
Math. Program., Ser. A (2010) 122:155–196
DOI 10.1007/s10107-008-0244-7

FULL LENGTH PAPER

Nonlinear programming without a penalty function
or a filter

N. I. M. Gould · Ph. L. Toint

Received: 11 December 2007 / Accepted: 20 June 2008 / Published online: 23 September 2008
© Springer-Verlag 2008

Abstract A new method is introduced for solving equality constrained nonlinear
optimization problems. This method does not use a penalty function, nor a filter, and
yet can be proved to be globally convergent to first-order stationary points. It uses
different trust-regions to cope with the nonlinearities of the objective function and the
constraints, and allows inexact SQP steps that do not lie exactly in the nullspace of
the local Jacobian. Preliminary numerical experiments on CUTEr problems indicate
that the method performs well.

Keywords Nonlinear optimization · Equality constraints · Numerical algorithms ·
Global convergence

Mathematics Subject Classification (2000) 65K05 · 90C26 · 90C30 · 90C55

1 Introduction

We consider the numerical solution of the equality constrained nonlinear optimization
problem {

min
x

f (x)

c(x) = 0,
(1.1)

N. I. M. Gould
Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD, UK
e-mail: nick.gould@comlab.ox.ac.uk

Ph. L. Toint (B)
Department of Mathematics,
FUNDP-University of Namur, 61 ruede Bruxelles, 5000 Namur, Belgium
e-mail: philippe.toint@fundp.ac.be

123

156 N. I. M. Gould, Ph. L. Toint

where we assume that f : R
n → R and c : R

n → R
m are twice continuously

differentiable and that f is bounded below on the feasible domain.
The present paper introduces a new method for the solution of (1.1), which belongs

to the class of trust-region methods for constrained optimization, in the spirit of
Omojokun [21] in a Ph.D. thesis supervised by Byrd, and later developed by several
authors, including [1,4,6,9,10,18,19] (also see Chapter 15 of [8]).

The algorithm presented here has four main features. The first is that it attempts
to consider the objective function and the constraints as independently as possible by
using different models and trust regions for f and c. As is common to the methods
cited, the steps are computed as a combination of normal and tangential components,
the first aiming to reduce the constraint violation, and the second at reducing the
objective function while retaining the improvement in violation by remaining in the
plane tangent to the constraints, but only approximately so. This framework can thus
be viewed as a sequential quadratic programming technique that allows for inexact
tangential steps, which is the second main characteristic of our proposal (shared with
[16], and the recent paper by [3]). The third distinctive feature is that the algorithm is not
compelled to compute both normal and tangential steps at every iteration, rather only
to compute whichever is/are likely to improve feasibility and optimality significantly.
Thus if an iterate is almost feasible, there is little point in trying to further improve
feasibility while the objective value is far from optimal. The final central feature is that
the algorithm does not use any merit function (penalty, or otherwise), thereby avoiding
the practical problems associated with the setting of the merit function parameters,
but nor does it use the filter idea first proposed by Fletcher and Leyffer [11]. Instead,
the convergence is driven by the trust funnel, a progressively decreasing limit on the
permitted infeasibility of the successive iterates.

It is, in that sense and albeit very indirectly, reminiscent of the “flexible tol-
erance method” by Himmelblau [17], but also of the “tolerance tube method” by
Zoppke-Donaldson [27]. It also has similarities with the SQP methods [2,24,25]. All
these methods use the idea of progressively reducing constraint violation to avoid using
a penalty parameter. The four more modern algorithms are of the trust-region type,
but differ significantly from our proposal. The first major difference is that they all
require the tangential component of the step to lie exactly in the Jacobian’s nullspace:
they are thus “exact” rather than “inexact” SQP methods. The second is that they
both use a single trust region to account simultaneously for constraint violation and
objective function improvement. The third is that both limit constraint violation a pos-
teriori, once the true nonlinear constraints have been evaluated, rather than attempting
to limit its predicted value a priori. The “tolerance tube” method resorts to standard
second-order correction steps when the iterates become too infeasible. No conver-
gence seems to be available for the method, although the numerical results appear
satisfactory. At variance, the method by Yamashita and Yabe [25], itself motivated
by an earlier report by Yamashita [26], is provably globally convergent to first-order
critical points and involves a combination of linesearch and trust-regions. The normal
step is computed by solving a quadratic program involving the Hessian of the prob-
lem’s Lagrangian, while the tangential step requires the solution of one linear and two
quadratic programs. The method by Ulbrich and Ulbrich [24] computes a composite
SQP step and accepts the resulting trial iterate on the basis on non-monotone tests

123

Nonlinear programming without a penalty function or a filter 157

which require both a sufficient reduction of infeasibility and an improvement in opti-
mality. Global and fast asymptotic convergence (without the Maratos effect) is proved
for the resulting algorithm. Finally, the algorithm by Bielschowsky and Gomes [2] is
also provably globally convergent to first-order critical points. It however involves a
“restoration” phase (whose convergence is assumed) to achieve acceptable constraint
violation in which the size of normal component of the step is restricted to be a frac-
tion of the current infeasibility limit. This limit is updated using the gradient of the
Lagrangian function, and the allowable fraction is itself computed from the norm of
exact projection of the objective function gradient onto the nullspace of the constraints’
Jacobian.

The paper is organized as follows. Section 2 introduces the new algorithm, whose
convergence theory is presented in Sect. 3. Conclusions and perspectives are finally
outlined in Sect. 4.

2 A trust-funnel algorithm

Let us measure, for any x , the constraint violation at x by

θ(x)
def= 1

2 ‖c(x)‖2 (2.1)

where ‖ · ‖ denotes the Euclidean norm. Now consider iteration k, starting from the
iterate xk , for which we assume we know a bound θmax

k such that 1
2 ‖c(xk)‖2 < θmax

k .
Firstly, a normal step nk

1 is computed if the constraint violation is significant
(in a sense to be defined shortly). This is achieved by reducing the Gauss–Newton
approximation

1
2 ‖ck + Jkn‖2 (2.2)

to θ(xk + nk)—here we write ck
def= c(xk) and Jk

def= J (xk) is the Jacobian of c at
xk—while requiring that nk remains in the “normal trust region”, i.e.,

nk ∈ N k
def= {v ∈ R

n | ‖v‖ ≤ �c
k}. (2.3)

More formally, this Gauss–Newton-type step is computed by choosing nk so that (2.2)
is reduced sufficiently within Nk in the sense that

δ
c,n
k

def= 1
2 ‖ck‖2 − 1

2 ‖ck + Jknk‖2 ≥ κnC‖J T
k ck‖ min

[
‖J T

k ck‖
1 + ‖Wk‖ ,�

c
k

]
≥ 0,

(2.4)

where Wk = J T
k Jk is the symmetric Gauss–Newton approximation of the Hessian of

θ at xk and κnC > 0. Condition (2.4) is nothing but the familiar Cauchy condition for

1 Not to be confused with n, the number of variables.

123

158 N. I. M. Gould, Ph. L. Toint

problem approximately minimizing (2.2) within the region Nk . In addition, we also
require the normal step to be “normal”, in that it mostly lies in the space spanned by
the columns of the matrix J T

k by imposing that

‖nk‖ ≤ κn‖ck‖ (2.5)

for some κn > 0. These conditions on the normal step are very reasonable in practice,
as it is known that they hold if, for instance, nk is computed by applying one or more
steps of a truncated conjugate-gradient method (see [22,23]) to the minimization of
the square of the linearized infeasibility. Note that the conditions (2.3), (2.4) and (2.5)
allow us to choose a null normal step (nk = 0) if xk is feasible.

Having computed the normal step, we next consider if some improvement is possible
on the objective function, while not jeopardizing the infeasibility reduction we have
just obtained. Because of this latter constraint, it makes sense to remain in Nk , the
region where we believe that our model of constraint violation can be trusted, but
we also need to trust the model of the objective function given, as is traditional in
sequential quadratic programming (see Section 15.2 of [8]), by

mk(xk + nk + t) = fk + 〈gN
k , t〉 + 1

2 〈t,Gkt〉 (2.6)

where

gN
k

def= gk + Gknk, (2.7)

where fk = f (xk), gk = ∇ f (xk) and where Gk is a symmetric approximation of the
Hessian of the Lagrangian �(x, y) = f (x)+ 〈y, c(x)〉 given by

Gk
def= Hk +

m∑
i=1

[ŷk]i Cik . (2.8)

In this last definition, Hk is a bounded symmetric approximation of ∇2 f (xk), the
matrices Cik are bounded symmetric approximations of the constraints’ Hessians
∇xx ci (xk) and the vector ŷk may be viewed as an approximation of the local Lagrange
multipliers, in the sense that we require that

‖ŷk‖‖ck‖ ≤ κy (2.9)

for some κy > 0. Note that this condition does not impose any practical size restriction
on ŷk close to the feasible set, and therefore typically allows the choice ŷk = yk−1,
for suitable multiplier estimates yk−1 computed during the previous iteration, when
xk is close to feasibility. We assume that (2.6) can be trusted as a representation of
f (xk + nk + t) provided the complete step s = nk + t belongs to

Tk
def= {s ∈ R

n | ‖s‖ ≤ �
f
k }, (2.10)

123

Nonlinear programming without a penalty function or a filter 159

for some radius � f
k . Thus our attempts to reduce (2.6) should be restricted to the

intersection ofNk andTk , which imposes that the tangential step tk results in a complete
step sk = nk + tk that satisfies the inclusion

sk ∈ Bk
def= Nk ∩ Tk

def= {s ∈ R
n | ‖s‖ ≤ �k}, (2.11)

where the radius �k of Bk is thus given by

�k = min[�c
k,�

f
k]. (2.12)

As a consequence, it makes sense to ask nk to belong to Bk before attempting the
computation of tk , which we formalize by requiring that

‖nk‖ ≤ κB�k, (2.13)

for some κB ∈ (0, 1). We note here that using two different trust-region radii can
be considered as unusual, but is not unique. For instance, the SLIQUE algorithm
described by Byrd et al. [5] also uses different radii, but for different models of the
same function, rather than for two different functions.

We still have to specify what we mean by “reducing (2.6)”, as we are essentially
interested in the reduction in the hyperplane tangent to the constraints. In order to
compute an approximate projected gradient at xk + nk , we first compute a new local
estimate of the Lagrange multipliers yk such that

‖yk + [J T
k]I gN

k‖ ≤ ω1(‖ck‖) (2.14)

for some monotonic bounding function2 ω1, the superscript I denoting the Moore–
Penrose generalized inverse, and such that

‖rk‖ ≤ κnr‖gN
k‖ (2.15)

for some κnr > 0, and

〈gN
k , rk〉 ≥ 0, (2.16)

where

rk
def= gN

k + J T
k yk (2.17)

is an approximate projected gradient of the model mk at xk + nk . Conditions
(2.14)–(2.16) are reasonable since they are obviously satisfied by choosing yk to be a

2 Here and later in this paper, a bounding function ω is defined to be a continuous function from R+ into
R with the property that ω(t) converges to zero as t tends to zero.

123

160 N. I. M. Gould, Ph. L. Toint

solution of the least-squares problem

min
y

1
2 ‖gN

k + J T
k y‖2, (2.18)

and thus, by continuity, by sufficiently good approximations of this solution. In prac-
tice, one can compute such an approximation by applying a Krylov space iterative
method starting from y = 0. If the solution of (2.18) is accurate, rk is the orthogonal
projection of gN

k onto the nullspace of Jk , which then motivates that we then require
the tangent step to produce a reduction in the model mk which is at least a fraction of
that achieved by solving the modified Cauchy point subproblem

min
τ>0

xk+nk−τrk∈Bk

mk(xk + nk − τrk), (2.19)

where we have assumed that ‖rk‖ > 0. We know from Section 8.1.5 of [8] that this
procedure ensures, for some κtC1 ∈ (0, 1], the modified Cauchy condition

δ
f,t

k
def= mk(xk + nk)− mk(xk + nk + tk) ≥ κtC1πk min

[
πk

1 + ‖Gk‖ , τk‖rk‖
]
> 0

(2.20)

on the decrease of the objective function model within Bk , where we have set

πk
def= 〈gN

k , rk〉
‖rk‖ ≥ 0 (2.21)

(by convention, we define πk = 0 whenever rk = 0), and where

τk =
βk − sign(βk)

√
β2

k +�2
k − ‖nk‖2

‖rk‖ (2.22)

is the maximal steplength along −rk from xk + nk which remains in the trust-region

Bk , where we have used the definition βk
def= 〈nk, rk〉/‖rk‖. We then require that

the length of that step is comparable to the radius of Bk , in the sense that, for some
κr ∈ (0,√1 − κ2

B),

τk‖rk‖ ≥ κr�k (2.23)

When nk lies purely in the range of J T
k and the least-squares problem (2.18) is solved

accurately, then βk = 0 and (2.23) holds with κr = √
1 − κ2

B because of (2.13). Hence
(2.23) must hold with a smaller value of κr if (2.18) is solved accurately enough. As a

123

Nonlinear programming without a penalty function or a filter 161

result, the modified Cauchy condition (2.20) may now be rewritten as

δ
f,t

k
def= mk(xk + nk)− mk(xk + nk + tk) ≥ κtCπk min

[
πk

1 + ‖Gk‖ ,�k

]
(2.24)

with κtC

def= κtC1κr ∈ (0, 1). We see from (2.24) that πk may be considered as an
optimality measure in the sense that it measures how much decrease could be obtained
locally along the negative of the approximate projected gradient rk . This role as an
optimality measure is confirmed in Lemma 3.2 below.

Our last requirement on the tangential step tk is to ensure that it does not completely
“undo” the improvement in linearized feasibility obtained from the normal step without
good reason. We consider two possible situations. The first is when the predicted
decrease in the objective function is substantial compared to its possible deterioration
along the normal step and the step is not too large compared to the maximal allowable
infeasibility, i.e. when both

δ
f,t

k ≥ −κ̄δδ f,n
k

def= −κ̄δ[mk(xk)− mk(xk + nk)] (2.25)

and

‖sk‖ ≤ κ�

√
θmax

k , (2.26)

for some κ̄δ ∈ (0, 1) and some κ� > 0. In this case, we allow more freedom in the
linearized feasibility and merely require that

1
2 ‖ck + Jk(nk + tk)‖2 ≤ κttθ

max
k (2.27)

for some κtt ∈ (0, 1). If, on the other hand, (2.25) or (2.26) fails, meaning that we
cannot hope to trade some decrease in linearized feasibility for a large improvement
in objective function value over a reasonable step, then we require that the tangential
step satisfies

‖ck + Jk(nk + tk)‖2 ≤ κnt‖ck‖2 + (1 − κnt)‖ck + Jknk‖2 def= ϑk, (2.28)

for some κnt ∈ (0, 1). Note that this inequality is already satisfied at the end of the
normal step since ‖ck + Jknk‖ ≤ ‖ck‖ and thus already provides a relaxation of the
(linearized) feasibility requirement at xk + nk . Figure 1 illustrates the geometry of the
various quantities involved in the construction of a step sk satisfying (2.28)

Finally, we observe that a tangential step does not make too much sense if rk = 0,
and we do not compute any. By convention we choose to define πk = 0 and tk = 0 in
this case. The situation is similar if πk is small compared to the current infeasibility.
Given a monotonic bounding function ω2, we thus decide that if

πk > ω2(‖ck‖), (2.29)

123

162 N. I. M. Gould, Ph. L. Toint

Fig. 1 The components of a step sk satisfying (2.28) in the case where �k = �
f
k

fails, then the current iterate is still too far from feasibility to worry about optimality,
and we also skip the tangential step computation by setting tk = 0.

In the same spirit, the attentive reader may have observed that we have imposed
the current violation to be “significant” as a condition to compute the normal step nk ,
but didn’t specify what we formally meant, because our optimality measure πk was
not defined at that point. We now complete our description by requiring that, for some
bounding function ω3, we require the computation of the normal step only when

‖ck‖ ≥ ω3(πk−1) (2.30)

when k > 0. If (2.30) fails, we remain free to compute a normal step, but we may
also skip it. In this latter case, we simply set nk = 0. For technical reasons which will
become clear below, we impose the additional conditions that

ω3(t) = 0 ⇐⇒ t = 0 and ω2(ω3(t)) ≤ κωt (2.31)

for all t ≥ 0 and for some κω ∈ (0, 1).
While (2.29) and (2.30) together provide considerable flexibility in our algorithm

in that a normal or tangential step is only computed when relevant, our setting also
produce the possibility that both these conditions fail. In this case, we have that sk =
nk + tk is identically zero, and the sole computation in the iteration is that of the
new Lagrange multiplier yk ; we will actually show that such behaviour cannot persist
unless xk is optimal.

Once we have computed the step sk and the trial point

x+
k

def= xk + sk (2.32)

123

Nonlinear programming without a penalty function or a filter 163

completely, we are left with the task of accepting or rejecting it. Our proposal is based
on the distinction between f -iterations and c-iterations, in the spirit of [11,13] or
[12]. Assuming that sk �= 0, we will say that iteration k is an f -iteration if a nonzero
tangential step tk has been computed and if

δ
f

k
def= mk(xk)− mk(xk + sk) ≥ κδδ

f,t
k (2.33)

with κδ = 1 − 1/κ̄δ , and

θ(x+
k) ≤ θmax

k . (2.34)

If sk �= 0 and one of (2.33) or (2.34) fails or if no tangential has been computed,
because (2.13) or (2.29) fails, iteration k is said to be a c-iteration. Inequality (2.33)
indicates that the improvement in the objective function obtained in the tangential
step is not negligible compared to the change in f resulting from the normal step,
while at the same time, keeping feasibility within reasonable bounds, as expressed by
(2.34). Thus the iteration’s expected major achievement is, in this case, a decrease in
the value of the objective function f , hence its name. If (2.33) fails, then the expected
major achievement (or failure) of iteration k is, a contrario, to improve feasibility,
which is also the case when the step only contains its normal component. Finally, if
sk = 0, iteration k is said to be a y-iteration because the only computation potentially
performed is that of a new vector of Lagrange multiplier estimates. The main idea
behind the technique we propose for accepting the trial point is to measure whether
the major expected achievement of the iteration has been realized.

• If iteration k is a f -iteration, we accept the trial point if the achieved objective
function reduction is comparable to its predicted value. More formally, the trial
point is accepted (i.e., xk+1 = x+

k) if

ρ
f

k
def= f (xk)− f (x+

k)

δ
f

k

≥ η1 (2.35)

and rejected (i.e., xk+1 = xk) otherwise. The radius of Tk is then updated by

�
f
k+1 ∈

⎧⎪⎨
⎪⎩

[� f
k ,∞) if ρ

f
k ≥ η2,

[γ2�
f
k ,�

f
k] if ρ

f
k ∈ [η1, η2),

[γ1�
f
k , γ2�

f
k] if ρ

f
k < η1,

(2.36)

where the constants η1, η2, γ1, and γ2 are given and satisfy the conditions 0 <
η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1, as is usual for trust-region methods.
The radius of Nk is possibly increased if feasibility is maintained well within its
prescribed bounds, in the sense that

�c
k+1 ∈ [�c

k,+∞) if θ(x+
k) ≤ η3θ

max
k and ρ

f
k ≥ η1 (2.37)

123

164 N. I. M. Gould, Ph. L. Toint

for some constant η3 ∈ (0, 1), or

�c
k+1 = �c

k (2.38)

otherwise. The value of the maximal infeasibility measure is also left unchanged,
that is θmax

k+1 = θmax
k . Note that (2.33) implies that δ f

k > 0 because δ f,t
k > 0 unless

xk is first-order critical, and hence that condition (2.35) is well-defined.
• If iteration k is a c-iteration, we accept the trial point if the achieved improvement

in feasibility is comparable to its predicted value δc
k

def= 1
2 ‖ck‖2 − 1

2 ‖ck + Jksk‖2,
and if the latter is itself comparable to its predicted decrease along the normal step,
that is if

δc
k ≥ κcnδ

c,n
k and ρc

k
def= θ(xk)− θ(x+

k)

δc
k

≥ η1 (2.39)

for some κcn ∈ (0, 1). If (2.39) fails, the trial point is rejected. The radius of Nk is
then updated by

�c
k+1 ∈

⎧⎨
⎩

[�c
k,∞) if ρc

k ≥ η2 and δc
k ≥ κcnδ

c,n
k ,

[γ2�
c
k,�

c
k] if ρc

k ∈ [η1, η2) and δc
k ≥ κcnδ

c,n
k ,

[γ1�
c
k, γ2�

c
k] if ρc

k < η1 or δc
k < κcnδ

c,n
k .

(2.40)

and that of Tk is unchanged:� f
k+1 = �

f
k .We also update the value of the maximal

infeasibility by

θmax
k+1 =

{
max

[
κtx1θ

max
k , θ(x+

k)+ κtx2(θ(xk)− θ(x+
k))

]
if (2.39) holds

θmax
k otherwise,

(2.41)

for some κtx1 ∈ (0, 1) and κtx2 ∈ (0, 1).
• If iteration k is a y-iteration, we do not have any other choice than to restart with

xk+1 = xk using the new multipliers. We then define

�
f
k+1 = �

f
k and �c

k+1 = �c
k (2.42)

and keep the current value of the maximal infeasibility θmax
k+1 = θmax

k .

We are now ready to state our complete algorithm (Algorithm 2.1).

We now comment on Algorithm 2.1. If either (2.35) or (2.39) holds, iteration k is
called successful. It is said to be very successful if either ρ f

k ≥ η2 or ρc
k ≥ η2, in

which case none of the trust-region radii is decreased. We also define the following
useful index sets:

S def= {k | xk+1 = x+
k }, (2.43)

123

Nonlinear programming without a penalty function or a filter 165

Algorithm 2.1: Trust-Funnel Algorithm

Step 0: Initialization. An initial point x0, an initial vector of multipliers y−1 and positive initial trust-

region radii � f
0 and �c

0 are given. Define θmax
0 = max[κca, κcrθ(x0)] for some constants

κca > 0 and κcr > 1. Set k = 0.
Step 1: Normal step. Possibly compute a normal step nk that sufficiently reduces the linearized

infeasibility (in the sense that (2.4) holds), under the constraint that (2.3) and (2.5) also hold.
This computation must be performed if k = 0 or (2.30) holds when k > 0.
If (2.30) fails and nk has not been computed, set nk = 0.

Step 2: Tangential step. If (2.13) holds, then
Step 2.1: select a vector ŷk satisfying (2.9) and define Gk by (2.8);
Step 2.2: compute yk and rk satisfying (2.14)–(2.17) and (2.23);
Step 2.3: If (2.29) holds, compute a tangential step tk that sufficiently reduces the model

(2.6) (in the sense that (2.24) holds), preserves linearized feasibility enough to
ensure either all of (2.25)–(2.27) or (2.28), and such that the complete step sk =
nk + tk satisfies (2.11).

If (2.13) fails, set yk = 0. In this case or if (2.29) fails, set tk = 0 and sk = nk . In all cases,
define x+

k = xk + sk .
Step 3: Conclude a y-iteration. If sk = 0, then

Step 3.1: accept x+
k = xk ;

Step 3.2: define � f
k+1 = �

f
k and �c

k+1 = �c
k ;

Step 3.3: set θmax
k+1 = θmax

k .
Step 4: Conclude an f -iteration. If tk �= 0 and (2.33) and (2.34) hold,

Step 4.1: accept x+
k if (2.35) holds;

Step 4.2: update � f
k according to (2.36) and �c

k according to (2.37)–(2.38);
Step 4.3: set θmax

k+1 = θmax
k .

Step 5: Conclude a c-iteration. If sk �= 0 and either tk = 0 or (2.33) or (2.34) fail(s),
Step 5.1: accept x+

k if (2.39) holds;
Step 5.2: update �c

k according to (2.40);
Step 5.3: update the maximal infeasibility θmax

k using (2.41).

Step 5: Prepare for the next iteration. If x+
k has been accepted, set xk+1 = x+

k , else set xk+1 = xk .
Increment k by one and go to Step 1.

the set of successful iterations,

Y def= {k | sk = 0},F def= {k | tk �= 0 and (2.33) and (2.34) hold} and C def= IN\(Y ∪ F),
the sets of y-, f - and c-iterations. We further divide this last set into

Cw = C ∩ {k | tk �= 0 and (2.25)–(2.27) hold} and Ct = C\Cw. (2.44)

Note that (2.28) must hold for k ∈ Ct .
We first verify that our algorithm is well-defined by deducing a useful

“Cauchy-like” condition on the predicted reduction in the infeasibility measure θ(x)
(whose gradient is J (x)T c(x)) over each complete iteration outside Y ∪ Cw.

Lemma 2.1 For all k �∈ Y ∪ Cw, we have that

δc
k ≥ κnC2‖J T

k ck‖ min

[
‖J T

k ck‖
1 + ‖Wk‖ ,�

c
k

]
≥ 0, (2.45)

for some κnC2 > 0.

123

166 N. I. M. Gould, Ph. L. Toint

Proof We first note that our assumption on k implies that (2.28) holds for each k such
that tk �= 0. In this case, we easily verify that

2δc
k = ‖ck‖2 − ‖ck + Jksk‖2

≥ ‖ck‖2 − κnt‖ck‖2 − (1 − κnt)‖ck + Jknk‖2

= (1 − κnt)
[‖ck‖2 − ‖ck + Jknk‖2

]
≥ 2(1 − κnt)κnC‖J T

k ck‖ min

[‖J T
k ck‖

1 + ‖Wk‖ ,�
c
k

]
,

where we have used (2.28) and (2.4) successively. The inequality (2.45) then results
from the definition κnC2 = (1−κnt)κnC. If, on the other hand, tk = 0, then (2.45) directly
follows from (2.4) with κnC2 = κnC. ��
Note that, provided sk �= 0, this result ensures that the ratio in the second part of (2.39)
is well defined provided ‖J T

k ck‖ > 0. Conversely, if ‖ck‖ = 0, then iteration k must
be an f -iteration, and (2.39) is irrelevant. If ‖J T

k ck‖ = 0, but ‖ck‖ �= 0, then xk is an
infeasible stationary point of θ , an undesirable situation on which we comment below.
We next show a simple useful property of y-iterations.

Lemma 2.2 For all k ∈ Y ,

πk ≤ κωπk−1.

Proof This immediately results from the fact that both (2.30) and (2.29) must fail
at y-iterations, yielding that πk ≤ ω2(‖ck‖) ≤ ω2(ω3(πk−1)) where we used the
monotonicity of ω2. The desired conclusion follows from the second part of (2.31).

We conclude this section by stating an important direct consequence of the definition
of our algorithm.

Lemma 2.3 The sequence {θmax
k } is non-increasing and the inequality

0 ≤ θ(x j) < θmax
k (2.46)

holds for all j ≥ k.

Proof This results from the initial definition of θmax
0 in Step 0, the inequality (2.34)

(which holds at f -iterations), the fact that θmax
k is only updated by formula (2.41) at

successful c-iterations, at which Lemma 2.1 ensures that δc
k > 0. ��

The monotonicity of sequence {θmax
k } is what drives the algorithm towards feasibility

and, ultimately, to optimality: the iterates can be thought as flowing towards a critical
point through a funnel centered on the feasible set. Hence the algorithm’s name. Note
finally that Lemma 2.3 implies that

xk ∈ L def= {x ∈ R
n | θ(x) ≤ θmax

0 }

for all k ≥ 0.

123

Nonlinear programming without a penalty function or a filter 167

3 Global convergence to first-order critical points

Before starting our convergence analysis, we recall our assumption that both f and
c are twice continuously differentiable. Moreover, we also assume that there exists a
constant κH such that, for all ξ in

⋃
k≥0[xk, x+

k] ∪ L, all k and all i ∈ {1, . . . ,m},

1 + max [‖gk‖, ‖∇xx f (ξ)‖, ‖∇xx ci (ξ)‖, ‖J (ξ)‖, ‖Hk‖, ‖Cik‖] ≤ κH. (3.1)

When Hk and Cik are chosen as ∇xx f (xk) and ∇xx ci (xk), respectively, this last
assumption is for instance satisfied if the first and second derivatives of f and c are
uniformly bounded, or, because of continuity, if the sequences {xk} and {x+

k } remain
in a bounded domain of R

n .
We finally complete our set of assumptions by supposing that

f (x) ≥ flow for all x ∈ L. (3.2)

This assumption is often realistic and is, for instance, satisfied if the smallest singular
value of the constraint Jacobian J (x) is uniformly bounded away from zero. Observe
that (3.2) obviously holds by continuity if we assume that all iterates remain in a
bounded domain.

We first state some useful consequences of (3.1).

Lemma 3.1 For all k,

1 + ‖Wk‖ ≤ κ2
H , (3.3)

‖gN
k ‖ ≤

(
1 + κn

√
2θmax

0 + mκnκy

)
κH

def= κg (3.4)

Proof The first inequality immediately follows from

1 + ‖Wk‖ = 1 + ‖Jk‖2 ≤ (1 + ‖Jk‖)2 ≤ κ2
H ,

where the last inequality is deduced from (3.1). The bound (3.4) is obtained from (2.7),
the inequality

‖gN
k‖ ≤ ‖gk‖ + ‖Gk‖ ‖nk‖ ≤ ‖gk‖ + κn

[
‖Hk‖ ‖ck‖ + m‖ŷk‖ ‖ck‖ max

i=1,...,m
‖Ci,k‖

]
,

Lemma 2.3, (2.9) and (3.1). ��
We also establish a useful sufficient condition for first-order criticality.

Lemma 3.2 Assume that, for some infinite subsequence indexed by K,

lim
k→∞,k∈K

‖ck‖ = 0. (3.5)

123

168 N. I. M. Gould, Ph. L. Toint

Then

lim
k→∞,k∈K

gN

k = lim
k→∞,k∈K

gk . (3.6)

If, in addition,

lim
k→∞,k∈K

πk = 0, (3.7)

then

lim
k→∞,k∈K

gk + J T
k yk = 0 and lim

k→∞,k∈K
‖Pk gk‖ = 0, (3.8)

where Pk is the orthogonal projection onto the nullspace of Jk , and all limit points of
the sequence {xk}k∈K (if any) are first-order critical.

Proof Combining the uniform bound (3.4) with (2.15), we obtain that the sequence
{‖rk‖}K is uniformly bounded and therefore can be considered as the union of con-
vergent subsequences. Moreover, because of (2.5), the limit (3.5) first implies that

lim
k→∞,k∈K

nk = 0, (3.9)

which then implies with (2.7) and (3.1) that (3.6) holds. This limit, together with (2.14)
and (2.17), ensures that

lim
k→∞,k∈P

rk = lim
k→∞,k∈P

[gk + J T
k yk]= lim

k→∞,k∈P
[gk − J T

k [J T
k]I gk]= lim

k→∞,k∈P
Pk gk,

(3.10)

where we have restricted our attention on a particular subsequence indexed by P ⊆ K
such that the limit in the left-hand side is well-defined. Assume now that this limit is a
nonzero vector. Then, using now (2.21), (3.9), (3.6) and the hermitian and idempotent
nature of Pk , we have that

lim
k→∞,k∈P

πk = lim
k→∞,k∈P

〈gk, rk〉
‖rk‖ = lim

k→∞,k∈P
〈gk, Pk gk〉
‖Pk gk‖

= lim
k→∞,k∈P

〈Pk gk, Pk gk〉
‖Pk gk‖ = lim

k→∞,k∈P
‖Pk gk‖. (3.11)

But (3.7) implies that this latter limit is zero, and (3.10) also gives that rk must converge
to zero along P , which is impossible. Hence limk→∞,k∈P rk = 0 and the desired
conclusion then follows from (3.10). ��
This lemma indicates that all we need to show for first-order global convergence are
the two limits (3.5) and (3.7) for an index set K as large as possible. Unfortunately,
and as is unavoidable with local methods for constrained optimization, our algorithm

123

Nonlinear programming without a penalty function or a filter 169

may fail to produce (3.5)–(3.7) and, instead, end up being trapped by a local infeasible
stationary of the infeasibility measure θ(x). If x� is suint, then

J (x�)T c(x�) = 0 with c(x�) �= 0.

If started from x�, Algorithm 2.1 will fail to progress towards feasibility, as no suitable
normal step can be found in Step 1. A less unlikely scenario, where there exists a
subsequence indexed by Z such that

lim
k→∞,k∈Z

‖J T
k ck‖ = 0 with lim inf

k→∞,k∈Z
‖ck‖ > 0, (3.12)

indicates the approach of such an infeasible stationary point. In both cases, restarting
the whole algorithm from a different starting point might be the best strategy. Barring
this undesirable situation, we would however like to show that our algorithm converges
to first-order critical points for (1.1), whenever uniform asymptotic convexity of θ(x)
in the range space of Jk is obtained when feasibility is approached. More specifically,
we assume from now on that, for some small constant κc ∈ (0, 1),

there exists κJ ∈ (0, 1) such that σmin(Jk) ≥ κJ whenever ‖c(xk)‖ ≤ κc, (3.13)

where σmin(A) is the smallest positive singular value of the matrix A. It is important
to note that this assumption holds by continuity if J (x) is Lipschitz continuous and
σmin(J (x)) uniformly bounded away from zero on the feasible set, in which case
the Jacobian of the constraints has constant rank over this set. This assumption also
ensures that, for any subsequence indexed by K such that (3.5) holds, k1 > 0 exists
such that for k ≥ k1, k ∈ K,

‖Jksk‖ ≥ κJ‖s R
k ‖ (3.14)

where s R
k

def= (I − Pk)sk is the projection of sk onto the range space of J T
k . We also

obtain the following useful bound.

Lemma 3.3 There exists a constant κG > κH such that, 1 + ‖Gk‖ ≤ κG for every k.

Proof In view of (2.14), of the monotonicity ofω1, (2.9) and (3.4), (3.13) yields, when
‖ck‖ ≤ κc, that

‖ŷk‖ ≤ ω1(‖ck‖)+ ‖gN
k‖
κJ

≤ ω1(κc)+ κg

κJ

.

On the other hand, if when ‖ck‖ ≥ κc, then (2.9) gives that

‖ŷk‖ ≤ κy

‖ck‖ ≤ κy

κc

.

123

170 N. I. M. Gould, Ph. L. Toint

Hence the desired conclusion follows from (2.8) and (3.1), with

κG

def= κH + mκH max

[
ω1(κc)+ κg

κJ

,
κy

κc

]
> κH.

��
As for most of the existing theory for convergence of trust-region methods, we also
make use of the following direct consequence of Taylor’s theorem.

Lemma 3.4 For all k,

| f (x+
k)− mk(x

+
k)| ≤ κG�

2
k, (3.15)

and

| ‖c(x+
k)‖2 − ‖ck + Jksk‖2| ≤ 2κC[�c

k]2, (3.16)

with κC = κ2
H + mκH

√
2θmax

0 > κH.

Proof The first inequality follows from Lemma 3.3, the fact that f (x) is twice con-
tinuously differentiable and the fact that (2.11) and (2.12) give the bound

‖sk‖ ≤ �k ≤ �c
k (3.17)

(see Theorem 6.4.1 in [8]). Similarly, the second inequality follows from the fact that
θ(x) is twice continuously differentiable with its Hessian given by

∇xxθ(x) = J (x)T J (x)+
m∑

i=1

ci (x)∇xx ci (x), (3.18)

(3.1), Lemma 2.3 and (3.17). ��
The same type of reasoning also allows us to deduce that all c-iterations are in Ct for
�c

k sufficiently small.

Lemma 3.5 Assume that k ∈ C and that

�c
k ≤ 2(1 − κtt)

κHκ�(
√

2m + (2m + 1)κHκ�)

def= κC (3.19)

Then k ∈ Ct .

Proof Consider some k ∈ C. Using the mean-value theorem, we obtain that

θ(x+
k) = θk + 〈J t

k ck, sk〉 + 1
2 〈sk,∇xxθ(ξk)sk〉

123

Nonlinear programming without a penalty function or a filter 171

for some ξk ∈ [xk, x+
k], which implies, in view of (3.18), that

θ(x+
k) = θk + 〈ck, Jksk〉 + 1

2 ‖J (ξk)sk‖2 + 1
2

m∑
i=1

ci (ξk)〈sk,∇xx ci (ξk)sk〉.

(3.20)

A further application of the mean-value theorem then gives that

ci (ξk) = ci (xk)+ 〈ei , J (µk)(ξk − xk)〉 = ci (xk)+ 〈J (µk)
T ei , ξk − xk〉

for some µk ∈ [0, ξk]. Summing over all constraints and using the triangle inequality,
(3.1) (twice), the bound ‖ξk − xk‖ ≤ ‖sk‖ and Lemma 2.3, we thus obtain that

∣∣∣∣∣
m∑

i=1

ci (ξk)〈sk,∇xx ci (ξk)sk〉
∣∣∣∣∣ ≤ [‖c(xk)‖1 + κH‖sk‖] κH‖sk‖2

≤ κH

√
m ‖c(xk)‖ ‖sk‖2 + κ2

H ‖sk‖3

≤ κH

√
2m θmax

k ‖sk‖2 + κ2
H ‖sk‖3

Substituting this inequality into (3.20), we deduce that

θ(x+
k) ≤ 1

2 ‖ck + Jksk‖2 + 1
2

[
‖J (ξk)sk‖2 − ‖Jksk‖2

]

+ 1
2κH

√
2m θmax

k ‖sk‖2 + 1
2κ

2
H ‖sk‖3 (3.21)

Define now φk(x)
def= 1

2 ‖J (x)sk‖2. Then a simple calculation shows that

∇xφk(x) =
m∑

i=1

[J (x)sk]i∇xx ci (x)sk .

Using this relation, the mean-value theorem again and (3.1), we obtain that

|φk(ξk)− φk(xk)| = |〈ξk − xk,∇xφk(ζk)〉|
= |〈ξk − xk,

∑m
i=1[J (ζk)sk]i∇xx ci (ζk)sk〉|

≤
m∑

i=1

‖ξk − xk‖ ‖∇xx ci (ζk)‖ ‖J (ζk)‖ ‖sk‖2

≤ m κ2
H ‖sk‖3

for some ζk ∈ [xk, ξk] ⊆ [xk, xk + sk]. We therefore obtain that

1
2

∣∣∣ ‖J (ξk)sk‖2 − ‖Jksk‖2
∣∣∣ = |φk(ξk)− φk(xk)| ≤ m κ2

H ‖sk‖3. (3.22)

123

172 N. I. M. Gould, Ph. L. Toint

Assume now that k ∈ Cw. Then, using (3.21), (2.27), (3.22), (2.26), (2.11) and (3.19)
successively, we obtain that

θ(x+
k) ≤ 1

2 ‖ck + Jksk‖2 + 1
2

[
‖J (ξk)sk‖2 − ‖Jksk‖2

]
+ 1

2κH

√
2m θmax

k ‖sk‖2 + 1
2κ

2
H ‖sk‖3

≤ κttθ
max
k + (m + 1

2) κ
2
H ‖sk‖3 + 1

2κH

√
2m

√
θmax

k ‖sk‖2

≤ κttθ
max
k + (m + 1

2) κ
2
H κ

2
�θ

max
k �c

k + 1
2κ�κH

√
2m θmax

k �c
k

≤ θmax
k . (3.23)

On the other hand, the fact that k ∈ Cw ensures that (2.25) holds, and thus, using the
definition of κ̄δ = 1/(1 − κδ), that

(1 − κδ)δ
f,t

k ≥ −δ f,n
k ,

which in turn yields that

δ
f

k = δ
f,n

k + δ
f,t

k ≥ κδδ
f,t

k .

But this last inequality and (3.23) show that both (2.33) and (2.34) hold at iteration k.
Since a tangential step was computed at this iteration, we obtain that k ∈ F , which is
a contradiction because k ∈ C. Hence our assumption that k ∈ Cw is impossible and
the desired conclusion follows. ��
Lemmas 3.4 and 3.5 have the following useful consequences.

Lemma 3.6 Assume that k ∈ F and that

�k ≤ κδκtCπk(1 − η2)

κG

. (3.24)

Then ρ f
k ≥ η2, iteration k is very successful and � f

k+1 ≥ �
f
k . Similarly, if k ∈ C and

�c
k ≤ min

[
κC,

κnC2‖J T
k ck‖(1 − η2)

κC

]
. (3.25)

Then ρc
k ≥ η2, iteration k is very successful and �c

k+1 ≥ �c
k .

Proof The proof of both statements is identical to that of Theorem 6.4.2 of [8] for the
objective functions f (x) and θ(x), respectively. In the first case, one uses (2.24), (2.33)
and (3.15). In the second, one first notices that (3.25) implies, in view of Lemma 3.5,
that k ∈ Ct and thus that (2.45) holds. This last inequality in then used together with
(3.1), (3.16) and the bound (3.3) to deduce the second conclusion. ��

123

Nonlinear programming without a penalty function or a filter 173

The mechanism for updating the trust-region radii then implies the next crucial lemma,
where we show that the radius of either trust region cannot become arbitrarily small
compared to the considered criticality measure for dual and primal feasibility.

Lemma 3.7 Assume that, for some ε f > 0,

πk ≥ ε f for all k ∈ F . (3.26)

Then, for all k,

�
f
k ≥ γ1 min

[
κδκtCε f (1 − η2)

κG

,�
f
0

]
def= εF . (3.27)

Similarly, assume that, for some εθ > 0,

‖J T
k ck‖ ≥ εθ for all k ∈ C. (3.28)

Then, for all k,

�c
k ≥ γ1 min

[
κC,

κnC2εθ (1 − η2)

κC

,�c
0

]
def= εC . (3.29)

Proof Again the two statements are proved in the same manner, and immediately
result from the mechanism of the algorithm, Lemma 3.6 and the inequality �k ≤� f

k ,

given that � f
k is only updated at f -iterations and �c

k is only updated at c-iterations.
��

We now start our analysis proper by considering the case where the number of
successful iterations is finite.

Lemma 3.8 Assume that |S| < +∞. Then there exists an x∗ and a y∗ such that
xk = x∗ and yk = y∗ for all sufficiently large k, and either

J (x∗)T c(x∗) = 0 and c(x∗) �= 0,

or

P∗g(x∗) = 0 and c(x∗) = 0,

where P∗ is the orthogonal projection onto the nullspace of J (x∗).

Proof The existence of a suitable x∗ immediately results from the mechanism of the
algorithm and the finiteness of S, which implies that x∗ = xks+ j for all j ≥ 1, where
ks is the index of the last successful iteration.

Assume first that there are infinitely many c-iterations. This yields that �c
k is

decreased in (2.40) at every such iteration for k ≥ ks and therefore that {�c
k} con-

verges to zero, because it is never increased at y-iterations or unsuccessful f -iterations.

123

174 N. I. M. Gould, Ph. L. Toint

Lemma 3.5 then implies that all c-iterations are in Ct for k large enough. Since, for
such a k, ‖J T

k ck‖ = ‖J (x∗)T c(x∗)‖ for all k > ks , this in turn implies, in view of the
second statement of Lemma 3.7, that ‖J (x∗)T c(x∗)‖ = 0. If x∗ is not feasible, then
we obtain the first of the two possibilities listed in the lemma’s statement. If, on the
other hand, c(x∗) = 0, we have, from (2.5), that nk = 0 and thus that δ f

k = δ
f,t

k ≥ 0
for all k sufficiently large. Hence (2.33) holds for k large. Moreover, we also obtain
from (2.28) (which must hold for k large because C is asymptotically equal to Ct) that
‖ck + Jksk‖ = 0 and also, since θmax

k is only reduced at successful c-iterations, that
θmax

k = θmax∗ > 0 for all k sufficiently large. Combining these observations, we then
obtain from Lemma 3.4 that

θ(x+
k) = θ(x+

k)− 1
2 ‖ck + Jksk‖2 ≤ κ2

H [�c
k]2 ≤ θmax

k

(and (2.34) holds) for all sufficiently large k. Thus we have that tk must be zero for all
k ∈ C sufficiently large. Since we already know that nk = 0 for all k large enough, we
thus obtain that sk = 0 for these k and all iterations must eventually be y-iterations.
Hence our assumption that there are infinitely many c-iterations is impossible.

Assume now that C is finite but F infinite. Since there must be an infinite number
of unsuccessful f -iterations ks , and since the radii are not updated at y-iterations, we
obtain that {� f

k }, and hence {�k}, converge to zero. Using now the first statement of
Lemma 3.7, we conclude that, for all k sufficiently large, πk = 0 and, because (2.29)
holds at f -iterations, ‖ck‖ = 0. Thus c(x∗) = 0. As above, the second of the lemma’s
statements then holds because of this equality, the fact that πk = 0 for all large k and
Lemma 3.2.

Assume finally that C ∪ F is finite. Thus all iterations must be y-iterations for k
large enough. In view of Lemma 2.2, we must then obtain that π∗ = 0. But the fact
that nk = 0 for all large k, the first part of (2.31) and (2.30) then imply that c(x∗) = 0.
The second of the lemma’s statements then again holds because of Lemma 3.2. ��

This bound is central in the next result, directly inspired of Lemma 6.5.1 of [8].

Lemma 3.9 Assume that (3.13) holds and that K is the index of a subsequence such
that (3.5) holds and K ∩ (Cw ∪ Y) = ∅. Then there exists a k2 > 0 such that, for
k ≥ k2, k ∈ K,

‖s R
k ‖ ≤ 2

κ2
J

‖J T
k ck‖ (3.30)

and

δc
k ≥ κR‖s R

k ‖2, (3.31)

where κR is a positive constant.

Proof The proof of (3.30) is identical to that of Lemma 6.5.1 in [8] (applied on the
minimization of θ(x) in the range space of J T

k), taking into account that the smallest
eigenvalue of Wk is bounded below by κ2

J for k ≥ k1 because of (3.14). Substituting

123

Nonlinear programming without a penalty function or a filter 175

now (3.30) in (2.45) (which must hold since k �∈ Y ∪ Cw) and using (3.3) then yields
that

δc
k ≥ 1

2κ
2
J κnC2‖s R

k ‖ min

[
κ2

J ‖s R
k ‖

2κ2
H

,�c
k

]
,

which in turn gives (3.31) by using the bound ‖s R
k ‖ ≤ ‖sk‖ ≤ �c

k with

κR

def= 1
2κ

2
J κnC2 min

[
κ2

J

2κ2
H

, 1

]
.

��
Next, we prove that iterations in Ct must be very successful when the feasible set is
approached.

Lemma 3.10 Assume that (3.13) holds and that K is the index of a subsequence such
that (3.5) holds and K ∩ Y = ∅. Then, for all k ∈ K ∩ Ct sufficiently large, ρc

k ≥ η2,
iteration k is very successful and �c

k+1 ≥ �c
k .

Proof The limit (3.5) and (3.1) imply that ‖J T
k ck‖ converges to zero in K. Since

k �∈ Cw, (3.30) holds and we may use it to obtain that

lim
k→∞,k∈K∩Ct

‖s R
k ‖ = 0.

Combining this limit with (3.31) and using Lemma 6.5.3 of [8], we deduce thatρc
k ≥ η2

for k ∈ K∩Ct sufficiently large. This implies that�c
k is never decreased for k ∈ K∩Ct

large enough. ��
We now return to the convergence properties of our algorithm, and, having covered in
Lemma 3.8 the case of finitely many successful iterations, we consider the case where
there are infinitely many of those. We start by assuming that they are all f -iterations
for k large.

Lemma 3.11 Assume that (3.13) holds, that |S| = +∞ and that | C ∩ S| < +∞.
Then there exists an infinite subsequence indexed by K such that

lim
k→∞,k∈K

‖ck‖ = 0. (3.32)

and

lim
k→∞,k∈K

πk = 0. (3.33)

Proof As a consequence of our assumptions, we immediately obtain that all successful
iterations must belong to F for k sufficiently large, and that there are infinitely many

123

176 N. I. M. Gould, Ph. L. Toint

of them. We also deduce that the sequence { f (xk)} is monotonically decreasing for
large enough k. Assume now, for the purpose of deriving a contradiction, that (3.26)
holds. Then (2.24), (2.33), (3.1) and (3.27) together give that, for all k ∈ S sufficiently
large,

δ
f

k ≥ κδκtCε f min

[
ε f

κG

,min[�c
k, ε f]

]
. (3.34)

Assume now that there exists an infinite subsequence indexed by K f ⊆ S such that
{�c

k} converges to zero in K f . Since�c
k is only decreased at unsuccessful c-iterations,

this in turn implies that there is a subsequence of such iterations indexed Kc ⊆ C\S
with�c

k converging to zero. Because of Lemma 3.5, we may also assume, without loss
of generality, that Kc ⊆ Ct\S. Lemma 3.10 then gives that ‖ck‖, and thus, because
of (3.13), ‖J T

k ck‖, must be bounded away from zero along Kc. The second statement
of Lemma 3.6 and the fact that �c

k is arbitrarily small for k sufficiently large in Kc

then ensure that iteration k must be very successful for k ∈ Kc large enough, which
is impossible. We therefore conclude that the sequence K f described above cannot
exist, and hence that there is an ε∗ > 0 such that�c

k ≥ ε∗ for k ∈ S. Substituting this
bound in (3.34) yields that

δ
f

k ≥ κδκtCε f min

[
ε f

κG

,min[ε∗, ε f]
]
> 0. (3.35)

But we also have that

f (xk0)− f (xk) =
k−1∑

j=k0, j∈S
[f (x j)− f (x j+1)] ≥ η1

k−1∑
j=k0, j∈S

δ
f
j . (3.36)

This bound combined with (3.35) and the identity |F ∩ S| = +∞ then implies that
f is unbounded below, which, in view of (2.46), contradicts (3.2). Hence (3.26) is
impossible and we deduce that

lim inf
k→∞ πk = 0, (3.37)

Let K be the index of a subsequence such that (3.37) holds as a true limit, immediately
giving (3.33). The fact that all successful iterations must eventually be f -iterations
implies (2.29) and we may thus deduce from (3.37), that (3.32) must hold. ��
After considering the case where the number of successful c-iterations is finite, we
now turn to the situation where it is infinite. We first deduce, in the next two lemmas,
global convergence for the problem of minimizing θ .

Lemma 3.12 Assume that | C ∩ S| = +∞. Then,

lim inf
k→∞,k∈C

‖J T
k ck‖ = 0. (3.38)

123

Nonlinear programming without a penalty function or a filter 177

Proof Assume, for the purpose of deriving a contradiction, that (3.28) holds. Observe
that the value of θmax

k is updated (and reduced) in (2.41) at each of the infinitely many
iterations indexed by C ∩ S.

Let us first assume that the maximum in (2.41) is attained infinitely often by the
first term. Since κtx1 < 1, we deduce that

lim
k→∞ θ

max
k = 0.

Using the uniform boundedness of the constraint Jacobian (3.1) and (2.46), we then
immediately deduce from this limit that

lim
k→∞ ‖J T

k ck‖ ≤ κH lim
k→∞ ‖ck‖ ≤ κH lim

k→∞ θ
max
k = 0,

which is impossible in view of (3.28). Hence the maximum in (2.41) can only be
attained a finite number of times by the first term. Now let k ∈ C ∩ S be the index
of an iteration where the maximum is attained by the second term. Combining (2.45),
(3.3), (3.28) and (3.29), we obtain that

θmax
k − θmax

k+1 ≥ θ(xk)− θmax
k+1

≥ (1 − κtx2)
[
θ(xk)− θ(xk+1)

]
≥ (1 − κtx2)η1δ

c
k

≥ (1 − κtx2)η1κnC2εθ min

[
εθ

κ2
H

, εC

]

> 0. (3.39)

Since the value of θmax
k is monotonic, this last inequality and the infinite nature of

|C ∩ S| implies that the sequence {θmax
k } is unbounded below, which obviously con-

tradicts (2.46). Hence, the maximum in (2.41) cannot either be attained infinitely often
by the second term. We must therefore conclude that our initial assumption (3.28) is
impossible, which gives (3.38). ��
Lemma 3.13 Assume that | C ∩ S| = +∞. Then either there exists a subsequence of
iterates approaching infeasible stationary point(s) of θ(x) in the sense that there is a
subsequence indexed by Z such that (3.12) holds, or we have that

lim
k→∞ ‖ck‖ = 0. (3.40)

and there exists an ε∗ > 0 such that

�c
k ≥ ε∗, (3.41)

for all k ∈ C sufficiently large.

123

178 N. I. M. Gould, Ph. L. Toint

Proof Assume that no Z exists such that (3.12) holds. Then Lemma 3.12 implies that
there must exist an infinite subsequence indexed by G ⊆ C ∩ S such that

lim
k→∞,k∈G

‖J T
k ck‖ = lim

k→∞,k∈G
‖ck‖ = lim

k→∞,k∈G
θ(xk) = 0. (3.42)

As above, we immediately conclude from the inequality κtx1 < 1 and (2.41) that

lim
k→∞ θ

max
k = 0 (3.43)

and thus, in view of (2.46) that (3.40) holds if the maximum in (2.41) is attained
infinitely often in G by the first term. If this is not the case, we deduce from (2.41) that

lim
k→∞,k∈G

θmax
k+1 ≤ lim

k→∞,k∈G
θ(xk) = 0.

and thus, because of the monotonicity of the sequence {θmax
k }, that (3.43) and (3.40)

again hold.
Lemma 3.10 (with K = IN) and (3.40) then imply that �c

k+1 ≥ �c
k for all k ∈ Ct .

In addition, Lemma 3.5 ensures that �c
k is bounded below by a constant for all k ∈

Cw = C\Ct . These two observations and the fact that �c
k is only decreased for k ∈ C

finally imply (3.41). ��
Observe that it is not crucial that θmax

k is updated at every iteration in C ∩S, but rather
that such updates occur infinitely often in a subset of this set along which ‖J T

k ck‖
converges to zero. Other mechanisms to guarantee this property are possible, such as
updating θmax

k every p iteration in C ∩S at which ‖J T
k ck‖ decreases. Relaxed scheme

of this type may have the advantage of not pushing θmax
k too quickly to zero, therefore

allowing more freedom for f -iterations.
Our next result analyzes some technical consequences of the fact that there might

be an infinite number of c-iterations. In particular, it indicates that feasibility improves
linearly at c-iterations for sufficiently large k, and hence that these iterations must play
a diminishing role as k increases.

Lemma 3.14 Assume that (3.13) holds, that | C ∩S| = +∞ and that no subsequence
exists such that (3.12) holds. Then (3.40) holds and

lim
k→∞ nk = 0, (3.44)

and

lim
k→∞ δ

f,n
k = 0, (3.45)

where δ f,n
k

def= mk(xk) − mk(xk + nk). Moreover (3.41) holds for k ∈ C sufficiently
large. In addition, we have that for k ∈ C ∩ S sufficiently large,

θk+1 < κθθk (3.46)

123

Nonlinear programming without a penalty function or a filter 179

and

θmax
k+1 ≤ κθmθ

max
k (3.47)

for some κθ ∈ (0, 1) and some κθm ∈ (0, 1).

Proof We first note that (3.40) holds because of Lemma 3.13. The limit (3.40) and
(2.5) then give that (3.44) holds, while (3.45) then follows from the identity

δ
f,n

k = 〈gk, nk〉 + 1
2 〈nk,Gknk〉, (3.48)

the Cauchy–Schwarz inequality, (3.40), Lemma 3.3 and (3.4). Finally, Lemma 3.13
implies that (3.41) holds for all k ∈ C sufficiently large.

If we now restrict our attention to k ∈ C ∩ S, we also obtain, using (2.39), (3.40),
(2.4), (3.13) and (3.41), that

θk − θk+1 ≥ η1κcnκnC‖J T
k ck‖ min

[
‖J T

k ck‖
1 + ‖Wk‖ ,�

c
k

]

≥ η1κcnκnCκ
2
J

κ2
H

‖ck‖2

= 2η1κcnκnCκ
2
J

κ2
H

θk, (3.49)

which gives (3.46) with κθ
def= 1 − 2η1κcnκnCκ

2
J /κ

2
H ∈ (0, 1), where this last inclusion

follows from the fact that θk ≥ θk − θk+1 and (3.49). We now observe that θmax
k is

decreased in (2.41) at every successful c-iteration, yielding that, for k ∈ C ∩ S large
enough,

θmax
k+1 = max

[
κtx1θ

max
k , θ(xk)− (1 − κtx2)(θ(xk)− θ(x+

k))
]

≤ max
[
κtx1θ

max
k , θ(xk)− (1 − κtx2)(1 − κθ)θ(xk)

]
≤ max[κtx1, 1 − (1 − κθ)(1 − κtx2)]θmax

k

= κθmθ
max
k ,

where we have used (3.46) and Lemma 2.3 to deduce the last inequalities, and where

we have defined κθm
def= max[κtx1, 1 − (1 − κθ)(1 − κtx2)] ∈ (0, 1). This yields (3.47)

and concludes the proof. ��
Convergence of the criticality measure πk to zero then follows for a subsequence

of iterations, as we now prove.

Lemma 3.15 Assume that (3.13) holds and that | C ∩ S| = +∞. Then either there is
a subsequence indexed by Z such that (3.12) holds, or (3.40) holds and

lim inf
k→∞ πk = 0. (3.50)

123

180 N. I. M. Gould, Ph. L. Toint

Proof Assume that no subsequence exists such that (3.12) holds. We may then apply
Lemma 3.14 and deduce that (3.40), (3.44), (3.45) hold and that (3.41) also hold for
all k ∈ C sufficiently large.

Assume now, again for the purpose of deriving a contradiction, that the inequality
(3.26) is satisfied for all k sufficiently large. This last inequality and Lemma 3.7 then
guarantee that (3.27) holds for all k sufficiently large, which, with (3.41), also yields
that, for k ∈ C large enough,

�k ≥ min[ε∗, εF] > 0. (3.51)

The next step in our proof is to observe that, if iteration k is a successful c-iteration,
then (2.34) must hold because of (2.46). The successful c-iterations thus asymptotically
come in two types:

1. iterations for which the tangential step has not been computed,
2. iterations for which (2.33) fails.

Assume first that there is an infinite number of successful c-iterations of type 1. Itera-
tions of this type happen because either (2.13) or (2.29) fails, the latter being impossible
since both (3.26) and (3.40) hold. But (2.13) cannot fail either for k sufficiently large
because of (3.44) and (3.51). Hence this situation is impossible.

Assume otherwise that there is an infinite number of successful c-iterations of
type 2. Since (2.33) does not hold, we deduce that, for the relevant indices k,

δ
f

k = δ
f,t

k + δ
f,n

k < κδδ
f,t

k

and thus, using the fact that (2.24) ensures the non-negativity of δ f,t
k , that

0 ≤ δ
f,t

k ≤ |δ f,n
k |

1 − κδ

def= κ̂δ|δ f,n
k |. (3.52)

We may then invoke (3.45) to deduce that δ f,t
k converges to zero. However this is

impossible since δ f,t
k satisfies (2.24) and thus must be bounded away from zero because

of (3.1), (3.26) and (3.51).
We may therefore conclude that an impossible situation occurs for infinite subse-

quences of each of the two types of successful c-iterations. This in turn implies that
| C ∩ S| is finite, which is also a contradiction. Our assumption (3.26) is therefore
impossible, and (3.50) follows. ��
We now combine our results so far and state a first important convergence property of
our algorithm.

Theorem 3.16 As long as infeasible stationary points are avoided, there exists a
subsequence indexed by K such that (3.5), (3.7) and (3.8) hold, and thus at least one
limit point of the sequence {xk} (if any) is first-order critical. Moreover, we also have
that (3.40) holds when | C ∩ S | = +∞.

123

Nonlinear programming without a penalty function or a filter 181

Proof The desired conclusions immediately follow from Lemmas 3.2, 3.8, 3.11, 3.13,
3.15. ��
Our intention is now to prove that the complete sequences {πk} and {‖Pk gk‖} both
converge to zero, rather than merely subsequences. The first step to achieve this objec-
tive is to prove that the projection P(x) onto the nullspace of the Jacobian J (x) is
Lipschitz continuous when x is sufficiently close to the feasible domain.

Lemma 3.17 There exists a constant κP > 0 such that, for all x1 and x2 satisfying
max [‖c(x1)‖, ‖c(x2)‖] ≤ κc, we have that

‖P(x1)− P(x2)‖ ≤ κP‖x1 − x2‖. (3.53)

Proof Because of (3.13) and our assumption on c(x1) and c(x2), we know that

P(xi) = I − J (xi)
T [J (xi)J (xi)

T]−1 J (xi) (i = 1, 2). (3.54)

Denoting J1
def= J (x1) and J2

def= J (x2), we first observe that

[J1 J T
1]−1 − [J2 J T

2]−1 = [J1 J T
1]−1

(
(J2 − J1)J

T
1 − J2(J1 − J2)

T
)

[J2 J T
2]−1.

(3.55)

But the mean-value theorem and (3.1) imply that, for i = 1, . . . ,m,

‖∇x ci (xk1)− ∇x ci (xk2)‖ ≤
∥∥∥∥∥∥

1∫
0

∇xx ci (xk1 + t (xk2 − xk1))(xk1 − xk2) dt

∥∥∥∥∥∥
≤ max

t∈[0,1] ‖∇xx ci (xk1 + t (xk2 − xk1))‖ ‖xk1 − xk2‖
≤ κH‖xk1 − xk2‖,

which in turn yields that

‖(J1 − J2)
T ‖ = ‖J1 − J2‖ ≤ mκH‖x1 − x2‖. (3.56)

Hence, using (3.55), (3.1) and (3.13), we obtain that

∥∥∥[J1 J T
1]−1 − [J2 J T

2]−1
∥∥∥ ≤ 2mκ2

H

κ4
J

‖x1 − x2‖. (3.57)

Computing now the difference between P(x1) and P(x2) and using (3.54), we deduce
that

P(x1)− P(x2) = J T
1 [J1 J T

1]−1(J2 − J1)+ (J2 − J1)
T [J2 J T

2]−1 J2

−J T
1

([J1 J T
1]−1 − [J2 J T

2]−1
)

J2

123

182 N. I. M. Gould, Ph. L. Toint

and thus, using (3.1) and (3.13) again with (3.56) and (3.57),

‖P(x1)− P(x2)‖ ≤ mκ2
H

κ2
J

‖x1 − x2‖ + mκ2
H

κ2
J

‖x1 − x2‖ + 2mκ4
H

κ4
J

‖x1 − x2‖.

This then yields (3.53) with κL = 2mκ2
H

κ2
J

(
1 + κ2

H

κ2
J

)
. ��

We now refine our interpretation of the criticality measure πk , and verify that it
approximates the norm of the projected gradient when the constraint violation is small
enough.

Lemma 3.18 Assume that

min
[

1
2 ‖Pk gk‖, 1

12 ‖Pk gk‖2
]
> κHκGκn‖ck‖ + ω1(‖ck‖). (3.58)

Then we have that

πk = ψk‖Pk gk‖ (3.59)

for some ψk ∈ [1
9 ,

11
3].

Proof From (2.17) and (2.14), we know that

rk = Pk(gk + Gknk)+ ω1(‖ck‖)u

for some normalized u, and thus, using (2.21),

πk (‖Pk gk + Pk Gknk + ω1(‖ck‖)u‖) = πk‖rk‖ = 〈gk, rk〉 + 〈Gknk, rk〉.
(3.60)

Now, using the triangle inequality, (3.1), (2.5), (3.58) and the bound κH ≥ 1, we verify
that

‖Gknk + ω1(‖ck‖)u‖ ≤ κGκn‖ck‖ + ω1(‖ck‖) < 1
2 ‖Pk gk‖

and hence

‖rk‖ = ‖Pk gk + Pk Gknk + ω1(‖ck‖)u‖ = ‖Pk gk‖(1 + αk)

with |αk | < 1
2 . Substituting this relation in (3.60) and using the symmetric and idem-

potent nature of the orthogonal projection Pk , we obtain that

πk = 1
1 + αk

〈gk, Pk gk〉‖Pk gk‖ + 〈gk, Pk Gknk + ω1(‖ck‖)u〉
(1 + αk)‖Pk gk‖ + 〈Gknk, rk〉‖rk‖

123

Nonlinear programming without a penalty function or a filter 183

But the Cauchy–Schwarz inequality, (2.5), (3.1), the bounds ‖Pk‖ ≤ 1 and κH ≥ 1
and (3.58) then ensure that∣∣∣∣ 〈Gknk, rk〉

‖rk‖
∣∣∣∣ ≤ κGκn‖ck‖ < 1

2 ‖Pk gk‖

and that∣∣∣∣ 〈gk, Pk Gknk + ω1(‖ck‖)u〉
(1 + αk)‖Pk gk‖

∣∣∣∣ ≤ κHκGκn‖ck‖ + ω1(‖ck‖)
(1 + αk)‖Pk gk‖ <

1

12(1 + αk)
‖Pk gk‖.

Hence we deduce that, for some βk ∈ [− 1
2 ,

1
2] and some ζk ∈ [− 1

12 ,
1

12],

πk = 1 + ζk

1 + αk
‖Pk gk‖ + βk‖Pk gk‖ = 1 + ζk + βk + αkβk

1 + αk
‖Pk gk‖.

This in turn yields (3.59) because

ψk
def= 1 + ζk + βk + αkβk

1 + αk
∈ [1

9 ,
11
3]

for all (αk, βk, ζk) ∈ [− 1
2 ,

1
2] × [− 1

2 ,
1
2] × [− 1

12 ,
1

12]. ��
The preceding result ensures the following simple but useful technical consequence.

Lemma 3.19 Assume that ε > 0 is given and that

κHκGκn‖ck‖ + ω1(‖ck‖) ≤ ε. (3.61)

Then, for any α > 1
5 ,

min
[

1
2 ‖Pk gk‖, 1

12 ‖Pk gk‖2
]

≥ 5αε implies that πk ≥ αε.

Proof Assume first that (3.58) fails. We then obtain, using (3.61), that

5αε ≤ min
[

1
2 ‖Pk gk‖, 1

12 ‖Pk gk‖2
]

≤ κHκGκn‖ck‖ + ω1(‖ck‖) ≤ ε,

which is impossible because α > 1
5 . Hence (3.58) must hold. In this case, we see,

using Lemma 3.18, that

1
2πk = 1

2ψk‖Pk gk‖ ≥ ψk min
[

1
2 ‖Pk gk‖, 1

12 ‖Pk gk‖2
]

≥ 5
9αε >

1
2αε,

as desired. ��
We now examine the consequences of the existence of a subsequence of consecutive
f -iterations where πk is bounded away from zero.

123

184 N. I. M. Gould, Ph. L. Toint

Lemma 3.20 Assume that there exist k1 ∈ S and k2 ∈ S with k2 > k1 such that all
successful iterations between k1 and k2 − 1 are f -iterations, i.e.

{k1, . . . , k2 − 1} ∩ S ⊆ F , (3.62)

with the property that

π j ≥ ε for all j ∈ {k1, . . . , k2 − 1} ∩ S (3.63)

for some ε > 0. Assume furthermore that

f (xk1)− f (xk2) ≤ η1κδκtCε
2

2κG

. (3.64)

Then

‖xk1 − xk2‖ ≤ 1

η1κδκtCε

[
f (xk1)− f (xk2)

]
. (3.65)

Proof Consider a successful iteration j in the range k1, . . . , k2 − 1 and note that
the sequence { f (x j)}k2

j=k1
is monotonically decreasing. We then deduce from (2.11),

(2.24), (2.33) and (3.63) that

δ
f
j ≥ κδκtCπ j min

[
π j

1 + ‖G j‖ ,� j

]
≥ κδκtCεmin

[
ε

κG

,� j

]
.

Hence, since j ∈ S, (2.35) implies that

f (x j)− f (x j+1) ≥ η1δ
f

k ≥ η1κδκtCεmin

[
ε

κG

,� j

]
. (3.66)

But the bound (3.64) and the inequality f (x j) − f (x j+1) ≤ f (xk1) − f (xk2) yield
together that the minimum in the right-hand side of (3.66) must be achieved by the
second term. This in turn implies that

‖x j − x j+1‖ ≤ � j ≤ 1

η1κδκtCε

[
f (x j)− f (x j+1)

]
.

Summing now over all successful iterations from k1 to k2 − 1 and using the triangle
inequality, we therefore obtain that

‖xk1 − xk2‖ ≤
k2−1∑

j=k1, j∈S
‖x j − x j+1‖ ≤ 1

η1κδκtCε

k2−1∑
j=k1, j∈S

[
f (x j)− f (x j+1)

]

and (3.65) follows. ��

123

Nonlinear programming without a penalty function or a filter 185

Our next step is to extend Lemma 3.11 by showing that the constraint violation goes
to zero not only along the subsequence for which the criticality πk goes to zero, but
actually along the complete sequence of iterates.

Lemma 3.21 Assume that | C∩S | < +∞ and that | S | = +∞, and thatω2 is strictly
increasing on [0, tω] for some tω > 0. Then

lim
k→∞ ‖ck‖ = 0.

Proof Let k0 be the index of the last successful iteration in C (or −1 if there is none).
Thus all successful iterations beyond k0 must be f -iterations. In this case, we know
that the sequence { f (xk)} is monotonically decreasing (by the mechanism of the
algorithm) and bounded below by flow because of (3.2); it is thus convergent to some
limit f∗ ≥ flow. Assume first that there exists a subsequence indexed by Kc ⊆ F ∩ S
such that

‖ck‖ ≥ ε0

for some ε0 > 0 and all k ∈ Kc with k > k0. Because of (2.29) and the monotonicity
of ω2, we then deduce that

πk ≥ ω2(ε0)

for all k ∈ Kc with k > k0. On the other hand, Lemma 3.11 implies the existence
of an infinite subsequence K such that (3.5) and (3.7) both hold. We now choose an
ε > 0 small enough to ensure that

ε ≤ min
[

1
2ω2(ε0), tω

]
and ω−1

2 (ε)+ 1
4ε ≤ 1

2ε0. (3.67)

(Note that the first part of the condition and our assumption on ω2 ensures that this
bounding function is invertible for all t ≤ ε.) We next choose an index k1 ∈ Kc large
enough to ensure that k1 > k0 and also that

fk1 − f∗ ≤ min

[
η1κδκtCε

2

2κG

,
η1κδκtCε

2

4κH

]
, (3.68)

which is possible since { f (xk)} converges in a monotonically decreasing manner to
f∗. We finally select k2 to be the first index in K after k1 such that

π j ≥ ε for all k1 ≤ j < k2, j ∈ S, and πk2 < ε. (3.69)

Because f (xk1)− f (xk2) ≤ f (xk1)− f∗ and (3.68), we may then apply Lemma 3.20
to the iterations k1 and k2, and deduce that (3.65) holds, and therefore, using (3.64),
we then obtain that

‖xk1 − xk2‖ ≤ ε

4κH

.

123

186 N. I. M. Gould, Ph. L. Toint

Thus, using the vector-valued mean-value theorem, we the obtain that

‖ck1 − ck2‖ ≤
∥∥∥∥∥∥

1∫
0

J (xk1 + t (xk2 − xk1))(xk1 − xk2) dt

∥∥∥∥∥∥
≤ max

t∈[0,1] ‖J (xk1 + t (xk2 − xk1))‖ ‖xk1 − xk2‖
≤ κH‖xk1 − xk2‖
≤ 1

4ε

As a consequence, using the triangle inequality, the fact that ω2(‖ck2‖) ≤ πk2 (since
k2 ∈ F) and the second part of (3.67), we deduce that

ε0 ≤ ‖ck1‖ ≤ ‖ck2‖ + 1
4ε ≤ ω−1

2 (πk2)+ 1
4ε ≤ ω−1

2 (ε)+ 1
4ε ≤ 1

2ε0

which is a contradiction. Hence our initial assumption on the existence of the subse-
quence Kc is impossible and ‖ck‖ must converge to zero, as required. ��
We finally strengthen the convergence results obtained in Theorem 3.16 by avoiding
taking limits along subsequences.

Theorem 3.22 Assume that (3.13) holds and that ω2 is strictly increasing in [0, tω]
for some tω > 0. Then, we have that, either there exists a subsequence indexed by Z
such that (3.12) holds, or

lim
k→∞ ‖ck‖ = 0 and lim

k→∞ ‖Pk gk‖ = 0, (3.70)

and all limit points of the sequence {xk} (if any) are first-order critical.

Proof Assume that no subsequence exists such that (3.12) holds. If there are only
finitely many successful iterations, the desired conclusion directly follows from The-
orem 3.8. Assume therefore that |S| = +∞ and immediately note that the first limit
in (3.70) follows from Theorem 3.16. Thus we only need to prove the second limit in
(3.70) when they are infinitely many successful iterations.

For this purpose, assume, with the objective of deriving a contradiction, that there
exists an infinite subsequence indexed by K such that, for some ε ∈ (0, 1

5),

min
[

1
2 ‖Pk gk‖, 1

12 ‖Pk gk‖2
]

≥ 10ε for all k ∈ K. (3.71)

Now choose k1 ∈ K large enough to ensure that, for all k ≥ k1, (3.61) holds,

‖ck‖ ≤ min

[
2κH

κnκG

, κc

]
, (3.72)

and

ω2(‖ck‖) ≤ 1
2ε. (3.73)

123

Nonlinear programming without a penalty function or a filter 187

If | C ∩ S | = +∞, we also require that the conclusions of Lemma 3.14 apply, that

|δ f,n
k | ≤ κtCε

2

2κ̂δκG

(3.74)

for all k ≥ k1, and that

√
2θmax

k1
≤ η1κδκtC(1 − √

κθm)ε
2

4κ3
H (κP + 1)κnκ0

(3.75)

(
whereκ0

def= max
[
1, 2κ̂δκH

κtCε

])
, which is possible because of Lemma 3.14. Conversely,

if | C ∩ S | < +∞, we require that k1 is larger than the index of the last successful
c-iteration. Observe that, because of (3.61) and Lemma 3.19 (with α = 2), (3.71)
implies that

πk1 ≥ 2ε > 0. (3.76)

We now choose k2 to be the (first) successful iteration after k1 such that

πk2 < ε, (3.77)

which we know must exist because of Theorem 3.16. Note that this last inequality,
(3.61) and Lemma 3.19 (with α = 1) then give that

min
[

1
2 ‖Pk2 gk2‖, 1

12 ‖Pk2 gk2‖2
]

≤ 5ε. (3.78)

Our choice of k1 and k2 also yields that

π j ≥ ε for k1 ≤ j < k2. (3.79)

Assume now that | C∩S | = +∞ and consider an iteration j ∈ C∩S with k1 ≤ j < k2,
and note that (2.29) must hold at such an iteration because of (3.73) and (3.79). Assume
first that (2.13) also holds and thus that the tangential step t j is computed. We know
from (3.46) and Lemma 2.3 that θ+

j ≤ κθθ j ≤ κθθ
max
j . Hence (2.34) holds. As a

consequence (2.33) must fail and we obtain that

κ̂δ|δ f,n
j | > δ

f,t
j ≥ κtCεmin

[
ε

κG

,� j

]

where we used (2.24), (3.52), (3.79) and Lemma 3.3. But (3.74) then implies that the
minimum in the last right-hand side must be achieved by the second term, and hence,
using (2.11), that

‖s j‖ ≤ �k ≤ κ̂δ

κtCε
|δ f,n

j |. (3.80)

123

188 N. I. M. Gould, Ph. L. Toint

Using now successively the definition of δ f,n
j (as in (3.48)), the Cauchy–Schwarz

inequality, (3.1), (2.5) and (3.72), we deduce that

|δ f,n
j | = |〈g j , n j 〉 + 1

2 〈n j ,G j n j 〉|
≤ ‖g j‖ ‖n j‖ + 1

2 ‖G j‖ ‖n j‖2

≤ (κH + 1
2κGκn‖c j‖)‖n j‖

≤ 2κH‖n j‖.
Combining the last bound with (3.80), we find that

‖s j‖ ≤ 2κ̂δκH

κtCε
‖n j‖.

Conversely, if (2.13) does not hold, we have that t j = 0 and hence s j = n j . As a
consequence, we obtain that, for every j ∈ C ∩ S such that k1 ≤ j < k2,

‖s j‖ ≤ max

[
1,

2κ̂δκH

κtCε

]
‖n j‖ ≤ κnκ0‖c j‖ ≤ κnκ0

√
2θmax

j (3.81)

where (2.5) and Lemma 2.3 are used to obtain the last two inequalities. Remembering
now Lemma 3.14 and the fact that θmax

j is unchanged at iterations outside C ∩ S, we
thus deduce that, for any k3 ≥ k1,

k3∑
j=k1, j∈C∩S

‖s j‖ ≤ κnκ0

k3∑
j=k1, j∈C∩S

√
2θmax

j

≤ κnκ0

√
2θmax

k1

k3∑
j=k1, j∈C∩S

κ
1
2 |C∩{kc

1,...,k3}|
θm

≤ κnκ0

√
2θmax

k1

∞∑
j=0

κ
j/2
θm

≤ κnκ0

1 − √
κθm

√
2θmax

k1
(3.82)

But this last bound, (3.75) and the inequality η1κδκtCε ≤ 4κH then yield that, for any
k3 ≥ k1,

k3∑
j=k1, j∈C∩S

‖s j‖ ≤ ε

κ2
H (κP + 1)

. (3.83)

Note that this bound is valid irrespective of k3. Using the mean-value theorem, we
now obtain that

| f (x j)− f (x j+1)| = |〈g j , s j 〉 + 1
2 〈s j ,∇xx f (ξ j)s j 〉| ≤ κH‖s j‖ + 1

2κH‖s j‖2

123

Nonlinear programming without a penalty function or a filter 189

for some ξ j ∈ [x j , x j+1), and where we have used the Cauchy–Schwarz inequality
and (3.1) to deduce the last inequality. But (2.5), (3.81) and condition (3.72) then
imply that

‖s j‖ + 1
2 ‖s j‖2 ≤ ‖s j‖(1 + 1

2κ0‖n j‖) ≤ ‖s j‖(1 + 1
2κ0κn‖c j‖) ≤ 2‖s j‖

and hence, using (3.82), that

k3∑
j=1, j∈C∩S

| f (x j)− f (x j+1) | ≤ 2κH

k3∑
j=k1, j∈C∩S

‖s j‖ ≤ 2κnκHκ0

1 − √
κθm

√
2θmax

k1
.

Taking the limit for k3 going to infinity, we see, using (3.75), that

∞∑
j=k1, j∈C∩S

| f (x j)− f (x j+1) | ≤ 2κnκHκ0

1 − √
κθm

√
2θmax

k1
≤ η1κδκtCε

2

2κ2
H (κP + 1)

.

(3.84)

Note that this bound remains valid if | C ∩ S | < +∞ since the sum on the left-hand
side is empty in that case.

We now observe that the objective function is decreased at every successful
f -iteration and the total decrease, from iteration k1 on, cannot exceed the maximum
value of f (xk) for k ≥ k1 minus the lower bound flow specified by (3.2). Moreover
the maximum of f (xk) for k ≥ k1 cannot itself exceed f (xk1) augmented by the
total increase occurring at all c-iterations beyond k1, which is given by (3.84). As a
consequence, we may conclude that

∞∑
j=k1, j∈S

| f (x j)− f (x j+1) |=
∞∑

j=k1, j∈F∩S

[
f (x j)− f (x j+1)

]

+
∞∑

j=k1, j∈C∩S
| f (x j)− f (x j+1) |

≤
[

f (xk1)+ η1κδκtCε
2

2κ2
H (κP + 1)

− flow

]
+ η1κδκtCε

2

2κ2
H (κP + 1)

,

which in turn implies that

∞∑
j=0, j∈S

| f (x j)− f (x j+1) | < +∞ and lim
�→∞

∞∑
j=�, j∈S

| f (x j)− f (x j+1) | = 0.

123

190 N. I. M. Gould, Ph. L. Toint

Because of this last limit, we may therefore possibly increase k1 ∈ K (and k2
accordingly) to ensure that

∞∑
j=k1, j∈S

| f (x j)− f (x j+1) | ≤ min

[
η1κδκtCε

2

2κG

,
η1κδκtCε

2

2κ2
H (κP + 1)

]
(3.85)

in addition to (3.61), (3.72), (3.73), as well as the conclusions of Lemma 3.14, (3.74)
and (3.75) if | C ∩ S | = +∞.

Consider now a range of consecutive successful f -iterations (i.e. a range con-
taining at least one successful f -iteration and no successful c-iteration), indexed by
{ka, . . . , kb − 1}. Observe that (3.85) gives that

f (xka)− f (xkb) ≤ η1κδκtCε
2

2κG

.

Then, using Lemma 3.20 (which is applicable because of (3.79) and this last bound),
we deduce that

‖xka − xkb‖ ≤ 1
η1κδκtCε

[
f (xka)− f (xkb)

]
.

We now sum on all disjoint sequences {ka,�, . . . , kb,�}p
�=1 of this type between k1 and

k2 − 1 (if any), and find that

k2−1∑
j=k1, j∈F∩S

‖x j − x j+1‖ =
p∑
�=1

‖xka,� − xkb,�‖

≤ 1

η1κδκtCε

p∑
�=1

[
f (xka,�)− f (xkb,�)

]
. (3.86)

We now decompose this last sum and obtain, using (3.84) and (3.85), that

p∑
�=1

[
f (xka,�)− f (xkb,�)

] ≤
∞∑
�=1

[
f (xka,�)− f (xkb,�)

]

=
∞∑

j=k1, j∈F∩S

[
f (x j)− f (x j+1)

]

=
∞∑

j=k1, j∈S

[
f (x j)− f (x j+1)

] −
∞∑

j=k1, j∈C∩S

[
f (x j)− f (x j+1)

]

≤
∞∑

j=k1, j∈S
| f (x j)− f (x j+1)| +

∞∑
j=k1, j∈C∩S

∣∣ f (x j)− f (x j+1)
∣∣

≤ η1κδκtCε
2

κ2
H (κP + 1)

123

Nonlinear programming without a penalty function or a filter 191

Substituting this inequality in (3.86), we obtain that

k2−1∑
j=k1, j∈F∩S

‖x j − x j+1‖ ≤ ε

κ2
H (κP + 1)

and thus, using the triangle inequality and (3.83) with k3 = k2 − 1, that

‖xk1 − xk2‖ ≤
k2−1∑

j=k1, j∈C∩S
‖x j − x j+1‖ +

k2−1∑
j=k1, j∈F∩S

‖x j − x j+1‖

≤ 2ε

κ2
H (κP + 1)

. (3.87)

We now return to considering the sizes of the projected gradients at iterations k1 and
k2. We know from (3.71), (3.78) and the triangle inequality that

‖Pk1 gk1‖ − ‖Pk2 gk2‖ ≤ ‖Pk1 gk1 − Pk2 gk2‖
≤ ‖(Pk1 − Pk2)gk1‖ + ‖Pk2(gk1 − gk2)‖
≤ ‖Pk1 − Pk2‖ ‖gk1‖ + ‖Pk2‖ ‖gk1 − gk2‖.

In view of (3.72), we may now apply Lemma 3.17 and, recalling that the norm of an
orthogonal projection is bounded above by one, deduce that

‖Pk1 gk1‖ − ‖Pk2 gk2‖ ≤ κPκH‖xk1 − xk2‖ + ‖gk1 − gk1‖, (3.88)

where we have used (3.1) to bound ‖gk1‖. But the vector-valued mean-value theorem
ensures that

‖gk1 − gk2‖ ≤
∥∥∥∥∥∥

1∫
0

∇xx f (xk1 + t (xk2 − xk1))(xk1 − xk2) dt

∥∥∥∥∥∥
≤ max

t∈[0,1] ‖∇xx f (xk1 + t (xk2 − xk1))‖ ‖xk1 − xk2‖
≤ κH‖xk1 − xk2‖,

where we also used (3.1). Substituting this last inequality in (3.88) and using (3.87),
we finally obtain that

‖Pk1 gk1‖ − ‖Pk2 gk2‖ ≤ κH(κP + 1)‖xk1 − xk2‖ ≤ 2ε

κH

. (3.89)

Observe now that the inequality ε ≤ 1
5 and (3.78) imply together that

‖Pk2 gk2‖ ≤ 10ε ≤ 2 or ‖Pk2 gk2‖2 ≤ 60ε ≤ 12 < 16,

123

192 N. I. M. Gould, Ph. L. Toint

which in turn implies that

‖Pk2 gk2‖ < 4 (3.90)

and thus that

min
[

1
2 ‖Pk2 gk2‖, 1

12 ‖Pk2 gk2‖2
]

= 1
12 ‖Pk2 gk2‖2. (3.91)

Suppose now that

‖Pk1 gk1‖ ≤ 6, (3.92)

in which case

min
[

1
2 ‖Pk1 gk1‖, 1

12 ‖Pk1 gk1‖2
]

= 1
12 ‖Pk1 gk1‖2. (3.93)

Then, successively using (3.71), (3.78), (3.93), (3.91), the bound of one on the norm
of orthogonal projections, (3.1) and (3.89), we conclude that

5ε ≤ min
[

1
2 ‖Pk1 gk1‖, 1

12 ‖Pk1 gk1‖2
]

− min
[

1
2 ‖Pk2 gk2‖, 1

12 ‖Pk2 gk2‖2
]

= 1
12

[
‖Pk1 gk1‖2 − ‖Pk2 gk2‖2

]
= 1

12

[‖Pk1 gk1‖ + ‖Pk2 gk2‖
] [‖Pk1 gk1‖ − ‖Pk2 gk2‖

]
≤ 1

6κH

[‖Pk1 gk1‖ − ‖Pk2 gk2‖
]

≤ 1
3ε

which is impossible. Hence (3.92) must be false. Combining now this observation
with (3.90), we obtain that

2 < ‖Pk1 gk1‖ − ‖Pk2 gk2‖ ≤ 2ε

κH

,

which is again impossible. Hence our assumption (3.71) is itself impossible and the
second limit of (3.70) must hold. ��

We end our theoretical developments at this point, but the theory and results pre-
sented so far suggest some comments.

1. Although different from filter methods and penalty-type methods, the proposed
algorithm unsurprisingly shares some of the main broad concepts used by these
techniques to ensure global convergence.
One can view the pair (θ(xk), f (xk)) as some kind of temporary filter entry: an
f -iteration from xk needs not improve on feasibility, but should then result in
progress on the objective function minimization, while, by contrast, a c-iteration
allows the objective function to increase, but produces a significant decrease in

123

Nonlinear programming without a penalty function or a filter 193

infeasibility. This is very similar to what happens in filter methods, except that the
filter entry is then remembered in the filter. By contrast, the pair is not stored in
the trust-funnel method, but memory is instead provided by the decreasing nature
of the sequence {θmax

k }. Note that a similar mechanism is also included is some
filter methods (see [11] for instance). It is also interesting to note that we have
proved that every limit point of the sequence of iterates must be first-order critical,
a result which has not been established for filter algorithms.
The trust-funnel method is also related to penalty approaches, in that the decreasing
bound θmax

k may possibly be interpreted as the effect of an increasing penalty
parameter in this context. In this interpreration, the need to explicitly manage the
parameter in the course of a penalty-based algorithm (which can be viewed as
an indirect control on acceptable infeasibility) is replaced here by a more direct
version of this control.

2. Assumption (3.2) is not really crucial in the sense that one may apply c-iterations
(by temporarily setting f ≡ 0 and keeping ŷk = 0) a priori (hence reducing
infeasibility) to reduce the domain. If a global lower bound on the objective func-
tion value on the feasible domain is known, a comparison of the infeasibility and
objective function value at the starting point may be useful to decide whether pure
c-iterations should be applied first, or if the complete algorithm can be applied
directly from the starting point.

3. When the Jacobian Jk is of full-rank, we can rewrite the test (2.14) in the form

‖Jk(g
N
k + J T

k yk)‖ ≤ ω1(‖ck‖),

which provides an implementable version of (2.14).
4. Convergence of trust-region methods for unconstrained optimization may be

obtained as a by-product of the results presented here. Indeed, if there are no
constraints, the algorithm reduces to the basic trust-region method by setting
θmax

0 = κca, and, for every k, nk = 0, yk = 0, ŷk = 0, rk = gk . Since πk = ‖gk‖,
we have that πk > ω2(0) = 0 and a non-zero tk is always computed. More-
over, every iteration is then an f -iteration with δ f

k = δ
f,t

k at which we choose, as
allowed by (2.37), not to update the (irrelevant) �c

k .
5. Obviously, one could use Gk = Hk and still obtain global convergence. The vector

ŷk then becomes irrelevant. This is particularly apt when the constraints are linear.
6. The tangential step is only required to satisfy the modified Cauchy condition

(2.24), but there is no theoretical need to compute the associated modified Cauchy
point (the solution of (2.19)). If one considers that tk results from an iterative
process starting (and possibly ending) at this modified Cauchy point, it is then
necessary to ensure that this point satisfies either (2.28) or (2.25)-(2.26)-(2.27). A
possible technique is to first solve (2.18) accurately enough to ensure that

‖ck + Jk(nk − τkrk)‖2 ≤ κttθ
max
k , (3.94)

which is possible since it holds trivially if (2.18) is solved exactly, because then
Jkrk = 0 by construction and ϑk < ‖ck + Jknk‖2. As soon as (3.94) holds, then
the modified Cauchy point can be computed and (2.26) and (2.25) tested. If any

123

194 N. I. M. Gould, Ph. L. Toint

of these fail, then the solution of (2.18) must be continued to ensure that

‖ck + Jk(nk − τkrk)‖2 ≤ ϑk

and a new, improved, modified Cauchy point can then be found along −rk at which
(2.28) holds.

7. It is interesting to observe that the conditions (2.27) or (2.28) happen to be irrele-
vant for successful f -iterations in the theory discussed above. For such iterations,
the role of limiting the acceptable infeasibility is played by (2.34).
In a situation where evaluating the value of the infeasibility measure θ is cheap
and the tangential step is computed by an iterative process, it may be possible to
detect that (2.33) holds before the end of this process, and then simply replace
conditions (2.27)/(2.28) by the verification that (2.34) holds. Of course, if (2.35)
then fails or if (2.34) cannot be enforced, then the iteration has to be handled as an
unsucessful c-iteration, since we can no longer turn it into a successful c-iteration
for which (2.27)/(2.28) is meaningful.

8. Preliminary numerical experience (see [14]) has shown that our algorithm, like
many SQP methods, might suffer from the Maratos effect. A well documented
cure for this problem (see [7,20], or Section 15.3.2 of [8]) is to use second-order
correction steps. In our context, we define a such a step sC

k as a step performed
from xk + sk to correct for an unsuccessful f -iteration, and such that

‖sk + sC
k‖ ≤ �k (3.95)

and

θ(xk + sk + sC
k) ≤ θmax

k . (3.96)

Of course, for the f -iteration using the augmented step sk + sC
k to be successful ,

we still require, extending (2.35), that

ρC
k

def= f (xk)− f (xk + sk + sC
k)

mk(xk)− mk(xk + sk)
≥ η1. (3.97)

Using the comment just made on the irrelevant nature of (2.27) or (2.28) for suc-
cessful f -iterations, we may now verify that the convergence theory presented
above is not modified by the presence of these correction steps. Indeed, a suc-
cessful iteration using the augmented step satisfies all the conditions required
for a successful f -iteration where mk(x + sk) is then interpreted, in the spirit of
Section 10.4.2 in [8], as a prediction of f (xk +sk +sC

k) and where the infeasibility-
limiting condition (2.34) is replaced by (3.96).
In practice, a second-order correction is often computed by producing a step sC

k
that reduces infeasibility, typically by “projecting” the trial point lying in or close
to the nullspace of J (xk) onto the actual feasible set. In this case, sC

k not only
improves feasibility (ensuring (3.96)), but often makes mk(xk + sk) to be a better
prediction of the value of f (xk + sk + sC

k) than of f (xk + sk) (which tends to make

123

Nonlinear programming without a penalty function or a filter 195

the iteration acceptable in (3.97)). Because ‖sC
k‖ is then of the order of ‖sk‖2,

condition (3.95) usually follows from (2.11).
9. The authors anticipate that the convergence rate for the new method is essentially

that which is known for composite step SQP methods (i.e., Q-superlinear or, under
stronger assumptions, Q-quadratic). It seems most likely that either a second-order
correction or a non-monotone acceptance rule will be required to obtain these
results. The verification of this intuition is left for a future paper.

The authors are well aware that many theoretical questions remain open at this stage
of analysis, such as convergence to second-order critical points, rate of convergence,
inequality constraints and worst-case complexity analysis. Furthermore, the many
degrees of freedom in the algorithm provide considerable room for implementation
tuning.

4 Conclusion and perspectives

We have presented a new SQP algorithm for the solution of the equality constrained
nonlinear programming problem, that avoids the use of penalty parameters and that
allows for inexact tangential steps. Convergence to first-order critical point has been
proved.

A first line of work is the inclusion of a multi-dimensional filter mechanism (see
[15]) in the algorithm, with the objective to make the constraint on decreasing infeasi-
bility more flexible. Other non-monotone techniques, such as only requiring a decrease
from the worst infeasibility over some past iterations could also be investigated. A sec-
ond interesting development is the inclusion of bound or more general inequalities in
the present framework. A third line of development is the design of a linesearch variant
of the new method, possibly following ideas in Section 10 of [8]. On a more practical
level, extensive numerical testing of the ideas presented here is necessary. These tests
are ongoing, and preliminary results are encouraging.

Acknowledgments The authors are grateful to Professor Y. Yuan and his students at the Chinese Academy
of Sciences for the organization of the ICNAO2006 conference in Beijing, which provided an excellent
environment for the derivation of some of the results presented here. They are also pleased to acknowledge
the hospitality of CERFACS (Toulouse) where discussions with S. Gratton, D. Orban and A. Sartenaer
stimulated the work that led to this paper. Many thanks are finally due to an anonymous thoughtful colleague,
who provided input on the connections between the proposed method and existing techniques.

References

1. Biegler, L.T., Nocedal, J., Schmid, C.: A reduced Hessian method for large-scale constrained opti-
mization. SIAM J. Optim. 5(2), 314–347 (1995)

2. Bielschowsky, R.H., Gomes, F.A.M.: Dynamical control of infeasibility in nonlinearly constrained
optimization. Technical Report 23/06, Department of Applied Mathematics, IMECC-UNICAMP,
Campinas, Brazil. SIAM J. Optim. (2006, to appear)

3. Byrd, R.H., Curtis, F.E., Nocedal, J.: An inexact SQP method for equality constrained optimization.
SIAM J. Optim. 19(1), 351–369 (2008)

4. Byrd, R.H., Gilbert, J.Ch., Nocedal, J.: A trust region method based on interior point techniques for
nonlinear programming. Math. Program. Ser. A 89(1), 149–186 (2000a)

123

196 N. I. M. Gould, Ph. L. Toint

5. Byrd, R.H., Gould, N.I.M., Nocedal, J., Waltz, R.A.: An algorithm for nonlinear optimization using lin-
ear programming and equality constrained subproblems. Math. Program. Ser. B 100(1), 27–48 (2004)

6. Byrd, R.H., Hribar, M.E., Nocedal, J.: An interior point algorithm for large scale nonlinear program-
ming. SIAM J. Optim. 9(4), 877–900 (2000b)

7. Coleman, T.F., Conn, A.R.: Nonlinear programming via an exact penalty function method: asymptotic
analysis. Math. Program. 24(3), 123–136 (1982)

8. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-Region Methods. Number 01. In: MPS-SIAM Series
on Optimization. SIAM, Philadelphia, USA (2000)

9. El-Alem, M.: Global convergence without the assumption of linear independence for a trust-region
algorithm for constrained optimization. J. Optim. Theory Appl. 87(3), 563–577 (1995)

10. El-Alem, M.: A global convergence theory for a general class of trust-region-based algorithms for
constrained optimization without assuming regularity. SIAM J. Optim. 9(4), 965–990 (1999)

11. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Pro-
gram. 91(2), 239–269 (2002)

12. Fletcher, R., Gould, N.I.M., Leyffer, S., Toint, Ph.L., Wächter, A.: Global convergence of trust-region
SQP-filter algorithms for nonlinear programming. SIAM J. Optim. 13(3), 635–659 (2002a)

13. Fletcher, R., Leyffer, S., Toint, Ph.L.: On the global convergence of a filter-SQP algorithm. SIAM
J. Optim. 13(1), 44–59 (2002b)

14. Gould, N.I.M., Toint, Ph.L.: Nonlinear programming without a penalty function or a filter. Technical
Report 07/2, Department of Mathematics, FUNDP-University of Namur, Namur, Belgium (2007)

15. Gould, N.I.M., Leyffer, S., Toint, Ph.L.: A multidimensional filter algorithm for nonlinear equations
and nonlinear least-squares. SIAM J. Optim. 15(1), 17–38 (2005)

16. Heinkenschloss, M., Vicente, L.N.: Analysis of inexact trust region SQP algorithms. SIAM
J. Optim. 12(2), 283–302 (2001)

17. Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)
18. Lalee, M., Nocedal, J., Plantenga, T.D.: On the implementation of an algorithm for large-scale equality

constrained optimization. SIAM J. Optim. 8(3), 682–706 (1998)
19. Liu, X., Yuan, Y.: A robust trust-region algorithm for solving general nonlinear programming prob-

lems. SIAM J. Scientific Comput. 22, 517–534 (2000)
20. Mayne, D.Q., Polak, E.: A superlinearly convergent algorithm for constrained optimization prob-

lems. Math. Program. Stud. 16, 45–61 (1982)
21. Omojokun, E.O.: Trust region algorithms for optimization with nonlinear equality and inequality

constraints. PhD thesis, University of Colorado, Boulder, Colorado, USA (1989)
22. Steihaug, T.: The conjugate gradient method and trust regions in large scale optimization. SIAM

J. Numer. Anal. 20(3), 626–637 (1983)
23. Toint, Ph.L.: Towards an efficient sparsity exploiting Newton method for minimization. In: Duff, I.S.

(ed) Sparse Matrices and Their Uses, pp. 57–88. Academic Press, London (1981)
24. Ulbrich, S., Ulbrich, M.: Nonmonotone trust region methods for nonlinear equality constrained opti-

mization without a penalty function. Math. Program. Ser. B 95(1), 103–105 (2003)
25. Yamashita, H., Yabe, H.: A globally convergent trust-region SQP method without a penalty function

for nonlinearly constrained optimization. Technical report, Mathematical Systems, Inc., Sinjuku-ku,
Tokyo, Japan (2003)

26. Yamashita, N.: A globally convergent qusi-newton method for equality constrained optimization that
does not use a penalty function. Technical report, Mathematical Systems, Inc., Sinjuku-ku, Tokyo,
Japan, 1979. Revised in (1982)

27. Zoppke-Donaldson, C.: A tolerance-tube approach to sequential quadratic programming with applica-
tions. PhD thesis, Department of Mathematics and Computer Science, University of Dundee, Dundee,
Scotland, UK (1995)

123

	Abstract
	1 Introduction
	2 A trust-funnel algorithm
	3 Global convergence to first-order critical points
	4 Conclusion and perspectives
	Acknowledgments

