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Abstract: We study nonlinear modes in a subwavelength slot waveguide
created by a nonlinear dielectric slab sandwiched between two metals. We
present the dispersion diagrams of the families of nonlinear guided modes
and reveal that the symmetric mode undergoes the symmetry-breaking
bifurcation and becomes primarily localized near one of the interfaces. We
also find that the antisymmetric mode may split into two brunches giving
birth to two families of nonlinear antisymmetric modes.
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1. Introduction

Recent progress in nanofabrication opens novel opportunities for engineering smaller optical
devices. One of the rapidly emerging fields is the design of optical integrated circuits, which
would allow increasing functionalities of basic operating elements in information processing.
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However there exist some fundamental limits for scaling of optical elements and their over-
coming is a challenging physical and engineering problem. However, it is believed that in-
corporating metals, compatible with nowadays electronics, into optical elements would allow
overcoming the fundamental diffraction limits by exciting surface plasmons and squeezing light
into subwavelength scales. Thus, the study of plasmonic waveguides and elements are of great
interest these days.

Some basic linear plasmonic elements and devices have been proposed recently [1]. One of
the simplest plasmonic waveguides is an interface between metal and insulator that supports
plasmon polaritons; however, due to losses in metal excited plasmon propagates very short dis-
tances. Introducing three-layer system helps to increase substantially the propagation distances
due to the coupling of plasmons at the neighboring interfaces and the field concentration in
dielectric rather than metal [2]. Thus, two possible geometries seem interesting for guiding of
plasmons, namely, insulator-metal-insulator and metal-insulator-metal. In past decades, rigor-
ous linear analysis of these structures has been presented (see, for example, papers [3, 4, 5]).

Nonlinear plasmonic waveguides offer additional possibilitites for the mode control. Nonlin-
ear plasmons can be excited at the metal-dielectric interfaces where the dielectric possesses the
Kerr nonlinear response [6, 7, 8, 9]. Since only TM electromagnetic waves are supported by
a metal-dielectric interface, the corresponding nonlinear Maxwell equations involve two com-
ponents of the electric field; they cannot be solved analytically in a general case and several
approximations and simplifications have been employed. The first, uniaxial approximation was
proposed by Agranovich et al. [6] and it allows to solve Maxwell’s equations when nonlinearity
depends on the longitudinal component of the electric field. However, quite often the longitu-
dinal component is weaker than the transverse component and, therefore, this assumption is
valid only in specific cases. Stegeman et al. [7] assumed that nonlinearity is caused only by
the transverse field component; this approximation has also some limitations. The problem has
further been analyzed numerically [8, 9] and solved in quadratures [10, 11]. It was shown that
the previous approximate methods do not give a complete picture of the mode structure and
dynamics.

Based on the uniaxial approximation [7], the studies of nonlinear long-range plasmon-
polaritons in metallic films embedded into nonlinear materials have been carried out in [12].
But, to the best of our knowledge, the modes of nonlinear plasmonic slot waveguides have
not been studied yet. In this paper, we provide detailed numerical analysis of the problem
of nonlinear plasmonic slot waveguide calculating all possible nonlinear modes in the metal-
insulator-metal structure and show the mode splitting and bifurcations. We demonstrate that
the symmetric nonlinear mode undergoes bifurcation via symmetry breaking, and a new asym-
metric mode with the energy localized near one of the interfaces emerges. In addition, we
demonstrate an interesting effect of the splitting of antisymmetric modes that is associated with
the multivalued solutions for linear guided modes, which were not discussed in earlier litera-
ture [13]. Our results suggest interesting applications of nonlinear plasmonic guided modes for
power enhancement and nonlinear switching.

2. Linear guided modes

We analyze the guided modes in a symmetric slot waveguide created by a three-layer structure,
shown schematically in the inset of Fig. 1. For simplicity, we assume that metal is lossless. In
the case of low losses, we expect that the mode dispersion will be qualitatively similar, But
the losses will introduce non-zero imaginary part to the mode index, which is responsible for a
finite propagation length of the plasmons.

In such structures, only TM modes exist, so that we can present the field components in
the form, H = eyHy(x)exp(− jβ z) and E = [exEx(x)+ jezEz(x)]exp(− jβ z); also taking into
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Fig. 1. Dispersion of linear guided modes shown as the dependence of the normalized
guide index vs. normalized slot width, for different values of ρ = |εm|/εd : ρ = 1.3 (top)
and ρ = 1.05 (bottom), for symmetric (solid) and two antisymmetric modes (dashed and
dotted). Inset shows a schematic of the structure, shaded regions correspond to metal.

account that Ez is shifted in phase with respect to Ex and Hy [8]. Maxwell’s equations for TM
modes can be written in the form,

dHy

dx
= −εEz, βHy = εEx,

dEz

dx
+ βEx = Hy, (1)

where β is the effective index (propagation constant), and the coordinates x and z are normalized
to 2π/λ , where λ is free space wavelength.

The variation of the refractive index across the structure is taken in the following form,

ε =
{

εd , 0 < x < d,

εm, x < 0, x > d,
(2)

where d is the thickness of the dielectric layer.
Implying the boundary conditions of continuity of the field components H y and Ez at the

interface between metals and dielectric, we derive the dispersion relation [4] for β >
√

εd ,

tanh(λdd)[ε2
mλ 2

d + ε2
d λ 2

m]+2εmεdλmλd = 0 (3)

where λm =
√

β 2 − εm and λd =
√

β 2 − εd .
Detailed analysis of this dispersion relation [3, 4] demonstrate the existence of two types of

solutions for guided modes, with respect to the structure of the magnetic field, symmetric and
antisymmetric, also refereed in literature as even and odd modes, respectively.

A systematic analysis [5] demonstrated that the mode existence and structure are defined by
the values of the ratio ρ = |εm|/εd , so that for ρ ≤ 1 there exists only one (antisymmetric) mode
with higher cutoff with respect to the slot width d. For ρ > 1 two modes exist, symmetric, with-
out cutoff, and antisymmetric, with lower cutoff. However, our analysis reveals that at ρ close
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Fig. 2. Dispersion of nonlinear guided modes shown as the total power flow vs. guide index
for λ = 480nm, εm =−8.25, εd = 7.84, ρ = 1.05, α = 1.4×10−18(m2/V 2), and d = 25nm.

to 1 and for certain slot widths, the lower branch becomes multi-valued so that formally there
exist three modes for a fixed value of the slot width. Figure 1 presents the modal dispersion as a
function of the slot width d, at different values of ρ . As was predicted earlier [5], at ρ � 1 here
exist two modes: symmetric (solid curve), and antisymmetric (dashed curve). For ρ approach-
ing 1 we observe three modes, see Fig. 1 (bottom), symmetric mode and two antisymmetric
modes. One of the antisymmetric modes is more confined to the interfaces and has lower cutoff
(dashed curve), the other mode is less confined (dotted curve), and it appears for certain values
of the slot width [13]. Since metals are frequency dispersive, we can always find a frequency
range for different insulators where those regimes can be realized.

3. Nonlinear guided modes

We now assume that the insulator is a nonlinear dielectric with the Kerr nonlinear response.
To be more specific, we consider that the nonlinear dielectric is chalcogenite glass As 2Se3 with
self-focusing nonlinearity confined between two silver slabs. In this case, dielectric permittivity
of the nonlinear slab can be presented as follows:

εnln = εd + α(E2
x +E2

z ) (4)

where εd = 7.84, and α = 1.4×10−18(m2/V 2) is the nonlinear coefficient [14].
We choose ρ = 1.05, so that three mode regime is realized, see Fig. 1 (bottom), thus ε m =

−8.25. For silver this is realized at ν = 0.63×1015Hz (free space wavelength λ = 480nm) [15].
We solve Eqs. (1) numerically by using shooting method and find the mode profiles for

different values of the guide index and nonlinear parameter. To analyze the nonlinear modes we
calculate the total energy flux per unit length in the direction of propagation,

S =
∫

([E×H] · z)dx. (5)

and plot this value for three different values of the slot width, corresponding to different types
of linear guided waves shown in Fig. 1.

First, we analyze the guided modes when there exists only one symmetric mode in the linear
regime. For this case, we observe that for all values of the guide index β >

√
εd there appears
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Fig. 3. (a-d) Characteristic profiles of nonlinear plasmonic modes shown as the magnetic
field distribution for different branches of the dispersion curves marked by points in Fig. 4.
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Fig. 4. Dispersion of nonlinear guided modes shown as the total power flow vs. effective
guide index for d = 35nm. In the linear limit of vanishing power, the structure supports one
symmetric and two antisymmetric plasmonic modes.

an antisymmetric nonlinear mode, see Fig. 2. Even the total flux for this mode may vanish,
this nonlinear mode has no linear analog, and it requires a finite power to be excited in the
structure. Our analysis reveals that for smaller slot widths (not shown here) the total energy
flux of this antisymmetric mode becomes negative for all effective guide indices. When the slot
width grows, the total energy flux of this mode becomes positive for some values of β , see
Fig. 2. The typical mode profile is shown in Fig. 3(c).

For β � 15, a symmetric mode appears, and for larger β the flux increases up to its maximum
(S � 6mW/m) at β � 17 but then decreases again. Also, at β � 16 we observe a symmetry
breaking bifurcation (at S� 5mW/m) which leads to the appearance of an asymmetric mode and
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Fig. 5. Dispersion of nonlinear guided modes shown as the total power flow vs. guide index
for d = 50nm. In the linear limit of vanishing power, the structure supports one symmetric
and one antisymmetric plasmonic modes.

its power decreases monotonously with β . For larger β the field becomes strongly confined to
the interfaces, thus the interaction between plasmons localized at different interfaces becomes
weaker, so that the dispersion resembles that of a single interface plasmon [9]. Typical mode
profiles of symmetric and asymmetric modes are presented in Figs. 3(a,b), respectively.

For larger values of the slot width, three modes appear, and the antisymmetric mode splits
into two branches. With larger d (see Fig. 4), the character of the symmetric mode and bifur-
cated asymmetric branch does not change much. However, the bifurcation point is observed at
smaller values of power. Also, the power of the asymmetric mode reaches its maximum. The
mode profiles are shown in Figs. 3(a-d) for the marked points (1-4). Long-wave antisymmet-
ric mode (see Fig. 4, dotted) has a negative flux because the field resides mainly in metal, see
Fig. 3(d), and the mode is less confined to the interfaces in comparison to the short-wave anti-
symmetric mode, [see Fig. 4, dashed; and Fig. 3(c)]. We note that for all slot widths there is a
range of effective guide indices where several modes at different powers can coexist.

Further increase of the slot width leads to broadening of the gap between the antisymmetric
branches bringing to a degeneracy of the long-wave antisymmetric branch since it becomes
radiative. The bifurcation power decreases, and it is observed at S � 1mW/m, see Fig. 5.

4. Conclusion and acknowledgements

We have studied the families of nonlinear plasmonic modes in metal-dielectric slot waveguide
and predicted the symmetry-breaking bifurcation of the symmetric modes with the critical
power depending on the slot width. We have also discussed a complex structure of the asym-
metric plasmonic modes that originate from the multi-valued linear plasmonic modes.
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