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Nonlinear phenomena and resource exploitation in group
living organisms

Abstract

The proposed research project belongs to the broad area of nonlinear dynamics, self-
organization and collective behavior in group living organisms confronted to the choice be-
tween different options. One of the most intensely studied examples of these phenomena
is foraging recruitment and resource exploitation in social insects. It has been shown that
this often involves a transition between individual random behavior and collective decision-
making leading to different exploitation strategies induced by amplifying interactions between
individuals.

In this work, a mathematical model of food recruitment in ants in the presence of commu-
nicating sources is developed. The aim is to analyze the effect of traffic between the sources
using mean field approximation.
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1 Introduction

Self-organization1,2 is a process in which pattern at the global level of a system emerges solely
from numerous interactions among the lower-level components of the system.

Self-organization includes a wide range of pattern-formation processes in both physical and
biological systems2, such as sand grains assembling into rippled dunes3, chemical reactants form-
ing swirling spirals (Belouzov-Zabotinsky), fish joining togather in schools4–6, and cells making
up highly structured tissues7.

A pattern is a particular, organized arrangement of objects in space or time. i, e a school of
fish, a raiding column of army ants etc. In a school of fish, for instance, each individual bases
its behavior on its perception of the position and velocity of its nearest neighbors, rather than
knowledge of the global behavior of the whole school. Similarly, an army ant within a raiding
column bases its activity on local concentrations of pheromone laid down by other ants rather
than on a global overview of the pattern of the raid.

The mechanisms of self-organization in biological systems differ from those in physical systems
in two basic ways. The first is the greater complexity of the subunits in biological systems. The
interacting subunits in physical systems are inanimate objects such as grains of sand or chemical
reactants. In biological systems there is greater inherent complexity when the subunits are living
organisms such as fish or ants. The second difference concerns the nature of the rules governing
interactions among system components. In chemical and physical systems, pattern is created
through interactions based solely on physical laws. For example, heat applied evenly to the
bottom of a tray filled with a thin sheet of viscous oil transforms the smooth surface of the oil
into an array of hexagonal cells of moving fluid called Benard convection cells 8. The molecules of
oil obey physical laws related to surface tension, viscosity, and other forces governing the motion
of molecules in a heated fluid. Likewise, when wind blows over a uniform expanse of sand a
pattern of regularly spaced ridges is formed through a set of forces attributable to gravity and
wind acting on the sand particles3,9 . Of course, biological systems obey the laws of physics, but in
addition to these laws the physiological and behavioral interactions among the living components
are influenced by the genitically controlled properties of the components.

Animals, most particular social insects live in groups. They make a collective decesion, through
a mechanism of self-organization, when they have to go for food. It has been shown that, how
groups make collective decisions to get food. The most common mechanisms leading to suitable
collective decesion in group living insects are allelomimesis (what the neighbor is doing)10–12.
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The present work is concerned by recruirment in ant societies associated with foraging. More
specifically, a mathematical model accounting for traffic of individuals between the available
sources in the presence of two or more than two food sources is developed and analyzed. The
basic mechanism of recruitment can be described as follows: An ant discovers food source, eats
and returns to the nest laying down a chemical substance known as pheromone. This phenomenon
has two roles13: First it stimulates inactive foragers waiting in the nest to leave it and second, it
leads them to the food sources. On every trip, ants strengthen the pheromone trail.

The significant point is the understanding of the recruitment behavior has been the design
of experiments is purposely idealized situation by which many of the problems can be fixed in
the real world. The development of mathematical models ensure the facility that the parameters
can be determined directly from the experiment. In this perceptive several authors through their
various experimental studies have showed the surprising bahavior14–16 when two food sources or
two trails were made available at the same time. The competition between the two chemical
trails gives rise to a variety of nonlinear phenomena which is related different types of traffic
between the nest and the sources. In case of two identical food sources: When small amounts
of pheromone drop on the path at per time, then it has an identical exploitation of the sources,
which give rise to homogeneous state. After a threshold value of the parameter the system turns
to a prefferred source through the bifurcation which rise to inhomogeneous states. These results
have been adequately substantiate by experiment for the species Lasius niger. The procedure can
also apply to other ant species by taking the different values of the parameters.

In section 2, a general model without traffic term is presented and analyzed in detail with a
reference case. In section 3, a model with traffic term is analyzed and steady-state solutions in
case of two and three identical and equidistant food sources. In section 4, the conclusions are
summarized.
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Fixed point and stability

A very general framework for ordinary differential equations is provided by the system17

ẋ1 = f1(x1, x2, ..., xn)

...

ẋn = fn(x1, x2, ..., xn)

(1)

Here the overdots denote differentiation with respect to t. Thus ẋi = dxi

dt
. The variables

x1, ..., xn might represent concentrations of chemicals in a reactor, populations of different species
in an ecosystem, or the positions and velocities of the planets in the solar system. If n = 2, then
eqs. (1) can be reduce as

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)
(2)

The nullcline is the set of points, which satisfy f1(x1, x2) = 0 and f2(x1, x2) = 0
The steady states are the points where the nullclines cross. The steady states of eqs. (2) are

the constans (x∗
1, x

∗
2), such that f1(x

∗
1, x

∗
2) = 0 and f2(x

∗
1, x

∗
2) = 0.

To find the stability of the steady states, we have to linearise eqs. (2),
Let x1 = x∗

1+X1 and x2 = x∗
2+X2, where X1 and X2 are the small perturbations. Now using

Taylor’s expansion, we obtain
dX1

dt
= f1(x

∗
1, x

∗
2) +X1

∂f1
∂x1

∣∣∣
x1=x∗

1,x2=x∗
2

+X2
∂f1
∂x2

∣∣∣
x1=x∗

1,x2=x∗
2

dX2

dt
= f2(x

∗
1, x

∗
2) +X1

∂f2
∂x1

∣∣∣
x1=x∗

1,x2=x∗
2

+X2
∂f2
∂x2

∣∣∣
x1=x∗

1,x2=x∗
2

Since f1(x
∗
1, x

∗
2) = 0 = f2(x

∗
1, x

∗
2)

dX1

dt
= a11X1 + a12X2

dX2

dt
= a21X1 + a22X2
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Also, we can write [
Ẋ1

Ẋ2

]
= A

[
X1

X2

]
Where

A =

[
a11 a12

a21 a22

]
= A

 ∂f1
∂x1

∣∣∣
x1=x∗

1,x2=x∗
2

∂f1
∂x2

∣∣∣
x1=x∗

1,x2=x∗
2

∂f2
∂x1

∣∣∣
x1=x∗

1,x2=x∗
2

∂f2
∂x2

∣∣∣
x1=x∗

1,x2=x∗
2

 .

Now [
X1

X2

]
= µeλt

Therefore

λµ = Aµ

or

(A− λI)µ = 0

λ are the eigenvalues of A, while µ is the associated eigenvector. By solving det(A− λI) = 0,
we get λ1 and λ2, which are the eigenvalues and[

X1

X2

]
= c1µ1e

λ1t + c2µ2e
λ2t (3)

where µ1 and µ2 are the associated eigenvectors and c1 and c2 are constants. By using eq.
(3), we can observe the stability of the steady state.

A steady state (x∗
1, x

∗
2), is an unstable node if λ1 , λ2 > 0 and, is stable if λ1 , λ2< 0 and, is a

saddle point if λ2< 0 <λ1. If λ1 and λ2 are complex, then λ1,2=a + ιb, if a > 0 then the steady
state is an unstable spiral and, if a < 0 then the steady state is a stable spiral and, if a = 0 then
the staedy state is a centre.
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Bifurcation

It is the abrupt transition of the entire system towards a new stable pattern when a threshold
is crossed18. For example, at a critical temperature, a ferromagnet may become demagnetized
due to the disordering effect of thermal forces. Upon variations of some control parameters a
self-organized system will thus spontaneous present new types of structures whereby there is a
discrete change from one state to another. Similar bifurcation phenomena are observed in ant
societies which may take the form of symmetry-breaking as one observes the shift from an even
exploitation of several food sources19.
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2 A reference case

A common ant in northern Europe is Lasius niger, also known as a black garden ant18. One
can easily observe foraging in L. niger by setting out a dish of sugar solution in the vicinity
of a nest. After some time, a forager will discover the sugar and shortly thereafter through a
recruitment process, numerous additional foragers will appear at the food source. Observation
reveals ants trafficking between the nest and the food source as if the creatures were following an
invisible highway on the ground. The ants are moving along a chemical trail deposited by the
ants. The ants reinforce this trail with additional pheromone both after they have ingested food
and are returning to the nest, and when they are following the pheromone trail to return to the
food source14,20. Each ant returning from the food source can stimulate many other nestmates to
forage, these ants in turn stimulate still others, and so on.

An ant colony13 has the choice between two identical, equidistant and non-communicating
food sources. Ants leave the nest at a constant rate (the flux), ingest food, and return to the
nest. The flux depends on the concentration of pheromone. In the experimental setup, ants have
a choice between trail as shown in Fig.1 . We start our analysis by developing a mathematical
relationship, which describes how ant chooses a path toward food sources .

Let ci be the pheromone concentrations on trail i = 1, 2, ..., s leading to the source. The rate
of change of ci with respect to time t, can be decomposed into two terms11,21.

dci
dt

= ϕqi
(k + ci)

l∑s
j=1(k + cj)l

− νici , i = 1, 2, ..., s

Nest

Sources

Choice point

Figure 1: Experimental setup without communicating sources
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The first, positive term describes the attractiveness of trail i over the others. The second,
negative term describes the disappearance of the pheromone on the trail i through evaporation.

Here ϕ is the flow of the ants leaving the nest toward the trails (related to the size of the
colony), qi is the quantity of the pheromone (proportional to the richness of the food sources)
dropped by ant on the trail i whose magnitude reflects the quality of source i , k is a threshold
beyond which the pheromone dropped on the trail begins to be effective, l measures the sensitivity
of the process of choice of a pareticular trail on the pheromonal concentration ci present and will
be therefore be referred to hereafter as “cooperativity parameter”, νi is the disappearance of the
pheromone on the trail i and s is the total number of sources visited by the ants.

Since food sources are identical and the paths leading the nest to the sources have the same
characteristics, we can write qi = q , νi = ν. For simplicity, we take k = 1, so

dci
dt

= ϕq
(1 + ci)

2∑s
j=1(1 + cj)2

− νci (4)

Where l = 2, will be fixed, which is well-matched with the experimental data for the ant
species L. niger 22,23.

The solutions of eq. (4) depend on the parameters ϕq, ν and s.
For simplest case, when two identical and equidistant food sources (s = 2), then (4) can be

written as 
dc1
dt

= ϕq
(1 + c1)

2

(1 + c1)2 + (1 + c2)2
− νc1

dc2
dt

= ϕq
(1 + c2)

2

(1 + c1)2 + (1 + c2)2
− νc2

(5)

We now find the steady states of eqs. (5), by setting the time derivatives equal to zero. We
have two algebraic equations, which can be solved explicitly for c1 and c2.

ν

ϕq
c1 =

(1 + c1)
2

(1 + c1)2 + (1 + c2)2

ν

ϕq
c2 =

(1 + c2)
2

(1 + c1)2 + (1 + c2)2

(6)

Adding and dividing the two eqs. in (6), we have

c1 + c2 =
ϕq

ν
(7)
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and

c1
c2

=
(1 + c1)

2

(1 + c2)2
(8)

Solving eq. (7) and eq. (8) and after simplification, we get three steady states, which are

S1 =

[
ϕq
2ν
ϕq
2ν

]

S2 =

ϕq/ν+
√

(ϕq/ν)2−4

2

ϕq/ν−
√

(ϕq/ν)2−4

2

 , S3 =

ϕq/ν−
√

(ϕq/ν)2−4

2

ϕq/ν+
√

(ϕq/ν)2−4

2


To determine the stability of the steady states, we compute the Jacobian matrix associated

to the right hand side of eqs. (5). For this, we define

f(c1, c2) = ϕq
(1 + c1)

2

(1 + c1)2 + (1 + c2)2
− νc1

g(c1, c2) = ϕq
(1 + c2)

2

(1 + c1)2 + (1 + c2)2
− νc2

The Jacobian is

J =

[
∂f
∂c1

∂f
∂c2

∂g
∂c1

∂g
∂c2

]
.

Stability is determined by investigating the eigenvalues of the Jacobian at the steady states
S1, S2, and S3 as a function of ϕ. If ϕ ≤ 0.2 then we only have the steady state S1, and if ϕ > 0.2,
we have the steady states S1, S2, and S3. The eigenvalues of J evaluated at S1 are both negative
for ϕ ≤ 0.2 and of opposite sign for ϕ > 0.2, hence S1, is stable for 0 < ϕ ≤ 0.2 and unstable for
ϕ > 0.2. At S2 and S3, the eigenvalues are negative, so these states are stable. The bifurcation
diagram for c1 with respect to ϕ is shown in Fig. 2a. The bifurcation diagram representing c2

against ϕ is identical.
In the presence of a third identical and equidistant food source (s = 3), eq. (4) can be written

as
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

dc1
dt

= ϕq
(1 + c1)

2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
− νc1

dc2
dt

= ϕq
(1 + c2)

2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
− νc2

dc3
dt

= ϕq
(1 + c3)

2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
− νc3.

(9)

By solving the system of differential equations (9) as above, it is found that the homogeneous
state loses its stability at ϕ = 0.3. The new stable states emerge through limit point bifurcations in
which the limit points are located at ϕ = 0.28, dividing the solutions into four semi-inhomogeneous
states, two of which are stable and two are unstable. At 0.28 < ϕ < 0.3, there are three stable
states, which shows the coexistance between the homogeneous and inhomogeneous states, it
means that mixed exploitation (exploitation of a single preferred source or an equal exploitation
of multiple sources) occurs, as shown in Fig. 2b.

Figure 2: Bifurcation diagram of the steady-state solutions of eq. (4). s = 2 (a), s = 3 (b). Full
and dashed lines shows the stable and unstable solution respectively. Other parameters values
ν = 0.1 and q=1
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3 Modeling resource exploitation in the presence of traffic between
sources

In this section, we shall discuss successively the mathematical model of ants in the presence of
linear and nonlinear traffic between sources. Our goal is, to extend the results, which are analyzed
in section 2.

3.1 Linear traffic term

We first consider an ant colony having the choice between two identical and equidistant food
sources in the setup shown in Fig. 3, where food sources are now communicating with each other.

Nest

Sources

Choice point

Figure 3: Experimental setup with communicating sources

A model, which is in eq. (4) can be extend with linear traffic term and written as24

dci
dt

= ϕq
(1 + ci)

2∑s
j=1(1 + cj)2

− νci +
∑
i̸=j

Jij

The last (positive) term is the traffic of individuals between source i and the sources j(1, 2, ..., i−
1, i + 1, , s) as expected to arise in realistic situatons. The mathematical expression of the traf-
fic term is not welll established. The idea is that traffic between sources reflects primarily (i),
individual-level randomness; (ii), the exploration of the environment by individuals having at-
tained the sources and moving subsequently, with some probability, in the part of space outside
the trails joining them with the nest: and (iii), crowding effects in the sense that if the density
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of individuals (and hence of pheromone) around a particular source is very high, individuals will
have a tendency to move away from it and explore other possibilities. So we can write

∑
i ̸=j

Jij = Dij(cj − ci)

Here Dij is the transfer coefficients depend on the length and texture of the channel through
which sources i and j communicate and are assumed to define a symmetric, positive definate
matrix. So we have

dci
dt

= ϕq
(1 + ci)

2∑s
j=1(1 + cj)2

− νci +
∑
i ̸=j

D(cj − ci) (10)

The solutions of eq. (10) depend on the parameters ϕq , ν , D and s.

3.1.1 Analysis

When two identical and equidistant food sources (s = 2), eq. (10) can be written as
dc1
dt

= ϕq
(1 + c1)

2

(1 + c1)2 + (1 + c2)2
− νc1 +D(c2 − c1)

dc2
dt

= ϕq
(1 + c2)

2

(1 + c1)2 + (1 + c2)2
− νc2 +D(c1 − c2)

For steady states:

dc1
dt

=
dc2
dt

= 0.


ϕq

(1 + c1)
2

(1 + c1)2 + (1 + c2)2
− νc1 +D(c2 − c1) = 0

ϕq
(1 + c2)

2

(1 + c1)2 + (1 + c2)2
− νc2 +D(c1 − c2) = 0

or
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
(1 + c1)

2

(1 + c1)2 + (1 + c2)2
=

ν

ϕq
c1 −

D

ϕq
(c2 − c1)

(1 + c2)
2

(1 + c1)2 + (1 + c2)2
=

ν

ϕq
c2 −

D

ϕq
(c1 − c2)

(11)

Adding and dividing the two eqs. in (11), we get

c1 + c2 =
ϕq

ν
(12)

and

(1 + c1)
2

(1 + c2)2
=

ν −D(c2 − c1)

ν −D(c1 − c2)
. (13)

Substituting eq. (12) in eq. (13), we get

2(ν+2D)c31−3ϕq(1+
2D

ν
)c21+(2ν+

(ϕq)2

ν
+
4Dϕq

ν
+4D(

ϕq

ν
)2+4D)c1−

Dϕq

ν
(2+

2ϕq

ν
+(

ϕq

ν
)2)−ϕq = 0

After simplification, we get

(i) the homogeneous state

c1 = c2 =
ϕq

2ν
(14)

in which all sources are exploited in an identical manner, and

(ii) non-homogeneous state


(ν + 2D)c21 −

ϕq

ν
(ν + 2D)c1 + ν + 2D +

Dϕq

ν
(2 +

ϕq

ν
) = 0

(ν + 2D)c22 −
ϕq

ν
(ν + 2D)c2 + ν + 2D +

Dϕq

ν
(2 +

ϕq

ν
) = 0

(15)

So, we have three steady states, which are

S1 =

[
ϕq
2ν
ϕq
2ν

]
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S2 =

ϕq/ν(ν+2D)+
√

(ϕq/ν(ν+2D))2−4(ν+2D)(ν+2D+Dϕq/ν(2+ϕq/ν))

2(ν+2D)

ϕq/ν(ν+2D)−
√

(ϕq/ν(ν+2D))2−4(ν+2D)(ν+2D+Dϕq/ν(2+ϕq/ν))

2(ν+2D)



S3 =

ϕq/ν(ν+2D)−
√

(ϕq/ν(ν+2D))2−4(ν+2D)(ν+2D+Dϕq/ν(2+ϕq/ν))

2(ν+2D)

ϕq/ν(ν+2D)+
√

(ϕq/ν(ν+2D))2−4(ν+2D)(ν+2D+Dϕq/ν(2+ϕq/ν))

2(ν+2D)


Stability is determined at the steady state S1, S2 and S3 as a function of ϕ. At S1, the state

is stable if ϕ ≤ 0.2 and unstable if ϕ > 0.2. It has found that the homogeneous state loses
its stability at the bifurcation point and dividing the solutions into two inhomogeneous states,
which are stable as shown in Fig. 4a. By increasing the values of the parameter D, the range
of homogeneous state is gradually increasing, as shown in Fig. 4. The bifurcation diagram
representing c2 against ϕ is identical.

Figure 4: Bifurcation diagrams of the steady states solutions of eq. (10) in the case of s = 2,
D = 0.001 (a), D = 0.01 (b), D = 0.02 (c) and D = 0.03 (d). Other parameter values as in
Figure 2.
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Turning next to the case of three identical and equidistant sources (s = 3) in (10), the traffic
term is now Jik is

∑
k ̸=i Jik = D(ci+1 + ci−1 − 2ci), where all indexes are taken mod 3, than the

model equations will be of the form

dc1
dt

= ϕq
(1 + c1)

2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
− νc1 +D(c2 + c3 − 2c1)

dc2
dt

= ϕq
(1 + c2)

2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
− νc2 +D(c3 + c1 − 2c2)

dc3
dt

= ϕq
(1 + c3)

2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
− νc3 +D(c1 + c2 − 2c3)

For steady states:

dc1
dt

=
dc2
dt

=
dc3
dt

= 0



ϕq
(1 + c1)

2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
− νc1 +D(c2 + c3 − 2c1) = 0

ϕq
(1 + c2)

2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
− νc2 +D(c3 + c1 − 2c2) = 0

ϕq
(1 + c3)

2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
− νc3 +D(c1 + c2 − 2c3) = 0

or 

(1 + c1)
2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
=

ν

ϕq
c1 −

D

ϕq
(c2 + c3 − 2c1)

(1 + c2)
2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
=

ν

ϕq
c2 −

D

ϕq
(c3 + c1 − 2c2)

(1 + c3)
2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
=

ν

ϕq
c3 −

D

ϕq
(c1 + c2 − 2c3)

(16)

Adding the eqs. in (16) yields

c1 + c2 + c3 =
ϕq

ν
(17)

Dividing the first two eqs. in (16) yields

(1 + c1)
2

(1 + c2)2
=

νc1 −D(c2 + c3 − 2c1)

νc2 −D(c3 + c1 − 2c2)
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or

(1 + c1)
2(

ν

ϕq
c2 −

D

ν
+ 3

D

ϕq
c2) = (1 + c2)

2(
ν

ϕq
c1 −

D

ν
+ 3

D

ϕq
c1)

or 
c2 = c1 = c̄

c2 =
ν + 3D + 2Dϕq/ν + (Dϕq/ν)c1

νc1 −Dϕq/ν + 3Dc1

(18)

Similarly, dividing first and third eq. in (16), we get

(1 + c1)
2

(1 + c3)2
=

νc1 −D(c2 + c3 − 2c1)

νc3 −D(c1 + c2 − 2c3)

or
(1 + c1)

2(
ν

ϕq
c3 −

D

ν
+ 3

D

ϕq
c3) = (1 + c3)

2(
ν

ϕq
c1 −

D

ν
+ 3

D

ϕq
c1)

or 
c3 = c1 = c̄

c3 =
ν + 3D + 2Dϕq/ν + (Dϕq/ν)c1

νc1 −Dϕq/ν + 3Dc1

(19)

Using eqs. (18) and (19) in eq. (17). we get

(i) the homogeneous state

c1 = c2 = c3 =
ϕq

3ν
(20)

in which all sources exploited in an identical manner, and

(ii) non-homogeneous state

c1 =
ϕq/2ν(ν + 2D)±

√
(ϕq/2ν(ν + 3D))2 − 2(ν + 3D)(ν + 3D +Dϕq/ν(2 + ϕq/2ν))

ν + 3D
(21)

and

c̄ =
1

2
(
ϕq

ν
− c1) (22)
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The homogeneous state loses its stability at the bifurcation point. The limit points are di-
viding the solutions into four semi-inhomogeneous states, two of which are stable and two are
unstable. By increasing the value of the parameter D, it has analyzed that (i), the range of
homogeneous state is increasing; and (ii), the range of coexistance between homogeneous and
semi-inhomogeneous states is also increasing, as shown in Fig. 5, The bifurcation diagrams rep-
resenting c2 against ϕ and c3 against ϕ are identical.

Figure 5: Same as figure 4 but for s = 3, D = 0.001 (a), D = 0.01 (b), D = 0.012 (c) and
D = 0.014 (d).
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3.2 Nonlinear traffic term

A minimal model with nonlinear traffic term is

dci
dt

= ϕq
(1 + ci)

2∑s
j=1(1 + cj)2

− νci +
∑
i̸=j

D(cj − ci)
3 (23)

where the third term is a nonlinear term, which describes the traffic between the sources. The
solutions of eq. (23) depend on the parameters ϕq , ν , D and s.

3.2.1 Analysis

When two identical and equidistant sources (s = 2), eq. (23), can be written as
dc1
dt

= ϕq
(1 + c1)

2

(1 + c1)2 + (1 + c2)2
− νc1 +D(c2 − c1)

3

dc2
dt

= ϕq
(1 + c2)

2

(1 + c1)2 + (1 + c2)2
− νc2 +D(c1 − c2)

3

For steady states:

dc1
dt

=
dc2
dt

= 0.


ϕq

(1 + c1)
2

(1 + c1)2 + (1 + c2)2
− νc1 +D(c2 − c1)

3 = 0

ϕq
(1 + c2)

2

(1 + c1)2 + (1 + c2)2
− νc2 +D(c1 − c2)

3 = 0

or 
(1 + c1)

2

(1 + c1)2 + (1 + c2)2
=

ν

ϕq
c1 −

D

ϕq
(c2 − c1)

3

(1 + c2)
2

(1 + c1)2 + (1 + c2)2
=

ν

ϕq
c2 −

D

ϕq
(c1 − c2)

3

(24)

Adding and subtracting the two eqs. in (24), we get

c1 + c2 =
ϕq

ν
(25)

and
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(1 + c1)
2 − (1 + c2)

2

(1 + c1)2 + (1 + c2)2
=

ν

ϕq
(c1 − c2) + 2

D

ϕq
(c1 − c2)

3

Setting z = c1 − c2, and after simplification, we get

(ϕq/ν)z + 2z

2 + 2ϕq/ν + 1/2((ϕq/ν)2 + z2)
= (ν/ϕq)z + (2D/ϕq)z2 (26)

(i) the homogeneous state

z = 0 (27)

corresponding to the symmetric exploitation of the two sources.

(ii) non-homogeneous state

D

ϕq
z4 + (

ν

2ϕq
+ 4

D

ϕq
+ 4

D

ν
+

Dϕq

ν2
)z2 − ϕq

2ν
+ 2

ν

ϕq
= 0 (28)

For D = 0, the solutions of eq. (28) reduce to the result of eq. (4). The homogeneous
state loses its stability and dividing the solutions into two inhomogeneous states. By increasing
the value of the parameter D, it has been observed that the inhomogeneous states are bending
towards the central state, it mean that difference between the exploitation is not so big, as shown
in Fig. 6.
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Figure 6: Same as figure 4 but for eq. (23), D = 0.001 (a), D = 0.005 (b), D = 0.01 (c) and
D = 0.03 (d).

When three identical and equidistant sources (s = 3). in eq. (23), the traffic term is now Jik

is
∑

k ̸=i Jik = D(ci+1 + ci−1 − 2ci)
3, where all indexes are taken mod 3, than the model equations

will be of the form

dc1
dt

= ϕq
(1 + c1)

2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
− νc1 +D(c2 + c3 − 2c1)

3

dc2
dt

= ϕq
(1 + c2)

2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
− νc2 +D(c3 + c1 − 2c2)

3

dc3
dt

= ϕq
(1 + c3)

2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
− νc3 +D(c1 + c2 − 2c3)

3

(29)

For D = 0, the solutions of eq. (29) reduce to the result of eq. (4). By solving the system
of eqs. (29) numerically, only stable states have shown in the results. By increasing the value of
the parameter D, it has been analysed that (i), the range of homogeneous state is increasing; (ii),
the semi inhomogeneous stable states are bending towards the central state; and (iii), there is a
coexistance between the homogeneous and semi-inhomogeneous states, as shown in Fig. 7.
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Figure 7: Bifurcation diagram in the case of s = 3 as computed numerically by integrating eq.
(23) for 15 random initial conditions until the system reaches the steady state (t = 30000) in the
case of D = 0.001 (a) and D = 0.005 (b). Other parameter values as in Figure 2.
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3.3 Linear and nonlinear traffic term

A model with linear and nonlinear traffic terms will be

dci
dt

= ϕq
(1 + ci)

2∑s
j=1(1 + cj)2

− νci +
∑
i ̸=j

D0(cj − ci) +
∑
i̸=j

D(cj − ci)
3 (30)

where the third and fourth terms are linear and nonlinear traffic terms with coefficients D0 and
D respectivly, which describes the traffic between the sources. The solutions of eq. (30) depend
on the parameters ϕq , ν , D0 , D and s.

3.3.1 Analysis

When two identical and equidistant sources (s = 2), in (30)
dc1
dt

= ϕq
(1 + c1)

2

(1 + c1)2 + (1 + c2)2
− νc1 +D0(c2 − c1) +D(c2 − c1)

3

dc2
dt

= ϕq
(1 + c2)

2

(1 + c1)2 + (1 + c2)2
− νc2 +D0(c1 − c2) +D(c1 − c2)

3

For steady states:

dc1
dt

=
dc2
dt

= 0.


ϕq

(1 + c1)
2

(1 + c1)2 + (1 + c2)2
− νc1 +D0(c2 − c1) +D(c2 − c1)

3 = 0

ϕq
(1 + c2)

2

(1 + c1)2 + (1 + c2)2
− νc2 +D0(c1 − c2) +D(c1 − c2)

3 = 0

or 
(1 + c1)

2

(1 + c1)2 + (1 + c2)2
=

ν

ϕq
c1 −

D0

ϕq
(c2 − c1)−

D

ϕq
(c2 − c1)

3

(1 + c2)
2

(1 + c1)2 + (1 + c2)2
=

ν

ϕq
c2 −

D0

ϕq
(c1 − c2)−

D

ϕq
(c1 − c2)

3

(31)

Adding and subtracting the two eqs. in (31), we get

c1 + c2 =
ϕq

ν
(32)
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and

(1 + c1)
2 − (1 + c2)

2

(1 + c1)2 + (1 + c2)2
=

ν

ϕq
(c1 − c2) + 2

DO

ϕq
(c1 − c2) + 2

D

ϕq
(c1 − c2)

3

Setting z = c1 − c2, and after simplification, we get

(ϕq/ν)z + 2z

2 + 2ϕq/ν + 1/2((ϕq/ν)2 + z2)
= (ν/ϕq)z + (2D0/ϕq)z + (2D/ϕq)z3

(i) the homogeneous state

z = 0 (33)

corresponding to the symmetric exploitation of the two sources.

(ii) non-homogeneous state

D

ϕq
z4 + (

ν

2ϕq
+

D0

ϕq
+ 4

D

ϕq
+ 4

D

ν
+

Dϕq

ν2
)z2 + 4

D0

ϕq
+ 4

D0

ν
+

D0ϕq

ν2
− ϕq

2ν
+ 2

ν

ϕq
= 0 (34)

For D0 = D = 0, the solution of eq. (34) reduce to the result of eq. (4). By taking the
different values of the parameters D and D0, it has been observed that (i), when D is fixed and
D0 is increasing, the homogeneous state is rapidly increasing, as shown in Fig. 8 (a-d); (ii), on the
other hand, when D0 is fixed and D is increasing, the inhomogeneous states are bending towards
the central state, as shown in Fig. 8 (e-h).
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Figure 8: Same as figure 6 but for eq. (30), D=0.2, D0=0.001 (a), D0=0.01 (b), D0=0.02 (c),
D0=0.03 (d) and D0=0.001, D=0.1 (e), D=0.2 (f), D=0.9 (g), D=4 (h).

When three identical and equidistant sources (s = 3), eq. (30) yields



dc1
dt

= ϕq
(1 + c1)

2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
− νc1 ++D0(c2 + c3 − 2c1) +D(c2 + c3 − 2c1)

3

dc2
dt

= ϕq
(1 + c2)

2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
− νc2 ++D0(c3 + c1 − 2c2) +D(c3 + c1 − 2c2)

3

dc3
dt

= ϕq
(1 + c3)

2

(1 + c1)2 + (1 + c2)2 + (1 + c3)2
− νc3 ++D0(c1 + c2 − 2c3) +D(c1 + c2 − 2c3)

3

(35)
Again, for D0 = D = 0, the solution of eq. (35) reduce to the result of eq. (4). By solving
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system of eqs. (35) numerically, only stable states have been shown in the results. By taking
the different values of the parameters D and D0, we have the following observations (i), there
is a coexistance between the stable states and semi inhomogeneous states are bending towards
the central state as shown in Fig. 9 (a-b); and (ii), the range of homogeneous state is rapidly
increasing, there is coexistance between the stable states and the semi inhomogeneous states are
bending towards the central state, as shown in Fig. 9 (c-d).
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Figure 9: Same as figure 7 but for eq. (30), D0=0.001 and D=0.001 (a),D0=0.001 and D=0.002
(b), D0=0.01 and D=0.001 (c) D0=0.01 and D =0.002 (d).
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4 Conclusions

A mathematical model with three types of traffic terms: linear , non linear and the combination
of both in relation with two and three food sources have been analyzed in this work. In all cases
the food sources were considered to be identical and equidistant. For this, two parameters played
an important role: the flux (ϕ), providing a measure of the size of the colony and the number of
food sources (s) visited by the individuals. The bifurcation phenomena emerged when the two
chemical trail leading to the food sources, in which one of the trail became more attractive for
most of the individuals and clearly prevail over the other as summarized in Fig. 2a; has taken as
a reference in section 2. In the presence of the three food sources, the homogeneous state has lost
its stability at the bifurcation point. There was also coexistence between stable states when ϕ

lies between the limit points and the point of lose of stability of homogeneous state which means
mixed exploitation occurred as shown in Fig. 2b. A model have been extended by taking linear
traffic term with new parameter D. This parameter played a key role in the results. In case of two
sources, we have observed that the range of homogeneous state was increasing as shown in Fig. 4.
Similarly in case of three sources. It has been noticed that the range of homogeneous state was
increasing as have been seen in case of two sources. The domain of coexistance between the stable
states was also increasing, and this was a distinguish feature that have not been noticed in the
model without traffic term, in other word there was mixed exploitation as shown in Fig. 5. Now
a model with nonlinear traffic term with the same parameter D. In case of two sources the results
showed that stable state were bending towards the homogeneous state, means difference between
the exploitation was not big as shown in Fig. 6. Similarly, in case of the three sources, it was
difficult to solve equation analytically, so we have solved it numerically by integrating the equation
untill the system reaches at steady state and having the results; the range of homogeneous state
is increasing, it was also expected in case of two sources but was not observed. The stable states
were bending towards the central state as shown in Fig. 7. Now a model with both the linear and
the nonlinear traffic terms have been taken together, it has been analyzed that the same type of
results has been observed as in the linear and nonlinear traffic term as shown in Figs. 8 and 9.

After observing the above results we have concluded (i), enhancement of stability of the homo-
geneous state; (ii), enhancement of range of coexistance of homogeneous and semi-inhomogeneous
states; and (iii), semi-inhomogeneous states are gradually bending towards the central state.

The above derived results also arise in real world situations, where individuals can freely
circulate around and between the sources.
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