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1. INTRODUCTION

The state of polarization (SOP) is one of the three physical

properties of an electromagnetic wave packet, besides its

number of photons and its frequency. Although the manage-

ment and measurement of the wave energy and frequency

have progressed to unprecedented levels of precision, light

SOP still remains largely elusive to control in fiber optics com-

munication systems. Indeed, despite the significant progress

in optical fiber manufacturing, because of residual birefrin-

gence or strain the SOP of a light wave remains virtually un-

predictable after propagating over a few hundred meters in a

fiber. In recent years, it has been shown that the nonlinearity

of low-birefringence optical fibers may be exploited in order

to achieve all-optical control and stabilization of the output

SOP of a signal beam. This effect is known as polarization

attraction or polarization pulling: the signal SOP stabilized

though its nonlinear interaction with a CW polarized

pump beam.

Combining the polarization degree of freedom with non-

linearity may also lead to polarization instabilities in optical

fibers. In the presence of chromatic dispersion, polarization

modulation instabilities in optical fibers may be usefully

exploited for shifting the frequency of a pump laser to new

wavelength regions, and for the generation of ultrashort bright

or dark pulse trains.

Because of the extraordinary range of physical phenomena

resulting from combining the polarization of light with the

nonlinear Kerr effect of optical fibers, it is not possible here

to provide an exhaustive review. Therefore, we have chosen

to dedicate this mini-review to the discussion of recent

progress on polarization stabilization techniques based on

the polarization attraction effect in low-birefringence fibers.

Moreover, we shall review methods to achieve wideband fre-

quency conversion based on polarization modulation instabil-

ities in birefringent fibers.

2. POLARIZATION ATTRACTION

The development of future transparent all-optical networks

demands the availability of devices for the ultrafast all-optical

SOP control, which may be enabled by exploiting the

nonlinear response of optical fibers. Depending upon the

presence of gain for the signal beam whose SOP is to be con-

trolled, there are two basic mechanisms for achieving nonlin-

ear polarization control: (i) dissipative polarizers based on

polarization-dependent gain (PDG) and (ii) lossless polarizers

exploiting cross-polarization modulation. Devices belonging

to the first class are Brillouin, Raman, and parametric ampli-

fiers. These devices do not conserve the energy of the beam

and, more importantly, because they are based on polarization

selective gain, they suffer from a large amount of output rel-

ative intensity noise (RIN). In fact, since only the input signal

polarization component which is parallel to the pump gets am-

plified, SOP fluctuations of the input signal necessarily trans-

late into large output intensity fluctuations. On the other hand,

lossless polarizers are RIN-free. Lossless polarizers come in

two varieties: in the first type of polarizers, signal SOP control

is imposed by means of the cross-polarization interaction with

a second pump beam. This interaction can occur either in a

counterpropagation or in a copropagation geometry. Counter-

propagation leads to full signal repolarization but with the

drawback of a response time of the order of the propagation

delay across the fiber length, whereas copropagation induces
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partial repolarization only; however, since it exploits a

traveling wave geometry, it has the advantage of virtually

instantaneous operation. In the second type of lossless polar-

izers, signal polarization control is determined by the self-

polarization interaction with its back-reflected replica from

a feedback mirror. In addition, more complex functionalities

such as digital polarization beam-splitting are permitted by

lossless polarizers based on the self-polarization interaction

mechanism.

A. Lossless Polarizers
Let us consider first the most intriguing and potentially useful

type of nonlinear fiber polarizers, namely lossless polarizers

based on the conservative cross- and self-polarization effect.

The first class of conservative polarizers involves the injection

of a counterpropagating CW pump with a well-defined SOP.

The operating principle of the all-optical SOP regeneration

in fibers is the following. In the presence of an intense coun-

terpropagating pump beam and for sufficiently high-power

signal powers and/or long fiber spans, all input signal SOPs

are attracted toward a well-defined SOP at the fiber output.

This attracting SOP thus acts as a sort of “polarization funnel,”

as first described by Heebner et al. for a slow photorefractive

material [1] and by Pitois and Haelterman for a fast cubic non-

linear fiber [2]. The resulting strength of signal repolarization

is largely independent of its input SOP: quite remarkably, the

operation of the nonlinear lossless polarizer is not accompa-

nied by any loss of signal power. This is in marked contrast

with the case of a linear polarizer: for an input depolarized

beam, on average 50% of the power is lost at the polarizer out-

put. Moreover, in a lossless polarizer the input signal SOP fluc-

tuations are not converted into output intensity fluctuations.

B. Theory of Lossless Polarizers
It has been known for a long time that the cross-interaction

among intense counterpropagating beams in a Kerr or cubic

nonlinear dielectric leads to a mutual rotation of their SOP [3].

Kaplan and Law [4] found exact analytical solutions which

exhibit polarization bistability and multistability, as experi-

mentally confirmed by Gauthier et al. [5]. The same process

is also responsible for leading to both spatial (or longitudinal)

[6–10] as well as temporal [11] polarization instabilities and

chaos. The general spatiotemporal stability of the nonlinear

polarization eigenarrangements (or eigenpolarizations) which

remain unchanged upon propagation in a nonlinear aniso-

tropic Kerr medium was analyzed by Zakharov and Mikhailov

[12], who pointed out the formal analogy between the equa-

tions describing the Stokes vectors associated with the SOP

of the two beams and the equations describing the coupling

of spin waves in ferromagnetic materials or the Landau–

Lifshitz model. The spatiotemporal stability of the eigenpola-

rizations was later extended to the case of an optical fiber with

linear anisotropy, i.e., with elliptical linear birefringence;

consider for example a birefringent fiber which is twisted

at uniform rate [13]. That study predicted that, for a particular

value of the ellipticity of the linear fiber eigenmodes (or the

twist rate), the polarization evolution equations for the

counterpropagating beams reduce to the chiral model of

field theory, which is completely integrable by means of the

inverse scattering transform, and exhibits polarization soliton

solutions [14–16].

In the presence of boundary conditions that fix the SOP of

the two beams at opposite ends of the fiber, it was first nu-

merically predicted [17] and later experimentally observed

[18,19] the generation of stable domains of mutual stable

SOP arrangements, separated by regions of polarization

switching or polarization domain wall (PDW) solitons. See

for example the simulation result of Fig. 1. Here we inject

two counter-rotating circularly polarized waves at opposite

ends of the fiber. As can be seen, after an initial transient stage

due to propagation delay in the fiber, the SOP of both beams

switches to the orthogonal circular polarization as if it was

attracted to the SOP of the other beam. Indeed, an absolute

minimum of the interaction Hamiltonian is reached for coun-

terpropagating waves which maintain the same circular SOP

along the fiber. For counterpropagating beams of equal inten-

sities, PDW solitons represent standing waves which remain

frozen inside the fiber, much like gap solitons in fiber Bragg

gratings [20]. However, for intensity-unbalanced beams,

the PDWs slowly move in the forward or in the backward

direction, thus enabling the readout of polarization domains

that were previously written inside the fiber. This makes PDW

solitons potentially useful for all-optical data storage applica-

tions [12,15].

Whenever a temporal polarization switching is imposed on

a pump beam at one end of the fiber, a polarization switching

is also observed in the output signal wave in order to maintain

the stable domain arrangement inside the fiber, as experimen-

tally demonstrated by Pitois et al. [18,19]. Quite remarkably,

the presence of boundary conditions in a fiber of finite length

may spoil the temporal stability of the PDW solitons, and lead

to different branches of stable polarization attractors, as it

was numerically demonstrated in the specific case of a spun

elliptically birefringent optical fiber [21,22].

In general, nonlinear polarization interaction among coun-

terpropagating waves may lead to the effective attraction of

the output signal SOP toward a particular value which is de-

termined by the SOP of the pump. The first proof-of-principle

demonstrations of the polarization attraction effect were

obtained using counterpropagating nanosecond pump pulses

Fig. 1. Simulation of PDW generation with counter-rotating circu-

larly polarized CW beams. S
�f ;b�
2

denotes the dimensionless Stokes
parameter associated with the right or left circular polarization com-
ponent of the forward or backward beam, respectively (from [18]).
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and a short span of linearly isotropic highly nonlinear fiber

[23–25]. A key breakthrough advance for the practical usage

of nonlinear lossless polarizers in telecom applications con-

sisted in the demonstration of 10 Gbit/s on–off-keying

(OOK) signal repolarization induced by a sub-Watt CW pump

in a few km long span of telecom nonzero-dispersion-shifted

fiber (NZDSF) [26,27]. The relevance of this result, which was

largely unexpected, stems from the fact that it demonstrates

the robustness of nonlinear polarization attraction even in the

presence of a locally much stronger linear anisotropy or

birefringence, which varies randomly along the fiber.

In fact, as theoretically demonstrated by Kozlov et al.

[28,29], in the presence of rapidly varying (with respect to

the nonlinear interaction length) random linear birefringence,

one may obtain averaged propagation equations which de-

scribe the nonlinear cross-polarization interaction among

the signal and the counterpropagating pump with a good level

of accuracy. The availability of a relatively simple determin-

istic model for describing nonlinear lossless polarizers based

on randomly birefringent telecom fibers provides a key tool

for numerically estimating their performance. Moreover, the

properties of steady-state solutions of the averaged polariza-

tion evolution equations may be described in terms of math-

ematical techniques developed for the study of Hamiltonian

singularities [30]. Such approach has led to the interesting ob-

servation that polarization attraction is closely linked with the

existence of singular tori or multidimensional separatrix sol-

utions [31–33]. A rigorous analytical mathematical proof of the

process of temporal relaxation of the signal wave SOP toward

a single attracting SOP is not yet available, mostly because of

the complication imposed by the boundary conditions in a

fiber of finite length. However, a simple understanding of

the physical origin of polarization attraction may be given by

proving that this effect is associated with the presence of spa-

tiotemporally stable stationary solutions, whereas all other

stationary solutions are unstable, so that their decay toward

the stable or attracting polarization arrangements occurs in

the experiments [34].

Consider the conservative polarization interaction between

intense signal and counterpropagating pump beams in a ran-

domly birefringent telecom optical fiber span. The dimension-

less evolution equations for Stokes vector of the forward

signal beam, S⃗
�
� �S�

1
; S�

2
; S�

3
�, and of the backward pump

beam, S⃗
−

� �S−
1
; S−

2
; S−

3
�, read as [28,29]

�∂t � ∂z�S⃗
�
� S⃗

�
× Ĵ×S⃗

−

;

�∂t − ∂z�S⃗
−

� S⃗
−

× Ĵ×S⃗
�
; (1)

where z is distance, t is time, × denotes the vector cross

product, and the cross-polarization tensor is defined as

Ĵ× � diag�−1; 1;−1�. No fiber loss has been taken into account

because of the relatively short lengths (up to 10 km) of fiber

involved in devices based on the polarization attraction effect.

In this case, the beam powers are conserved quantities. The

average Eqs. (1) are justified in the so-called Manakov limit

[35], namely, whenever both the nonlinear length LNL ≡

1∕λS�
0

(here γ is the nonlinear Kerr coefficient and S�
0

is

the power of the forward signal beam) and the total fiber

length L are much shorter than the polarization mode

dispersion (PMD) diffusion length LD ≡ 3∕D2
p�ω� − ω

−
�2,

where Dp is the PMD coefficient and ω� are the angular

frequencies of the two beams [36,37]. Cross-polarization

interactions in different types of fibers (e.g., perfectly iso-

tropic, high-birefringence, or spun fibers) are described by

equations similar to Eqs. (1) but including an additional

self-polarization rotation term.

Equations (1) can be conveniently reduced to a symmetric

form by using the new Stokes vector definitions S⃗ � S⃗
�
and

H⃗ � −Ĵ×S⃗
−

, so that

�∂t � ∂z�S⃗ � H⃗ × S⃗;

�∂t − ∂z�H⃗ � H⃗ × S⃗; (2)

hold, in addition with the boundary conditions S⃗�0� � S⃗0 and

H⃗�L� � H⃗L. In the steady-state, i.e., whenever ∂tS⃗ � ∂tH⃗ � 0,

Eqs. (2) have the exact analytic solution

μ � F�η� �
�Hη� S��H � Sη�

H2 � S2 � 2HSη
�1 − cos ΩL� � η cos ΩL; (3)

where

η �
�H⃗L · S⃗L�

HS
; μ �

�H⃗L · S⃗0�

HS
; (4)

represent the alignment factor between the input pump at

z � L, and the signal at either the output z � L or the input

z � 0 end of the fiber, respectively; moreover, Ω⃗ � H⃗ � S⃗,

H2 � H⃗ · H⃗, and S2 � S⃗ · S⃗, which remain invariant along

the fiber, i.e., ∂zΩ⃗ � ∂zS � ∂zH � 0. By inverting Eq. (3),

one may obtain the pump-signal polarization alignment at

the fiber output η as a function of their alignment at the re-

spective fiber input, or μ.

Figure 2(a) provides a graphical illustration of the solution

of Eq. (3) for equal signal and pump intensities. As can be

seen, for a given μ there are in general multiple branches

of solutions for the output polarization alignment η. However,

the numerical stability analysis of the stationary solution of

Eq. (3) shows that only the lowest branch, corresponding

to the lowest value of the output SOP alignment η, is tempo-

rally stable [34]. As can be seen in Fig. 2(a), for relatively large

beam powers or fiber lengths, in the lowest branch of the sol-

ution of Eq. (3) one obtains an antiparallel output alignment

η ≅ −1 for any input signal-pump alignment μ, namely, for any

signal SOP value at the fiber input. In other words, irrespec-

tive of its initial value, the SOP of the signal is attracted toward

an output SOP which is orthogonal to the polarization of the

input counterpropagating pump. This property is visualized in

Fig. 2(b), where we show the dependence of the averaged

(over the input signal SOP) output polarization alignment

of the signal, as a function of its power. Figure 2(b) also shows

that, for obtaining efficient polarization attraction, the powers

of the signal and pump should be matched. In fact, the overall

picture of the domain of polarization attraction as a function

of pump and signal powers is given in Fig. 2(c). As can be

seen, for relatively small powers of either the pump or the sig-

nal, there is only one stable branch of stationary solutions of

Eq. (3) and no global polarization attraction is observed

(white region). Conversely, for high signal and pump powers

(shaded region) there is a stable branch of solutions of

Eq. (3) which leads to polarization attraction. However, this
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polarization attraction is not global (i.e., it does not cover the

entire Poincaré sphere for the signal SOP), unless H � S and

H, S > π∕2L, in which case the analysis of the algebraic

curves defined by Eq. (3) shows that polarization attraction is

obtained for all values of the initial alignment −1 ≤ μ ≤ 1

(dashed red line). Although the previously described analyti-

cal approach provides valuable insight into the physical

mechanism for polarization attraction, for practical purposes

the optimization of the design and estimation of the perfor-

mance of a lossless polarizer requires extensive numerical

computations [38].

C. Experiments with Lossless Polarizers
Let us describe now two examples of experimental studies of

nonlinear lossless polarizers, which demonstrated the regen-

eration of the SOP of 40 Gbit∕s OOK return-to-zero (RZ)

signals. The initial setups involved an independent CW coun-

terpropagating pump [39,40]. The polarization-scrambled

input signal was injected into a low-PMD fiber with normal

group velocity dispersion (GVD). The 40 Gbit∕s RZ signal

was generated by means of a 10 GHz mode-locked fiber laser

delivering 2.5 ps pulses at 1564 nm. A programmable liquid-

crystal-based optical filter was permitted to temporally spread

the initial pulses so as to obtain 7.5 ps Gaussian pulses by

spectral slicing. The resulting pulse train was intensity modu-

lated by a LiNbO3 modulator through a 231 − 1 pseudo-random

bit sequence. A 2-stage bit-rate multiplier was used to generate

the 40 Gbit∕s RZ bit signal stream. Large and fast fluctuations

of the signal SOP were induced via a polarization scrambler

operating at 650 Hz. Before injection into the fiber, the

40 Gbit∕s signal was amplified by means of an erbium-doped

fiber amplifier to the average power of 27 dBm. The fiber used

for demonstrating the polarization attraction effect was a

6.2 km long nonzero dispersion-shifted fiber (NZDSF) with

chromatic dispersion D � −1.5 ps∕nm∕km at 1550 nm, non-

linear parameter γ � 1.7 W−1 km−1, and PMD coefficient

Dp � 0.05 ps∕km1∕2. Two optical circulators were inserted

at both fiber ends, so as to inject and collect both waves.

The external pump was provided by a 1 W continuous in-

coherent wave with fixed but arbitrary SOP, the spectral line-

width of 100 GHz and the central wavelength of 1545 nm. At

the receiver, a polarizer was inserted for translating SOP fluc-

tuations into intensity fluctuations. Behind the polarizer, the

40 Gbit∕s eye diagram was monitored by means of an optical

sampling oscilloscope, and the signal SOP was also recorded

onto the Poincaré sphere using a polarimeter.

The efficiency of polarization attraction was experimentally

measured by evaluating the output signal degree of polariza-

tion (DOP) as a function of pump power. The DOP is defined

as DOP �
��������������������������������������������������

hS�
1
i2 � hS�

2
i2 � hS�

3
i2

q

, where hi denotes averag-

ing over 256 randomly chosen input polarizations. As can be

seen in Fig. 3, the DOP of the signal wave, which has initially a

low level due to its initial scrambling, increases and reaches

Fig. 2. (a) Relation between output η and input μ polarization alignment parameters. (b) Output signal-pump average polarization alignment
parameter versus signal beam power, for different values of pump power. (c) Diagram of different polarization attraction regimes (reprinted from
[34] with permission from Elsevier).

Fig. 3. Experimental DOP as a function of pump power (from [40]).
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unity as the pump power grows above 500 mW. Note that this

threshold pump power corresponds to the condition of equal

average signal and pump powers.

The performances of polarization attraction were quanti-

fied in real-time by means of the SOP monitoring and eye

diagram visualization (see Fig. 4). Without the pump beam,

because of the initial polarization scrambling process, the sig-

nal SOP is uniformly spread onto the whole Poincaré sphere

[Fig. 4(a1)], so that the eye diagram behind the polarizer is

completely closed [Fig. 4(b1)]. On the other hand, in the

presence of the pump beam all output signal SOPs collapse

to a small spot on the Poincaré sphere [Fig. 4(b1)]. The

corresponding output eye diagram of Fig. 4(b2) is fully open,

thus confirming highly efficient polarization attraction.

When a separate pump beam is used, the output signal SOP

depends on the input pump SOP. Let us now consider replac-

ing the pump with an output reflective element composed of a

fiber coupler (90/10), a polarization controller, and an EDFA

[40,41]. The corresponding reflection coefficient R is defined

as the ratio between the powers of reflected and input signals:

thanks to the active control loop, R can be lower than, equal

to, or larger than one. Quite remarkably, with the adjustable

mirror the output signal SOP remains circularly polarized,

irrespective of the SOP of the back-reflected wave. Figure 5

shows the evolution on the Poincaré sphere of the signal SOP

at the fiber output for different values of R. As can be seen, for

R � 0.32 all SOPs in the north (south) hemisphere, corre-

sponding to right (left) SOPs, are partially attracted toward

the corresponding pole. Whenever R � 0.68, the output SOPs

remain confined in two small spots around the two poles (i.e.,

the right- or left-handed circular polarizations): the fiber op-

erates as a digital beam splitter for the SOP of light. As R is

increased up to R � 0.78, the domain of attraction which was

previously located around the south pole loses stability, and

all of the output signal SOPs get attracted by the north pole.

Global (i.e., with equal strength irrespective of the input SOP)

polarization attraction is reached for R � 1.14: all the SOPs of

the output signal wave remain localized within a small surface

around the north pole. Note that full convergence around the

south pole could also be observed, depending on the setting

of a polarization controller which is inserted into the

reflective loop.

From the practical viewpoint, an important parameter is the

maximum operating speed of a nonlinear lossless polarizer. In

fact, theory and experiments agree well in evaluating the sig-

nal propagation delay through the fiber span as a typical es-

timate of the response time of the nonlinear polarizer [42]. As

a result, polarization tracking speeds of 200 krad∕s could be

reached when using a 6 km long NZDSF [43]. Nonlinear SOP

regenerators may have their operating power levels or asso-

ciated fiber length much reduced, by using highly nonlinear

and birefringent or spun optical fibers [44,45].

Since polarization attraction is based on the virtually

instantaneous Kerr response mechanism of silica fibers, ultra-

fast signal polarization control may be achieved by exploiting

the nonlinear cross-polarization interaction with a copropa-

gating CW pump at a different carrier frequency. However,

in the copropagating regime the efficiency of polarization at-

traction is much reduced when using CW beams: the peak

signal DOP is equal to 0.73 and its asymptotic value is as

low as 0.5 [46]. Nevertheless, signal DOPs above 0.8 can be

obtained even in the copropagating pump configuration by

cascading multiple lossless polarizers. Moreover, in the prac-

tical relevant case of short signal pulses, the output DOP may

be substantially increased by properly increasing the temporal

walk-off between the signal pulses and the CW pump. In fact,

in the presence of group-velocity-induced walk-off, the signal

meets fresh portions of the original polarized CW pump

as it propagates; hence, the efficiency of repolarization is

increased [47].

Lossless polarization attraction in high-birefringence fiber

has been recently experimentally studied: in this case, one

may obtain attraction toward a specific line of SOPs on the

surface of the Poincaré sphere, instead of a particular polari-

zation state [48]. This shows that the properties of polarization

attraction strongly depend on the linear and nonlinear

anisotropy properties of the optical fiber. Moreover, based

on the polarization bistability shown in Fig. 2(a), it was pos-

sible to demonstrate the application of lossless polarization

attraction to implement an all-optical flip-flop memory and

data packet switching operation [49].

D. Dissipative Polarizers
As it is well-known, stimulated Brillouin, Raman, and paramet-

ric amplifications in optical fibers are strongly polarization

Fig. 4. (a) Output SOP and (b) eye diagram behind a polarizer of the
40 Gbit∕s signal with input SOP polarization scrambling (1) without
and (2) with the counterpropagating pump wave (from [40]).

Fig. 5. (a) Evolution of the signal SOP at the reflective polarizer out-
put for different values of the reflection coefficient R (from [40]).

2758 J. Opt. Soc. Am. B / Vol. 31, No. 11 / November 2014 G. Millot and S. Wabnitz



dependent. In fact, in all of these cases, virtually the polariza-

tion component of the signal which is parallel to the pump

beam only experiences gain, whereas the orthogonal compo-

nent is not amplified. In optical fibers, the situation is more

complicated because of the presence of linear birefringence.

As in all stimulated scattering processes the pump and the

signal beams have different wavelengths, and because of

the wavelength dependence of linear birefringence, after a

certain distance the SOP of the signal is decorrelated with

respect to the SOP of the pump. As a result, whenever the am-

plification distance is longer than the PMD diffusion length LD,

the pump SOP is effectively scrambled by fiber birefringence.

Therefore, in this limit case, which we define as the diffusion

regime, the signal experiences a depolarized or polarization-

averaged gain which is simply half of the maximum gain that is

obtained for parallel pump and signal SOPs [50].

The situation is drastically different when an ultralow PMD

fiber is used for signal amplification by using either paramet-

ric or stimulated scattering in the presence of high-power

pump waves. In this case, the nonlinear length may be smaller

than the diffusion length LD. Therefore, the signal is amplified

well before birefringence-induced decorrelation among the

signal and the pump SOPsmay take place. As a result, because

of the polarization-selective gain, in this limit (which, as it was

the case for lossless polarizers, is also defined as the Manakov

limit) the signal SOP is effectively pulled (or attracted) toward

the pump SOP.

Polarization attraction using a Raman gain-activated polar-

izer was numerically studied [51,52] and experimentally vali-

dated in Ref. [51]. In that work, its authors have shown that

initially unpolarized light is amplified and, as the copropagat-

ing pump power grows larger, is simultaneously repolarized

after propagation in a low-PMD, randomly birefringent

dispersion-shifted fiber. Namely, the SOP of the signal beam

at the output of the fiber is attracted toward the SOP of the

outcoming pump beam (see Fig. 6). Stimulated by this result,

theoretical descriptions of the operation of Raman polarizers

in both copropagating and counterpropagating configurations

were subsequently developed [53,54]. Moreover, the possibil-

ity of suppressing the output signal RIN by operating in the

pump saturation regime was proposed [55], and the possible

application of a Raman polarizer to the simultaneous amplifi-

cation and repolarization of multiple wavelength channels

was also numerically demonstrated [56].

Quite remarkably, in either the diffusion or the Manakov

limit situation the operation of a Raman polarizer may be

described by means of a simple and analytically tractable

model. In the diffusion limit the polarizer acts as a standard,

depolarized Raman amplifier, whereas in the Manakov limit

the Raman polarizer behaves as an ideal polarizer, leading

to the complete alignment of the output signal SOP with

the pump SOP [57].

Let us consider the propagation of signal and pump beams

in a few kilometers long span of low-PMD, randomly birefrin-

gent telecom fiber. A detailed vectorial theory of Raman am-

plification in randomly birefringent or spun optical fibers was

developed by Lin and Agrawal [58] and Sergeyev et al. [59],

respectively, for describing the operation of depolarized stan-

dard Raman amplifiers (i.e., in the diffusion limit). Namely,

these studies analyzed the statistics of PMD-induced fluctua-

tions of the intensity of the amplified signal. On the other

hand, in the Manakov limit the evolution of the Stokes vector

of the signal S⃗
s
obeys

∂zS⃗
s
� S⃗

s
× Ĵ×S⃗

p
�

g

2
�S

p
0
S⃗
s
� Ss

0
ĴRS⃗

p
�; (5)

where S⃗
p
is the Stokes vector of the pump beam, and g is

the ratio of Raman gain and Kerr coefficients of the fiber.

Moreover, the cross-polarization rotation tensor Ĵ× �

diag�−1;−1;−1� and the Raman tensor ĴR � diag�1; 1; 1� for

a copropagating pump, whereas Ĵ× � diag�−1; 1;−1� and ĴR �

�1∕3�diag�1;−1; 1� for a counterpropagating pump, respec-

tively. In both cases, Eq. (5) may be analytically solved. By de-

fining the average (over the ensemble of input signal SOPs

which are supposed to be equally distributed on the Poincaré

sphere) output gain as G ≡ hSs
0
�z � L�i∕hSs

0
�z � 0�i, one ob-

tains for G and the DOP in the codirectional geometry

G �
1� exp�gPL�

2
; DOP � 1 −

1

G
: (6)

On the other hand, in the counterdirectional case one has

G �
exp�2gPL∕3� � exp�gPL∕3�

2
; DOP � 1 −

����

2

G

r

: (7)

Moreover, in both cases simple analytical expressions can also

be found for the PDG (i.e., the difference between maximum

and minimum gain), as well as for the RIN variance [57]. By

comparing Eqs. (6) and (7), it turns out that the average signal

gain is larger in the copropagating geometry, but in

both cases the gain is larger than in the case of a standard

Raman amplifier operating in the diffusion limit, where

G ∝ exp�gPL∕2�. On the other hand, the counterpropagating

ideal Raman polarizer has the advantage that the signal SOP

is attracted toward the fixed input pumpSOPat z � L, whereas

in the copropagating geometry the signal is attracted

Fig. 6. Output signal SOP from a copropagating Raman polarizer,
visualized on the Poincaré sphere for a scrambled input SOP. The in-
put polarized pump power was (a) 0.6 W, (b) 0.75 W, (c) 1.3 W, and
(d) 2.2 W (from [51]).
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toward a generally unknown output pump SOP at z � L, which

moreover is subject to environmental fluctuations of the linear

birefringence of the fiber.

A detailed experimental verification of polarization attrac-

tion in a Raman polarizer operating in the counterpropagating

geometry was performed by Chiarello et al. [60]: the validity of

Eq. (7) was confirmed for relatively short lengths of NZDSF

(see Fig. 7). For fiber lengths larger than about 6 km, the

repolarization is reduced because of gain saturation, as well

as the PMD-induced polarization decorrelation between the

pump and signal [61].

As we have seen, Raman polarizers are also very efficient

Raman amplifiers (with a doubled gain coefficient in the

codirectional geometry). However, they suffer from large

PDG because all input SOP fluctuations are amplified into

large intensity fluctuations; hence, the resulting high RIN se-

verely limits their potential application. In order to achieve

efficient signal SOP pulling with much reduced PDG, it has

been proposed by Sergeyev to use a two-stage approach by

using a cascade of two fibers [62–64]. The first fiber has a fast

spinning of the local birefringence axes, so that the SOP of the

pump and signal is fully decorrelated at its output, for any

value of the input signal SOP. The second fiber exhibits a slow

spinning of the fiber axes, thus acting as a classical Raman

polarizer which pulls the signal SOP toward the pump SOP.

The polarization decorrelation introduced by the first fiber

leads to much reduced input SOP fluctuations (hence, output

RIN) for the subsequent Raman polarizer.

Similar to Raman-based polarizers, dissipative polarizers

may also be based on stimulated Brillouin scattering. In fact,

pulling of the signal polarization toward the pump SOP has

been theoretically analyzed and experimentally demonstrated

in Brillouin amplifiers [65–67].

Besides stimulated Raman and Brillouin scattering, polari-

zation attraction may also occur in parametric four-photon

scattering processes in optical fibers. For example, it has been

theoretically predicted that FWM in a highly birefringent op-

tical fiber in the presence of a dual-polarization pump wave

may lead to polarization attraction for the Stokes and anti-

Stokes waves both in the normal and in the anomalous

dispersion regime [68]. The impact of random birefringence

on vector FWM processes in optical fibers was studied by

Lin and Agrawal [69,70] and McKinstrie et al. [71]. In the

anomalous dispersion regime, parametric amplification or

induced modulation instability in a low-PMD fiber operating

in the Manakov limit leads to polarization attraction of both

the signal and the generated idler toward the same SOP of

the pump [72]. The averaged equations describing three-wave

mixing in a parametric polarizer based on a randomly birefrin-

gent telecom fiber were derived in Ref. [73], and efficient

polarization attraction was experimentally demonstrated by

using a low-PMD highly nonlinear fiber by Stiller et al. [74].

Since parametric and Raman scattering are simultaneously

present in optical fibers [75], they can be exploited in combi-

nation with polarization cross-modulation in order to achieve

efficient polarization attraction. Moreover, it has been

theoretically demonstrated that polarization pulling in a

low-PMD Raman amplifier is broadband: its bandwidth

extends over about 60 nm around the Raman peak Stokes shift

of 13.2 THz [76]. As a result, broadband polarization attraction

resulting from the combination of Raman amplification and

cross-phase modulation was experimentally observed both

in a few meters of isotropic fiber [23], as well as in a few

km long randomly birefringent telecom fiber [77].

3. CROSS-POLARIZATION MODULATION-
INDUCED MODULATIONAL INSTABILITY

The interplay of the optical Kerr effect and chromatic

dispersion may lead to a large and diverse set of fascinating

physical effects. A typical example of such effects is the

phenomenon of modulational instability (MI): weak periodic

perturbations of an intense carrier pump wave grow exponen-

tially, leading to energy shedding of the pump wave into new

frequencies within a certain spectral bandwidth [78–81]. Seed-

ing the pump instability by the injection of a small-signal wave

is commonly called induced-MI. In the temporal domain,

induced-MI may lead to the breakup of a CW into ultrashort

trains of pulses [82] with a repetition rate fixed by the signal

frequency detuning from the pump wave. Another interesting

application of MI is the frequency conversion of a single side-

band signal, which, in the limit of weak conversion, yields

phase conjugation. In this case, the MI process can be simply

explained by considering the phenomenon as a four-photon

mixing process, in which two pump photons are transferred

to two symmetric sidebands (Stokes and anti-Stokes side-

bands) whose frequencies are given by a phase matching con-

dition [83]. Since in optical fibers the nonlinear coefficient is

positive, the phase matching condition requires a negative

GVD. Thus, scalar MI can only exist in the anomalous

dispersion regime. However, scalar MI can also be observed

for normal dispersion with different processes: first through

the fourth-order dispersion with a negative coefficient [84–

86], second through the boundary conditions of a cavity

[87–89], and finally through periodic dispersion management

[90–93]. Another mechanism that also leads to MI in the

normal dispersion regime was first pointed out by Berkhoer

and Zakharov, considering the nonlinear coupling between

two different modes via cross-phase modulation [94]. Sub-

sequently, several experiments with two orthogonal linear po-

larizations were performed in the normal dispersion regime,

using either an isotropic fiber [95], a low-birefringence fiber

[96,97], or a high-birefringence fiber [98,99]. This type of MI

Fig. 7. Measured signal DOP for a counterpropagating Raman polar-
izer as a function of the gainG for different pump (Pin) and signal (Sin)
input powers, and for four different fiber lengths L. Dashed curves
represent Eq. (7) (from [60]).
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was also observed with two spatial modes of a slightly

multimode fiber [100]. It is also possible to consider the non-

linear coupling between two pumps with different wave-

lengths and parallel states of polarization [101]. However,

in this case MI has not been observed because of the simulta-

neous presence of FWM [102]. The situation is different if we

consider two WDM pumps with orthogonal states of polariza-

tion. In this case, MI has been observed in the normal

dispersion regime by using either two orthogonal linear polari-

zation modes of relatively short samples of high-birefringence

optical fibers [103] or two orthogonal circular polarization

modes of short samples of isotropic fibers [104]. In fact, as

the group velocity mismatch between the two orthogonal

modes is large, the MI gain is narrowband, and the FWM

among the two pumps is effectively suppressed.

Here, we review some results obtained on MI induced by

cross-polarization modulation (XPolM-MI). From a theoretical

point of view, XPolM-MI is directly derived by two coupledNLS

equations [78]. In Subsection 3.A, we study the case of low-

birefringence fibers, whereas in Subsection 3.B we discuss

the case of high-birefringence fibers. Finally, in Subsection 3.C

we consider the case of random birefringence fibers.

A. Polarization Modulation Instability in
Low-Birefringence Fibers

1. Fast- and Slow-Axis Asymmetry
Polarization modulation instability (PMI) occurs when a

strong pump wave launched on one axis of a relatively

low-birefringence optical fiber generates a pair of Stokes and

anti-Stokes sidebands that are polarized orthogonally to the

pump wave. This process occurs in both dispersion regimes,

and may exhibit widely different characteristics, depending

on the polarization of the pump wave with respect to the op-

tical fiber axes [96]. For example, in the normal-dispersion re-

gime a pump beam can be modulationally unstable with its

polarization along either the slow or fast axis, but in the latter

case the input power must be larger than a threshold value Pt.

On the other hand, the frequency dependence of the gain ex-

hibits qualitatively different characteristics for fast and slow

modes, as illustrated in Fig. 8 with a pump power Pp �

112 W � 1.6Pt and for the experimental conditions

described in Ref. [105]. Here the solid and dashed curves were

obtained for a pump aligned with the slow and the fast axes,

respectively, of the ultralow-birefringence spun fiber. As can

be seen in Fig. 8(a), a strong asymmetry appears between the

fast and the slow modes. Indeed, in the case of fast-axis ex-

citation the gain is almost flat for sideband detunings ranging

from zero to a certain upper value determined by linear bire-

fringence and pump power. Note that the fact that the MI gain

curve extend at zero frequency is a signature of the fast-axis

polarization instability [10]. On the other hand, for a pump

aligned with the slow axis of the birefringent fiber, the PMI

gain extends over a narrow band of frequencies ranging from

a given frequency detuning that depends on linear birefrin-

gence to an upper frequency detuning that depends on both

linear birefringence and pump power. The asymmetrical PMI

behavior of the fast and slow axes was experimentally

observed in relatively short samples of spun fibers by pumping

either the fast or slow fiber axis with an intense pump beam

weakly modulated by a small signal beam. Figure 8(b) shows

the spectra observed at the fiber output when light was

injected along each axis and with different signal frequency

detunings. Here the pump and the signal powers were Pp �

112 W and Ps � 1.1 W, respectively. In Figs. 8(b1) and

8(b2) the pump was aligned with the fast axis, whereas in

Figs. 8(b3) and 8(b4) the pump was oriented along the slow

axis. Moreover, in Figs. 8(b1) and 8(b3) the signal frequency

detuning was 0.3 THz, whereas in Figs. 8(b2) and 8(b4) this

detuning was increased to 1.2 THz. As can be seen in

Fig. 8(b1), with the small sideband detuning of 0.3 THz the

fast fiber mode is modulationally unstable, in agreement with

the theoretical predictions illustrated in Fig. 8(a). Moreover,

Fig. 8(a) shows that the first harmonic of the initial modula-

tion (at the frequency detuning of 0.6 THz) also falls within the

gain band of PMI for the fast axis. The linear instability of the

first harmonic is seeded by the FWM between the pump and

the signal, which favors the conversion into further harmonics

of higher order. On the other hand, Fig. 8(b) clearly shows that

with slow-axis pumping the signal emerges from the fiber

unamplified by the pump, and no significant idler wave is

Fig. 8. (a) MPI gain versus sideband frequency detuning from a 112 W CW pump: solid (dashed) curve, pump on the slow (fast) axis. (b) Ex-
perimental spectra at the fiber output (on a logarithmic scale), with an input pump polarized along either (b1) the fast axis or (b3) the slow axis. The
pump (signal) power is 112 (1.1) W, and the probe frequency detuning is 0.3 THz. (b2), (b4) As in parts (b1) and (b3) with a probe detuning of
1.2 THz (from [105]).
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generated. Indeed, Fig. 8(a) shows that the slow mode is

stable for the small sideband detuning of 0.3 THz. A similar

situation occurs with fast-axis pumping and a relatively large

detuning of 1.2 THz. Indeed, Fig. 8(b2) does not show any

FWM gain whenever the pump is on the fast axis, again in

agreement with the gain spectrum of Fig. 8(a). Finally,

Fig. 8(b4) shows, in agreement with the theoretical prediction,

that efficient mixing is recovered with slow-mode pumping. In

this case, a deep polarization modulation of the pump wave is

observed and no higher-order sidebands are generated, owing

to the relatively narrow PMI gain curve of Fig. 8(a) (with

slow-axis pumping).

Let us note that a theoretical investigation showed that PMI

in low-bi fibers in the normal-GVD regime is also present for

an arbitrary input polarization of the pump wave [106]. On the

other hand, a convenient possibility of tuning the spectral

profiles of PMI gain was demonstrated with a periodic evolu-

tion of the birefringence obtained by concatenating fibers

with different linear beat lengths [107].

2. Pump Depletion Effect
In the frequency-domain description of the MI process, two

pump photons are annihilated while a pair of downshifted

and upshifted photons are created by the three-wave mixing

parametric interaction in the fiber. The momentum conserva-

tion leads to wave-vector matching or to the so-called

phase-matching condition, which determines the peak gain

modulation. It is widely accepted that the phase-matching

frequency also yields the maximum degree of frequency con-

version. In other words, the MI peak gain frequency is

identified with the optimal input signal detuning. However,

Trillo and coworkers [108–113] have shown that this is only

correct in the first stage of the propagation of the pump wave

and for sufficiently weak input signals. Indeed, whenever the

fiber length is such that a substantial fraction of pump energy

is coupled into the sidebands, the optimal input signal detun-

ing may strongly deviate from the usual MI small-signal pre-

dictions even for relatively weak (i.e., a few percent of the

pump power) input signals [108–113]. The nonlinear stage

or strongly depleted regime of PMI was investigated by injec-

tion of a signal orthogonally polarized with respect to the

pump beam along the slow axis of a normally dispersive fiber.

Under slow-axis pumping the parametric gain bandwidth is

relatively narrow [see Fig. 8(a)], and higher-order sidebands

can be neglected (three-wave mixing approximation). Hence,

the depleted regime of PMI was described in this case by an

integrable set of two coupled ordinary differential equations

(three-wave model).

The efficiency of conversion of photons from the pump into

both modulational sidebands versus signal detuning is dis-

played by the results given in Figs. 9(a)–9(f). More precisely,

Fig. 9 shows a set of experimental spectra recorded for in-

creasing values of the signal frequency detuning [112]. The

peak pump power and the signal fraction are equal to 160 W

and 5%, respectively. As can be seen in this figure, whenever

the signal frequency detuning is increased progressively from

0.6 to 1.352 THz, the conversion increases rapidly when the

modulation frequency is above 0.83 THz and decreases more

slowly above 0.9 THz. This is in good agreement with theoreti-

cal predictions plotted in Fig. 9(g) together with experimental

results. In fact, a global representation of the output idler en-

ergy fraction measured against the pump signal frequency de-

tuning is shown in Fig. 9(g). In Fig. 9(g) the experimental data

(stars) are compared with the predictions of the three-wave

model (solid curve). The experimental data of Fig. 9(g) show

that the highest idler energies (about 18%, corresponding to

about 36% of pump depletion) are measured around 0.9 THz,

which is substantially lower than the optimum frequency de-

rived from the linear stability analysis f opt � 1.4 THz (phase

matching frequency). Such enhancement of the frequency

conversion for signal frequency detunings that lie outside

the small-signal PMI gain spectrum (dashed curve) is a clear

signature of the large-signal PMI. Indeed, in the undepleted-

pump approximation the pump instability domain ranges from

0.96 to 1.72 THz, with a maximum gain at f opt � 1.4 THz.

Figure 9(g) shows that the overall agreement between the

three-wave model (solid curve) and the experimental data

is very good.

In conclusion of this part, the studies of Trillo and cowork-

ers clearly reveal that the strongest transfer of energy from the

pump into the sidebands occurs outside the parametric

gain bandwidth or, in other words, under conditions of

Fig. 9. Output experimental spectra for the peak pump power of 160 W and the pump signal detunings (in THz) (a) 0.6, (b) 0.825, (c) 0.9, (d) 1.047,
(e) 1.2, and (f) 1.352. (g) Measured (symbols) and theoretical (solid curve) idler energy conversion versus pump signal detuning with pulsed waves
for Pp � 160 W and α � 55%. Dashed curve, small signal MPI gain bandwidth (from [112]).
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modulational stability of the pump beam. This proves that the

optimum signal frequency deviates significantly from the

prediction of the linear stability analysis or the usual phase-

matching argument. Therefore, the message we want to con-

vey is that in the regime of strong frequency conversion (or

strong pump energy depletion), one must not apply the usual

formulas of phase matching for finding the frequency at which

the MI gain is maximum. The second message we want to con-

vey is that an efficient energy transfer from the pump to the

two sidebands (about 20% in each sideband) could be

achieved by using the process of polarization MI. Finally,

we wish to note that similar properties have been observed

using vector MI in high-birefringence fibers [114,115].

3. Polarization Modulation Instability in
Photonic Crystal Fiber
Polarization modulation instability has been also observed in

birefringent photonic crystal fibers (PCF) in the normal

dispersion regime [116]. Figure 10 shows the spectrum of light

on the slow [Fig. 10(a)] and the fast [Fig. 10(b)] axes emerging

from the output end of the fiber, recorded for a peak pump

power Pp � 60 W at the input. The pump was linearly polar-

ized along the slow fiber axis. The two PMI sidebands can be

clearly seen on the orthogonal fast fiber axis, as expected. The

weak line observed at the right of the pump peak corresponds

to the stimulated Raman peak at 13.2 THz from the pump fre-

quency. But the most remarkable feature here is the large fre-

quency shift of 64 THz between the generated frequencies and

the pump frequency. This large value of the frequency shift,

when compared with that obtained in the previous experi-

ments (see Fig. 8), is due to the smaller value of the dispersion

and the higher value of the phase birefringence. This perfor-

mance was possible thanks to the extraordinary dispersion

engineering properties offered by PCFs [117].

B. Modulation Instability Induced by Cross-Polarization
Modulation in High-Birefringence Fibers

1. Generation of Vector Dark Soliton Trains
As mentioned above, induced MI may lead in the time domain

to the breakup of a quasi-CW pump wave into a train of

ultrashort pulses [118,119]. The repetition rate of the pulses

is given by the modulational frequency, which is equal to the

detuning between the signal and the pump waves. The tempo-

ral shape of these ultrashort pulses depends not only on the

powers of the different waves but also on the modulational

frequency [105]. In particular, trains of dark solitons with a

terahertz repetition rate have been generated by modulational

instability induced by cross-polarization modulation (XPolM-

MI) in ultralow birefringence optical fibers [120]. Moreover,

families of vector dark soliton solutions were found for the

coupled NLS equations that apply to highly birefringent

(hi-bi) fibers [121].

By exploiting hi-bi fibers operating in the normal dispersion

regime, it has also been possible to observe vector MI as well

as the generation of vector dark soliton trains at repetition

rates of 2.5 THz [122,123]. The fiber used in the experiments

of Seve et al. was a 1.8 m length of hi-bi fiber, equally pumped

on the fast and slow axes by a 56 W peak power wave. MI was

induced by injecting on the slow axis a weak 2.1 W peak

power signal with a 2.5 THz detuning from the pump. The

technique of frequency-resolved optical gating (FROG) was

used to completely characterize the intensity and phase of

the dark soliton trains [124,125]. Figures 11(a) and 11(b)

show, respectively, the measured and retrieved FROG traces

of the emerging light from the slow axis, and the solid lines in

Fig. 11(c) show the corresponding spectrum. The retrieved

intensity and phase are shown by the lines in Fig. 11(d).

Let us remark that the retrieved intensity profile does not

exhibit 100% modulation, but a reduced modulation depth

of 96%, so that the solitons must be interpreted as “gray”

rather than “black.” It is significant that this reduced modula-

tion depth is also manifested in the characteristics of the

phase shift which is observed across the center of the dark

soliton. In the case of 100% modulated black solitons, an

Fig. 10. Experimental output spectra emerging from (a) the slow
axis and (b) the fast axis of 2 m of a PCF when the pump was linearly
polarized along the slow axis. The peak power at the start of the PCF
was 60 W. The intensity units have an arbitrary reference but accu-
rately represent the relative intensity on each axis (from [116]).

Fig. 11. (a) Measured and (b) retrieved SHG-FROG traces of the
dark soliton train at 2.5 THz. (c) Measured spectrum (lines) compared
with that calculated from the retrieved pulse train (circles). (d) The
solid lines show the retrieved intensity (left axis) and phase (right
axis), while the circles show the expected results from coupled NLSE
simulations. With the frequency axis used in the figure, zero frequency
corresponds to the mean frequency of the pump and signal waves
(from [125]).
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abrupt phase jump of π is expected, but gray solitons are

associated with a continuously varying phase shift of reduced

magnitude [78]. The retrieved phase in Fig. 11(d) confirms

this expected behavior, showing a phase shift of 0.86π across

the center of the dark soliton. Numerical simulations of these

experiments, based on two incoherently coupled NLS equa-

tions, are shown by circles in Fig. 11(d). The simulation

results are in good agreement with the measured results, par-

ticularly with respect to the 96% modulation depth and the

phase shift.

An interesting feature of the dark solitons is their reduced

sensitivity, with respect to bright solitons, to mutual inter-

actions and amplifier-noise timing jitter [126].

2. Frequency Tunable Modulational Instability in
Photonic Crystal Fibers
In the context of the generation of new frequencies or para-

metric amplification, it is very interesting to be able to easily

adjust the frequencies of the sidebands generated by modula-

tion instability to satisfy the specific needs of new laser

frequencies for novel experiments or applications. Among

the various methods which were proposed so far, the shift

of the pump wavelength [127] or pressure-induced changes

in the linear properties of a PCF [128] seem to be the most

promising.

For the first approach, the authors of Ref. [127] reported

experimental investigations of the frequency tuning proper-

ties of XPolM-MI in a PCF, and thus demonstrated sideband

shifts in the range of 2.6–8.5 THz by shifting the pump wave-

length from 532 to 625 nm. In their experiments the authors

used nanosecond pulses to ensure full temporal overlap be-

tween the pump and the sidebands throughout the whole

5 m long sample of the PCF. The peak power of the pulses

in the fiber was kept constant and equal to 30–40 W. In order

to observe XPolM-MI in the high-birefringence PCF, the pump

beam was linearly polarized and aligned at 45° with respect to

the fiber polarization axes. Under these conditions, orthogo-

nally polarized sidebands were generated. The black solid

curves in Fig. 12 show the spectra recorded without polariza-

tion discrimination with a pump wavelength of 532 and

625 nm, left and right side of Fig. 12, respectively. Figure 12

also shows a comparison of the experimental spectra with

numerical solutions of the incoherently coupled NLS equa-

tions. Here, blue and red spectra are associated respectively

with x- and y-polarized components of the output field. Let us

note that the orthogonal polarization of XPolM-MI sidebands

was confirmed by the experiments. The results of Fig. 12 show

an excellent agreement between theory and experiments. The

observed polarization sideband detuning grew from 2.6 THz

with a pump at 532 nm up to 8.5 THz with a pump wavelength

of 625 nm. These observations show that the strong frequency-

dependent linear propagation characteristics of guided modes

in PCFs may be used to obtain a flexible source of parametric

gain and broadly frequency tunable waves.

In the second case, the authors investigated the vector and

scalar frequency conversion processes in an externally tuned

microstructured fiber. Let us note that the coexistence of sca-

lar and vector MI has been also observed in PCF with normal

dispersion [129]. In particular, the impact of hydrostatic pres-

sure on MI gain bands was studied [128]. Their experimental

results show that scalar MI is insensitive to hydrostatic pres-

sure, while the XPolM-MI strongly depends on pressure. This

difference in behavior comes from the different nonlinear

phase-matching relations. Experimental measurements were

well reproduced by numerical simulations based on coupled

nonlinear Schrödinger equations corresponding to both

polarization modes. The simulations presented in Fig. 13 take

into account the longitudinal distribution of the modal bire-

fringence induced by the hydrostatic pressure. Figure 13

shows typical spectra obtained for different pressures applied

to the fiber. The simulations show high sensitivity of the

vector MI sidebands against variations of the hydrostatic

Fig. 12. Calculated (upper curves) and measured polarization sidebands for two pumpwavelengths equal respectively to 532 nm (left) and 625 nm
(right) (from [127]).

Fig. 13. Output spectra obtained from numerical simulations for
different values of pressure applied to the central part of the fiber.
Arrows indicate the expected shift direction of the vector MI bands
(from [128]).
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pressure applied to the fiber, while the scalar MI sidebands

are pressure independent. These results prove that frequency

conversion by means of XPolM-MI in microstructured fibers is

well suited for pressure-sensing applications [128].

C. Modulation Instability Induced by Cross-Polarization
Modulation in Randomly Birefringent Fibers
In the field of high-speed optical communications it is relevant

to design new methods to increase the repetition rates of

laser sources, well beyond the capabilities of electrically

driven modulators. In this context, the efficient conversion

of a modulated wave into a nearly sinusoidally modulated

wave at harmonic frequencies has been demonstrated by

means of XPolM-MI induced by multiple FWM in the case

of a normally dispersive, highly birefringent fiber at visible

wavelengths [130]. Furthermore, a recent work [131] has fo-

cused on XPolM-MI in the anomalous dispersion regime of a

randomly birefringent fiber, where the self- and cross-induced

nonlinear terms have the same weight (Manakov system [35]).

This configuration applies to the relevant practical case of

telecommunication fiber-optic links with random birefrin-

gence [36].

In Ref. [131], pump and signal waves were injected with

orthogonal linear polarization states into a 5.1 km telecom

fiber with low PMD (0.02 ps∕km1∕2). The pump average power

was fixed to 20.5 dBm, whereas the signal power on the

orthogonal axis was set to 10.5 dBm. The pump signal detun-

ing (i.e., the initial modulation frequency) was fixed to 40 GHz.

Figures 14(a) and 14(b) show the temporal and spectral pro-

files of the light exiting the optical fiber along the polarization

direction of the emerging pump wave. As can be seen in

Fig. 14, the spectrum is dominated by even harmonics at multi-

ple frequencies of 80 GHz, whereas no exponential growth of

the initial modulation is observed at 40 GHz. This interesting

phenomenon only appears if the initial frequency modulation

is fixed at about half of the peak gain frequency of scalar MI

(ΩMI∕2 � 40 GHz). As shown in Fig. 14(a), this spectral

characteristic corresponds, in the time domain, to a pulse

at twice the frequency of the initial signal frequency, i.e.,

the second harmonic at 80 GHz, in good qualitative agreement

with the numerical solutions of the Manakov equations [see

Figs. 14(c) and 14(d)].

4. CONCLUSIONS

In this mini-review, we highlighted the remarkable phenome-

non of polarization attraction which, in our opinion, should

find many applications in nonlinear optics and possibly in

other domains of physics and technology. Indeed, practical

CW power level fiber-optic devices based on either lossless

or dissipative polarization attraction have been enabled in

recent years by the availability of low-PMD telecom optical

fibers. We also presented the MI process which exploits the

SOP of light. In particular, we pointed out the regime of

high-energy conversion for which conventional nonlinear

phase matching can no longer be applied. We have also iden-

tified some applications of the process, such as the generation

of dark solitons at high repetition rate, the frequency conver-

sion with very large frequency shifts, the ability to generate

new waves with wavelength tunability, and finally, the pos-

sibility of doubling the rate of high-speed laser sources. As

a perspective for further work, let us mention the possibility

of using composite birefringence PCFs, i.e., with both geom-

etry and stress-induced birefringence, which permit the inde-

pendent management of the wavelength dependence of both

phase and group birefringence [132]. This opens the way to

new scenarios for vector modulational instabilities, e.g., by us-

ing a PCF with zero phase birefringence (as in an isotropic

standard fiber) and, simultaneously, large group birefringence

(as in a hi-bi standard fiber).
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