse F- ' ( . ) ,  so this lemma follows. o 

Next, we show a basic property of L ( n )  ciurcuit layer. If the L ( n )  circuit layers re randomly 

generated, with uniform distribution of symbols {0,1, -, +}, an average of n/4 symbols for each 

type will occur in the key, and thus, about n / 2  cells will be testers, According to this hypothesis, 

it can be seen that around half of all the possible input values imply an even event (i.e. , variable 

T in Definition 2 will be 0), and the other half imply an odd one. More precisely, we can prove 

the following: 

Theorem 2 If the L ( n )  czrcuit layers are uniformly generated, then 

1 1  1 1  
Prob{even event} = - + -, Probiodd event} = - - - 

2 2nfl 2 2"+1' 

Proof. 

one of the tester cells. By uniform distribution of the keys, we have 

First, assume that each L(n)  circuit layer contains at least one tester cell. Let kj be 

Prob{k, = 0) = 1/2,  Prob{k, = l }  = 1/2, 

so that 

Prob{t, = 0)  = 1/2, Prob{tj = 1) = 1/2. 

This conclusion independently holds for any tester cell in the key. Thus, by summing t ,  modulo 

2 over all the  tester key positions, we have 

Prob{T = 0 (even event)}=1/2, Prob{T =1 (odd event)}=1/2. 

That is, the probability of an even as well as odd event is 1/2 for the layer, if it contains a t  least 

one tester cell. 

There are 4" keys, but 2" of these keys have no tester. So, there are (4" - 2") keys implying 

an even event with a probability of 1/2. Additionally, there are 2" keys without a tester which 

always implies an even event. Therefore, we have the following probability of even event: 

(4" - 2") 2" 1 1 
Prob{even event} = ~ +'- = - + - 

2 x 4" 4" 2 2"+11 

and the case for T = 0 is proved. 

with a probability of 1/2. Therefore, we have the following probability of odd event: 

The case for T = 1 is complementary. There are (4" - 2") keys that imply an odd event 

(4" - 2") 1 1 
Probtodd event} = ~ - - 0 

2 x 4" 2 2"+1' 

4. Cryptographic Properties 

We will now consider certain properties of the C(n,  d)  circuits that are relevant to their use 

as cryptographic devices. It will be shown how n and d affect nonlinearity, the probability of 

bit complementation, avalanche effect, output randomness, and the existence of equivalent keys. 

Furthermore, the n and d values can be increased as necessary to properly secure a cryptosystem. 
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4.1 Nonlinearity 

Strictly speaking, ezclusive or operations are nonlinear in the sense that 

f(1<, I* + 1 2 )  # f ( r - ,  11) + f(1<, 1 2 ) .  

Thus, almost all of the L ( n )  circuit layers are nonlinear except for particular cases where a key 

contains only - or only 0 symbols. These particular keys equalize the input and output, and the 

occurrence probability is given by 1 - ( 1  - ( 1/4)")2 = 21-2n - T4". Note that the parity circuit 

has non-affine transformation. Whenever a key contains a t  least one tester cell and one inverter 

cell, the function computed by its L ( n )  circuit layer is a non-homomorphism in the sense that 

f (K ,  11 0 1 2 )  # f ( K ,  11) 0 f ( K  1 2 ) .  

If a key contains only {-, +} symbols or only ( 0 , l )  symbols, then we have 

f(K, 11 @ 1 2 )  = f(1-, 11) @!(I- ,  1 2 ) .  

This case is the so-called Vernam cipher, and the occurrence probability is given by 1 - 

(1 - (1/2)")' = 2'-" - 2-'". Properties such as strict nonlinearity, non-affineness and non- 

homomorphism are called nonlinearity in this paper. When randomly chosen L(n)  circuit layers 

are combined in circuits C(n, d ) ,  nonlinear behavior is preserved with a high probability. This 

nonlinear characteristic is a desirable attribute in any cryptographic function [Ru86, MS891, 
since it increases the difficulty of breaking the cipher. 

The order of Boolean canonical form of a nonlinear function, defined to be the maximum of 

the order of its product terms, is often applied as a measure of nonlinearity [Ru86]. For instance, 

the Boolean expressions for L(n)  when n = 2 and kl E (0 , l )  are 

& = ~ 1 ~ 2  I C ~  + ~ l a z F l +  a l ~ z Z l  + alazkl if kz = +, 
= ~ 1 i i z  7E1 + 7il a2 Icl + alii2 kl+ alazi l  if k2 = -. 

The order of the C(n,  d )  circuit increases exponentially as n or d increases. It would be 

practically infeasible to cryptoanalyze C(n ,  d )  using its Boolean expression if n 2 64 and d L 8. 

4.2 Probability of Complementation 

rameters d and n on the behavior of a C(n,  d )  circuit. 

Lemma 3 If a C(n, d )  circuit is unifomly generated, then we have the following formulas fo. 

the times that one input element aj (1 5 j 5 n )  will be complemented b y  the d circuit layers. 

Probability that one or more complementations occur is: 

Now we are going to prove a complementation property regarding the influence of the pa- 

147 3 

256 22"+8 
1 - (- - - ) d  = 1 - (0 .57)d .  

The avemge of complementation times is: 

147 

256 22n+8 
d(1 - - + L) x 0.43d. 
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The variance of complementation times is: 

Proof: 

position j ,  1 5 j 5 n, we have 

First consider any uniformly generated L(n)  layer of a C(n, d )  circuit. For fixed 

PrOb{kJ = 0) = 114, 

Prob{k, = - }  = 1/4, 

Prob{k, = 1) = 114, 

Prob{k, = +} = 1/4. 

Let X be event “k, = + and T = 0” in the L(n) layer, and a, will be complemented by the 

even inverter. For this compound event. by Theorem 2, we have 

1 1 1  1 1  

4 2 2“+’ 
Prob{X}  = - x ( -  + -1 = 8 + 2n+3’ 

and 

1 1  7 1  
Prob{not X }  = 1 - (- + -) = - - -. 8 2n+3 8 2n+3 

Similarly, let Y be event “kJ = - and T = 1”: i.e., a, will be complemented by the odd inverter. 

Again, by Theorem 2, we have 

1 1  7 1  
Prob{Y}  = - - -, Prob{not Y }  = s + 3. 

8 2n+3 

Let 2 be event “k, = 1 ”; i .e . ,  a, will be complemented by the tester. 

Prob{Z}  = 114, Prob{not Z }  = 314. 

By combining these three bounds, we have 

7 1  7 1  3 
Prob(n4t (X or Y or 2)) = (- - -) x ( -  + -) x - 

8 W 3  8 2n+3 4 

147 3 

256 22n+8 
- - 

Now, considering that  d circuit layers are uniformly and independently generated, we have 

Prob{a, be complemented one or more times in d circuit layers} 

- - I - ( - -  147 ” ) d  x 1 - (0 .57)d  
256 22n+8 

This probability quickly converges to one as d increases. Let p be the probability that the input 

element is complemented in one layer: 

147 3 
p = l - - + -  

256 22n+8 

Considering now d layers, we have: 
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Prob(i complementations in d layers} = (f))p'(l - P ) ( ~ - ' ) .  

Using well known results of binomial distribution, the average of complementation times in d 

layers is dp, and their variance is dp( 1 - p ) .  

0 

The probability of any input bit being complemented an odd or an even number of times by 

a circuit is established as follows. 

Theorem 3 I f  a C(n ,  d )  circuit is uniformly generated, the element a j ,  for  any 1 I j I n 

of the input sequence, is complemented an odd number of times with a probability asymptotic to 

0.5; and an euen number of times with the same probability. 

Proof. As in the Lemma 3 proof, we have: 

Prob{z complementations in d layers} = , p'(1 - P ) ( ~ - ' ) .  (9 
Let Pc be the probability that input element a, is complemented in d layers of C(n,  d ) :  

Pc = Prob{bj = Z,}. 

This Pc is computable by summing the above expression over all the odd 2'9, 0 5 i 5 d: 

Pc = Prob{odd number of complementations in d layers} 

Note that the probability of non-complementation is given by 1 - Po, which is the one summed 

over all the even i's for 0 5 i 5 d .  Both of these probabilities very quickly converge to  1/2 as d 

increases. 

For example, if n = 10, we have 

Pc = 0.425781253 if d = 1 

Pc = 0.499757258 if d = 4 

Pc = 0.499999862 if d = 8 

Pc = 0.500000000 if d = 16 

4.3 Avalanche Effect and Output Randomness 

It is desirable that a cryptographic function exhibits the so-called avalanche eflect; i.e., a 

small change in the plaintext or the key gives rise to  a large change in the ciphertext [Fe73, 

Ko811. This avalanche effect will be analized for our proposed function F .  

4.3.1 Avalanche Effect between Plaintext and Ciphertext 
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First, the avalanche effect between the input (plaintext) and output (ciphertext) is analyzed. 

Given a C(n,  d) circuit and input pair (Al, A*)  with Hamming distance of i (1 5 z' I n) ,  the 

average Hamming distance of output pairs (F(K, A l ) ,  F(K,  A z ) )  is denoted by H i ( n ,  d, 2). 

This average Hr(n,  d, i) is defined over all inputs and keys as; (:) input pairs and 4"* keys. 

When d = 1, average output distance Hi(n, 1, i )  for any n can be directly derived follows. 

Lemma 4 Zfa L(n)  circuit layer is uniformly distributed, then Hr(n ,  1, i )  is ezplicitfy expressed 

by 

n 3  
H i ( n ,  1, 1) = - + -, 

4 4  

n i  
H,(n, 1, i )  = - + - 

4 2  
if i 2 2. 

Proof. Let K be a set of keys corresponding to changes in an input pair. Let 

Note K and 

be A' - K .  

have cardinalities i and n - i ,  respectively. Consequently, we have two possible 

Cases. 

(1) K has an odd number of tester keys. 

In this case, the i-bit change in the input implies the conversion of a parity event between 

odd and even. Thus, only the following output bits are Complemented by the change in 

the input. 

( i) Output bits a t  the inverter keys in K whose average number is ( n  - 2)/2. 

( ii) Output bits a t  the tester keys in K whose average number i s :  1 if i = 1, 2 /2  if i 2 2. 

Thus, the average Hamming distance of the output pair in this case is: 

n - 1  n 1  n - i  i n .  . - + 1 = - + -  i f i = 1 ,  - + - = -  If 2 2 2 .  
2 2 2  2 2 2  

( 2 )  K has an euen number of tester keys. 

In this case, the i-bit change in the input never converts the parity event between odd and 

even. Thus, only the following output bits are complemented by the change in the input. 

i / 2  if 2 2 2. (i) Output bits a t  the inverter keys in K whose average number is: 1 if i = 1, 

(ii) Output bits a t  the tester keys in K whose average number is: 0 if i = 1, 

Thus, the average Hamming distance of the  output pair in this cue is: 

Z/2 if i 2 2. 

For the above cases, we have 

Prob{K has odd number of tester keys} = 1/2, 

Prob{K has even number of tester keys} = 112. 
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In summation, the average Hamming distance of the output pair is:

*,(n, 1, ,-) = | ( | + | ) + § x 1 = J + f if

J + i if » > 2.

Thus, the lemma has been proved. D

Examples of H[{n, 1, t) are shown in Table 3.

Table 3. Average output distances Hi(n, 1, i)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

n=l

1.00
—

—

—

—

—

n=2

1.25

1.50
—

—

—

—

n=3

1.50

1.75

2.25
—

—

—

n=4

1.75

2.00

2.50

3.00
—

—

n=5

2.00

2.25

2.75

3.25

3.75

—

n=6

2.25

2.50

3.00

3.50

4.00

4.50

If only the average distances of the intermediate values are used without analysis of the exact

distribution of the distances, then H[(n, d, i) when d > 2 can be approximately estimated as

follows:

Lemma S If a C(n, d) circuit is uniformly distributed, then Hi(n, d, i) is approximately

expressed by

Proof. Since we only consider the average distances of the intermediate values, then Hj(n, d, i)

when d > 2 can be approximately estimated by using Ht{n, 1, t) as

H,(n, d, i) = H,{n, 1, H,(n, 1, #,(. . . , H,(n, 1, i)))j.

From Lemma 4, Hi(n, 1, i) is generally expressed by

J + \ < Ht{n, l, i) < 2 + I + I for all i.

Thus, we have

(n, d, i) > J( + () ( - ) ,

Hr(n, d, i) 2 -(I4 + I + (-1
2
 + . . . + (.-)

d
-l) + ;(Z)

d
,

By rewriting a finite geometric sum for Hi(n, d, i), we have

Note that H[(n, d, i) converges to a value between n/2 and (n + l)/2 as d -* co regardless

of the i value. Using the formula in Lemma 5, we can observe the dependency of n, d and i for

the avalanche effect.
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To obtain the exact H,(n,  d, z )  when d >_ 2. an analysis is needed that includes intermediate 

distance distribution. Thus, we introduce a transition probability based on the Markov chain 

theory. Given input pair ( A l ,  A,)  with Hamming distance of i (1 5 i 5 n) ,  then the probability 

that the Hamming distance of output pairs (f(K, A , ) ,  f(K, A , ) )  is  j (0 5 j 5 n)  is denoted 

by Pn(i, j ) .  This transition probability, Pn(i, j ) ,  is defined over all the inputs and keys as; (:) 
input pairs and 4" keys, and it satisfies 

n 

o I Pn(z, 3 )  I I .  z~,,(i, j )  = 1. 

Since our proposed function f is a one-to-one mapping, note that 

1=0 

Pn(z, 0)  = 0 if i > 0. 

We have obtained some of the Pn(i, j) values through computer simulation. Some examples of 

[Pn(i, j ) ]  matrices such that 2 5 n 5 6 are as follows. 

1 
17/32 4/32 6/32 4/32 1/32 

1/16 11/16 3/16 1/16 0 
9/16 3/16 3/16 1/16 

[P4(ir = 3/16 3/16 9/16 1/16 
( 118 618 118 0 1 ,  [P5(i, j ) ]  = [ 3/32 6/32 20132 2/32 1/32 , 

114 0 114 214 5/32 0 10132 0 17/32 

118 118 118 518 0 

'33164 5/64 10164 10164 5/64 1/64 

1/32 20132 6/32 4/32 1/32 0 

3/64 9/64 42/64 6/64 3/64 1/64 

1/16 2/16 2/16 10/16 1/16 0 

5/64 5/64 10164 10164 33/64 1/64 

, 3/32 0 10132 0 3/32 16/32 

Using the [P,(i, j ) ]  matrices, an exact H l ( n ,  d ,  i) is generally expressed b j  

n 

Hdn, d, i) = EjG, ,d( i ,  j ) ,  where [Gn,d(ir j)] = [pn(i ,  j ) ld  
j=1  

If d = 1 and i 2 1, then Hl(n,  1, z )  can be simply expressed as 

n n 

Hdn, 1, 4 = x j G n , 1 ( i ,  i) = c j P n ( i ,  i), 
J=1 j=1 

and its explicit formula using n and i can be obtained in Lemma 4. 

and non-periodic), it has a stable limit distribution, [Gn,JZ, j)], defined by 

Since a Markov chain with a transition probability of [P,,(i, j ) ]  is ergodic (i.e. irreducible 

[Gn,co(ij j ) ]  = [ p n ( i ,  j)lco. 
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Since [Gn,m(i, j)] is rewritten as [P,(i, j ) ] "  to satisfy 

the elements of G,,,-(Z, j) are directly derived from Pn(zl j) by solving a system of linear 

equations 

[Gn,a(i, j ) ]  x [I - [pn(i, j)ll = 0 ,  

2 Gn.m(i, j) = 1 ,  
)=I  

where I and 0 denote a unit matrix and a zero matrix, respectively. 

Table 4 shows average output distances for H f ( n ,  d, i) when i = 1 .  The values for H I ( %  d ,  1) 

when n 5 6 and d = 2, 3, 16, and 00 are calculated by the transition probability matrices. The 
analytical results coincide with the ones obtained by exhaustive computer simulation. The 

values for Hl(n ,  d ,  1) when n 2 8 in Table 4 are the results of 1 million random samplings. 

Table 4. Average output distance H,(n, d ,  1) 

d = l  1.2500 1.5000 1.7500 2.2500 2.7500 4.7500 8.7500 16.750 

d = 2  1.3125 1.6563 2.0156 2.7539 3.5469 6.3750 11.750 22.508 

d = 3 1 1.3281 1.7031 2.1055 2.9502 3.9625 7.4625 14.463 28.463 

d =  16 1 1.3331 1.7141 2.1331 3.0474 4.0021 8.0000 16.000 32.000 

d = 00 1 1.3333 1.7143 2.1333 3.0476 4.0023 8.0000 16.000 32.000 

In Table 4, we can observe that the H l ( n ,  d ,  i) estimate in Lemma 5 seems to  be a "good" 

approximation, and that the average output distance H,(n, d, z )  converges to  n / 2  as both n 

and d increase. 

4.3.2 Avalanche Effect between Key and Ciphertext 

Given two sequences, K = (IF1, kz, ..., km) and K' = (k;, ki, ..., kk), of m symbols from 

(0, 1, -, +}, key symbol distance s is defined as 

0 if kt = k; 

{ 1 otherwise. 

m 

s = ct where cl = 
t= 1 

Given a C(n,  d )  circuit and a key pair (K, K') whose key symbol distance is i, the avefilge 

Hamming distance of output pairs (F(K,  A ) ,  F(K', A)) is denoted by H K ( ~ ,  d ,  2 ) .  

When d = 1, average output distance H K ( n ,  d ,  i) for any n can be directly derived as 

follows. 

Lemma 6 If an input (plaintezt) to an L ( n )  circuit layer is uniformly distributed and fized, and 

the keys of the key pair ( I ( ,  11'') are also uniformly distributed, then HK(n, 1, i) is ezplicitly 

ezpressed by 

n z  
H K ( n ,  1 ,  i) = - + - if i 2 2. 

4 3  



594 

Proof. (Proof is similar to the analysis of Lemma 4 proof, and will be given in the full paper.) 

If we only consider key changes in the first layer of C(n,d)  circuit, then H K ( n ,  d ,  i )  when 

d 2 2 can be approximately estimated as follows. 

Lemma 7 If an input (plaintezt) to a C(n, d )  circuit is uniformly distributed and fized, and the 

keys of the key pair (K,  K') are also uniformly distributed where I<, # I<;, f<t = (2 I e I d )  

, then H K ( n ,  d ,  i )  is approzimately ezpressed by 

n 1 d-I i n n I d - 1 1  i n 
+ (2) (3 - 1) 5 H K ( ~ ,  d ,  i) 5 - + ( 5 )  (- + - - 7) .  

2 12 3 

Proof. By combining the results of Lemmas 4 and 6, H K ( n ,  d ,  i )  can be estimated sindarly 

to Lemma5. o 

In this subsection, we discussed the avalanche &ect between an internal key and the output of 

one L(n)  layer. From a practical viewpoint, it is necessary to clarify the avalanche effect between 

an ezternal key and an output. The avalanche effect depends on a k e y  generation scheme or 

key schedule calculation scheme, which will be described in Section 5.1. The results obtained in 

Section 4.3 are useful to design an optimal scheme. 

4.3.3 Completeness and Avalanche Effect 

The notion of avalanche effect has a close relationship with completeness defined as: 

Definition 5 (Completeness) 

A function is complete if and only if each output bit depends on all of the input bits. 0 

Kam and Davida [KD79] showed a method of designing substitution-permutation encryption 

scheme to meet the completeness condition. As for function F based on a C(n,  d) circuit, the 

completeness condition is expressed as follows: 

L e m m a  8 Let K = IC11C2 ' .  . lid and I<! = l c l lka . .  . kf,, (1 5 I 5 d) .  Function F(K, .) based 

on a C(n,  d )  circuit is complete if and only if 

( kt, = {inverter}, kcj = {tester} 1 5 i ,  j 5 n, i # j ,  3 ! )  Vi ,  'dj. 

Proof. (Sketch) If kli = {inverter}, and k f j  = {tester} in the same layer, then i-th output bit 

depends on j - th  input bit. If this relation satisfies in any one layer of d layers for all i and for 

all j (1 5 i, j 5 n), then function F is complete, vice versa. 

From Lemma 8 , we get a necessary and sufficient condition of completeness as follows: 

Lemma 9 There ezisfs a complete function F bcrcied on a C(n,  d )  circuit if and only if d 2 n. 

Proof. If d < n, it is impossible to  construct a parity circuit satisfying complete condition 

described in Lemma 8. If d 2 n, we have an instance of complete function such that  

o 

b 

ktt = {inverter}, k, = {tester}, e # j, 1 5 e, j 5 n. o 

Webster and Tavarea (WTSG] introduced the stn'ct avalanche criterion in order to  combine 

the notions of the completeness and the so-called avalanche eflect [Fe73]. Forre [FOE%] and Lloyd 

[L189] discussed this strict avalanche criterion for some cryptographic functions. Definitions of 

these criteria are summarized as follows. 
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Definition 6 (Avalanche Effect)

A function exhibits the avalanche effect if and only if an average of half of output bits change

whenever a single input bit is complemented, a

Definition 7 (Strict Avalanche Criterion)

A function satisfies the strict avalanche criterion if and only if each output bit changes with

probability 1/2 whenever a single input bit is complemented. •

In Sections 4.3.1 and 4.3.2., we showed that avalance effect is satisfied for function F based

on C(n, d) circuit for large n and d. Furthermore, the relationship between completeness and

the strict avalanche effect is obtained for C(n, d) circuit as follows.

Lemma 10 / / function F based on C(n, d) circuit is complete, then it satisfies the strict

avalanche criterion.

Proof. It is clear from the definitions and Lemma 8. Q

4.4 Equivalent Keys

Let 7rn be the group of all permutations on {0, 1}", the set of n-bit messages. For a given

key K, function F(K, .) defines an element of jrn. Note that the group xn has cardinality (2")!.

The key space generates a subset of 7rn. Since a K key defining F(K, .) is a sequence of nd

symbols from { 0, 1, - , + }, the number of distinct K keys is 4™'. That is, the cardinality of

the key space is 4
nd

. If d > n/2, then 4
n<i

 > 2"!, so equivalent keys must exist.

4.4.1 Equivalent Keys for One Input-Output Pair

When an input-output pair (/, 0 ) is given, we need to know how many distinct equivalent

keys exist. Distinct equivalent keys for pair (/;, Oj) are defined as K i and K2 such that:

0, = F(Ki, /.•) = F(K2, / , ) , K! ± K2 .

Table 5 shows all the distinct equivalent keys when n = 2, d = 1.

t h e 5. distinct equivalent keys when n = 2, d = 1.

0\l

(0,0)

(0,1)

(1,0)

(1,1)

(0,0)

(0,0),

(0,+)

(0,

( -

(-
(1
(4

1),

,1)

,0)

1),

(+,0)

(-,+)
(0,-)

(l'-)
(+.+)

(0,1)

(0,1),

(o,-),

(-,o),

i-tii,
(1,0),

(+,0)

(- ,

(+

(o'

+)
,1)

+)

(+,-)
(1 - )

(1,0)

(1,0),

(-,o),

(o'-i
(0,1),

(-,1)

(+,-)
(1,+)

d!-)

(+.0)

(o,+)

=1
(1,1),
(-,1),

(+,0),
(0,1),
(0,+),

(-.0),

1

(+,+)
(1 - )

(-,+)
(+,1)

Let Nij{n, d) be the number of distinct K keys such that Oj = F(K, /,•) for fixed input A

(1 < i < 2
n
) and fixed output Oj (1 < j < 2

n
). From Table 5, we can observe that iV,j(2, 1) = 4

for all i and j . As for Nij(n, d), we get the following theorem.

Theorem 4 For all (n, d) pairs, number iV,-j(n, d) is the same for all i and j .

N;j(n, d) can be abbreviated as N(n, d), and expressed by

N{n, d) = 2<
M

-'>\

Number
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Proof. Note that the cardinality of the key space is 4"d. Assume that an input is fixed as Ii. 

When F(K,  Ii)  is computed with 4nd distinct keys, output values (0, 1)" are classified into 2" 

distinct classes. Since the K keys are uniformly distributed, the output values are also uniformly 

distributed by the complementation property shown in Theorem 3. Thus, Nij(n, d) is the same 

for a fixed i and for all j (1 5 j 5 n).  Furthermore, it is expressed by 

It is clear that this holds for all i .  Thus, the theorem has been proved. 0 

Through computer simulation, we have confirmed that Theorem 4 holds. Table 6 shows N ( n ,  d) 

values such that  1 5 n 5 4, 1 5 d 5 3. 

Table 6. Number of distinct equivalent keys 

for one input-output pair 1 i n=a n=== ",TI "7; 1 
d = l  

d = 2  4096 

d = 3  32 1024 32768 1048576 

Furthemore, the following can be observed: 

(1) Ratio R of number N ( n ,  d) to  the cardinality of the key space is: 

R = iV(n, d )  f 4 n d  = 2(2d-')" /4"d = 1 f2 " .  

Ratio R converges to 0 as n --+ 00. 

(2) If a key size is fixed as c = n d ,  then N ( n ,  d )  value is maxmized as 2*'-' = 22"d-' when 

n = 1 and d = c, and minmized as 2' = Znd when n = c and d = 1 .  

4.4.2 Completely Equivalent Keys 

Key pair (K1, K2) is called completely equiualent if 

F(K1, I) = F(K2, I), K1 # K2 for all I. 

Lemma 11 Let Kf = kfl~$....k;~ be asequence ofsymbolsfmm {-, +}, andKO = k?k?--k:d 
be a sequence of symbolsfmrn (0, 1). If 

either ( k f  = -, ky = 0) or ( k f  = +, k? = 1) 

then, pair (K*, KO) is completely equivalent. 

Proof. If K* is used, then only even events occur for all I, which implies that the input entry 

corresponding to  + is complemented and the one corresponding to - is not. If K0 is used, then 

the input entry corresponding to  1 is complemented and the one corresponding to  0 is not. Thus 
we have 

F(K*, I) = F(KO, I ) ,  K* # K0 for all I. tl 

for all i such that 1 5 i 5 nd, 
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The number of keys for both K* and Ka is 2nd. The number of pairs of completely equivalent 

keys is also 2nd. Thus, the number of completely equivalent keys is 2 . 2nd (= 2”d+1). Note 

that the ratio of the number of completely equivalent keys to the cardinality of the key space is 
2nd+1/22nd = 21-nd 

4.5 Complementation Property 

Let x denote the complement of x. When ,Y is a sequence of bits, x represents the bitwise 

inverse of X. In Particular, the complement of symbols - and + are defined as + and -. Our 

proposed function f has the following complementation property: 

Property 1: 

It can be proved that Property 1 holds: For the tester positions of the keys, it is clear that 

( I ( )  @ ( I )  = (R) @ (7). Since the complementation of both key I( and input I does not change 

the parity event, the output bits a t  the inverter keys do not change. Notice that the above 

complementation property does not always hold for function F when d 2 2. 

We can now make the following remarks. DES cipher algorithm E has the following com- 

plement a t  ion property. 

P r o p e r t y  2: 

Using this property and the weak keys, it is easy to find collisions for hash functions based on 

DES and the Meyer-Matyas chaining scheme [MOI90]. If a hash function is designed based on 

C(n, d) circuit and a certain chaining scheme, it is desirable that d 2 2. 

f (K ,  I )  = f(R, 7 )  for all If keys and I inputs. 

If 0 = E(IC, I ) ,  then a = E(K,  7 )  for all I( keys and I inputs, 

5. Applications 

5.1 Key Generation 
Each circuit layer key E (0, 1, -, +} is coded as 2-bit information so that “00” ++ “On, “01” 

++ “I”, “10” ++ u-n, “11” H “+”. Since each j iteration (1 5 j 5 d) of the L(n) parity layer 

uses a different 2n-bit key, the C(n,  d) parity circuits use 2nd-bit internal keys. The internal 

key size is determined to be as large as needed to secure the cryptosystem. 

Internal keys, K = (Kl, If2, . . . I&), are generated from ezternai key K E  (supplied by the 

user). Thus, a key generation scheme (or, so-called key schedule calculation scheme) is needed 

to map from the external key to the internal one. In DES, a 768 (= 48 x 16)-bit internal key is 

generated from a 56-bit external key by using the algorithm described in [NBS77]. However, it is 

said that the 56-bit key length is not sufficiently secure against exhaustive search attacks [Mdg] 

or chosen plaintext attacks [SigO]. External key size, of say 64-bits or 128-bits, is determined 

from the viewpoints of security, compatibility and standardization. Our circuit easily generates 

internal key K from external key ICE by applying the C(n ,  d) circuit itself as in [Me89]. Thus, 

the L(n)  circuit layer is recursively used for both data  randomization and key generation. There 

are a lot of variants for key generation schemes. One possibility uses the CBC mode with external 

key ICE and initial fixed key IC,, which is randomly chosen and shared between the sender and 

the receiver. 

5.2 Design Principles and Criteria 

The C(n,  d) parity circuit can be used in any mode of operation currently defined by ISO. 
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Thus, the circuit of n-bit width is directly applicable to block ciphers whose block size is n bits. 

Furthermore, C(n,  d) parity circuit can be also applied to the F-function of Feistel type ciphers 

whose block size is 2n bits. In any application schemes of C(n,  d) ,  the block size can be flexible, 

say 64-bits, which is compatible with DES or FEAL. 

If a block cipher is used as the  hashing function in a certain chaining mode, the size of the 

hashed value (or digest) must be chosen securely. It is recommended [MOI90] that the size of 

the hashed value must be 128-bits to counter 'meet-in-themiddle attacks". Thus, block size 

must be 128-bits. The C ( n ,  d) parity circuit, when n = 128, can achieve much faster s p e d  

while preserving security. 

Recently, Quisquarter and Delescaille have found 21 equivalence key pairs for DES (64-bit 

input and 56-bit key),for fixed input-output pairs [QDsg]. These key pairs are also called keys 

with collision. Their collision search algorithm is based on Pollard's p method. Even if we apply 

their collision search algorithm, it appears difficult to search for collisions in our F(.,  .), with, 

say, 128-bit inputs and 128-bit external keys that generate 4nd symbols of internal keys. 

5.3 Hardware Implementation 

The C(n, d) circuits can be implemented with high performance in hardware as well as in 

software. 

We estimated the encryption/decryption speed of our proposed C(n,  d) parity circuits ac- 

cording to the current hardware technology. Assume that C(n, d) circuits are implemented 

by 1.5 pm CMOS gate-arrays. The encryption speed will nearly equal the decryption speed. 

The amount of the encryption time is mainly taken up by comparisons and calculations for bits 

corresponding to the tester cells. These operations are carried out for each L(n)  layer by EXOR 

gates. The time for one EXOR calculation can be estimated as 4 nano seconds. Assume that 

data randomization and key generation are simultaneously carried out using an L(n)  module 

of L(n) with feedback registers. Since one EXOR requires 3 gates and one register requires 5.5 

gates, the total hardware amount can be estimated as 50n gates. In the C(n,  d) circuit, the 

encryption time is d (4rIogz n1 + 25) nano seconds. Thus, the encryption speed S is expressed 

by 

S =  x loQ bps. 

Some reasonable implementation examples are shown in Table 7. Note that FEAL-8 LSI achieves 

96 Mega bps with 4 Kilo gates for the core parts. 

Also note that the n and d parameters for the C(n, d )  parity circuit can be flexibly designed 

while still preserving "good" cryptographic properties. Furthermore, encryption speed s in- 

creases as width n increases while still ensuring randomness. Circuit modules with a fixed n and 

d have a regular structure so the  structure can be expanded by multiple modular connections 

at  a minimal cost. This advanced feature is not found in any other existing block ciphers. 

n 

d (4[log2 n1 + 25) 

Table 7. Hardware Performance 

Size 

128 300 6.4 

128 16 150 6.4 
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6. Conclusions 

A new family of cryptographic functions called parity circuits has been presented. Further- 

more, we have clarified cryptographic properties such as involution, nonlinearity, the probability 

of bit complementation, avalanche effect, equivalent keys. Some recommended parameter value 

to preserve security have been shown. In addition, we estimated the speed of the parity circuits 

when implemented using the current hardware technology. 
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