
Nonlinear protein degradation and the function
of genetic circuits
Nicolas E. Buchler†‡, Ulrich Gerland§, and Terence Hwa¶

†Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10021; §Physics Department and Center for Nanoscience,
Ludwig-Maximilians University, 80539 Munich, Germany; and ¶Physics Department and Center for Theoretical Biological Physics, University
of California at San Diego, La Jolla, CA 92093-0374

Edited by Alexander Varshavsky, California Institute of Technology, Pasadena, CA, and approved May 6, 2005 (received for review December 21, 2004)

The functions of most genetic circuits require a sufficient degree of
cooperativity in the circuit components. Although mechanisms
of cooperativity have been studied most extensively in the context
of transcriptional initiation control, cooperativity from other pro-
cesses involved in the operation of the circuits can also play
important roles. In this work, we examine a simple kinetic source
of cooperativity stemming from the nonlinear degradation of
multimeric proteins. Ample experimental evidence suggests that
protein subunits can degrade less rapidly when associated in
multimeric complexes, an effect we refer to as ‘‘cooperative sta-
bility.’’ For dimeric transcription factors, this effect leads to a
concentration-dependence in the degradation rate because mono-
mers, which are predominant at low concentrations, will be more
rapidly degraded. Thus, cooperative stability can effectively widen
the accessible range of protein levels in vivo. Through theoretical
analysis of two exemplary genetic circuits in bacteria, we show
that such an increased range is important for the robust operation
of genetic circuits as well as their evolvability. Our calculations
demonstrate that a few-fold difference between the degradation
rate of monomers and dimers can already enhance the function of
these circuits substantially. We discuss molecular mechanisms of
cooperative stability and their occurrence in natural or engineered
systems. Our results suggest that cooperative stability needs to be
considered explicitly and characterized quantitatively in any sys-
tematic experimental or theoretical study of gene circuits.

amplification � dimerization � bistability � oscillation

I t is widely recognized that controlled proteolysis, where the
degradation of one protein depends on the presence of another

protein in the cell, can play an important regulatory role in
genetic circuits (1). Here, we examine another effect of prote-
olysis that does not involve such regulatory control, but can
nevertheless impact the function of genetic circuits in important
ways. It is a kinetic, cooperative effect predicated on the
following two essential ingredients: (i) the fact that many
proteins perform their physiological functions as dimers or
higher-order oligomers, and (ii) the tendency for the oligomers
to be more stable (to proteolysis) than their monomeric com-
ponents. This effect, referred to below as ‘‘cooperative stability,’’
has been discussed previously in qualitative terms in the context
of many well-studied examples in prokaryotes and eukaryotes (1,
2). For example, in the SOS response of Escherichia coli, UmuC
degradation is rescued by oligomerization with UmuD�2 (3).
Additionally, in Saccharomyces cerevisiae, the dimerization of a1
and �2 reduced the degradation rate by as much as 15-fold (4).
Possible molecular mechanisms that give rise to cooperative
stability include enhanced thermal stability of proteins upon
mutual association [because thermal instability correlates with
the rate of degradation (5, 6)] and the burial of proteolytic
recognition sequences between protein interfaces (4).

Although most of the previous studies of cooperative stability
focused on protein complexes with heterogeneous protein sub-
units, we study here its effect for typical transcription factors
(TFs) that exert their biological functions only as homodimers

(7). For those proteins that are intended to be present at a ‘‘low’’
and a ‘‘high’’ concentration at two distinct states of the cell, we
show that cooperative stability can help widen the ratio between
the two protein concentrations in vivo, when compared with the
ratio of the mRNA levels in the two states. This amplification
effect follows simply from the nonlinear dependence of the
protein degradation rate on the concentration, i.e., enhanced
degradation rate at lower concentrations due to the predomi-
nance of monomers or, alternatively, the enhanced stability of
dimers that are predominant at higher concentrations. Through
theoretical analysis of two model gene circuits in bacteria, we will
illustrate that cooperative stability can significantly enhance the
function of these circuits. Specifically, we show that a several-fold
effect in cooperative stability can make gene circuits more robust
to stochastic f luctuations while broadening the basin of param-
eter space supporting the circuit function. The latter effect
enhances the evolvability of the circuit.

Circuits and Models
We analyze two basic genetic circuits, one that displays bistability
and the other spontaneous oscillation. Both are important
classes of behavior in biomolecular circuits. The first circuit
consists of only a single gene with a gene product that can
activate its own transcription (see Fig. 1a). This bistable switch
is one of the simplest circuits that can produce two stable states
(at LOW and HIGH levels of transcriptional activities), as was
shown by theoretical analysis and an experimental implementa-
tion in E. coli (8). The second circuit we analyze consists of three
genes connected in a ring topology, each repressing the tran-
scription of its downstream partner (see Fig. 1b). This ‘‘repre-
sillator’’ has been shown to spontaneously oscillate, both theo-
retically and experimentally (9).

Rather than modeling these circuits in full detail, our goal here
is to use these circuits to identify generic effects that cooperative
stability can impart to their functions. Accordingly, we use
simple quantitative models and describe each circuit by only a
few essential parameters, so that the effects of cooperative
stability can be made transparent. Fig. 2 summarizes the bio-
chemical processes considered in our model together with the
associated rates. We describe the net change in the mRNA
concentration due to transcription and turnover by the simple
rate equation

dm
dt

� ��g��TF�� � �m�m , [1]

where � denotes the transcription rate of the promoter at full
activation, g([TF]) is the relative promoter activity as a function
of the TF concentration [TF] (see Fig. 3), and �m is the
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degradation rate of mRNA. Similarly, the net change in total
protein concentration p is

dp
dt

� v�m � ��p1
�p1 � 2�p2

�p2�, [2]

where � denotes the translation rate of mRNA. In the turnover
term, the total protein concentration p � p1 � 2p2 is partitioned
into monomers and dimers with concentrations p1 and p2 and
with turnover rates �p1

and �p2
, respectively. Note that the

turnover term in Eq. 2 is linear in p when �p1
� �p2

and becomes
nonlinear in p with cooperative stability (�p1

� �p2
).

The protein products involved in our genetic circuits are all
TFs, and as is often the case in bacteria, they function as
activators or repressors only in the form of homodimers. Dimer-
ization is assumed to be rapid, so that

p2 �
p1

2

Kd
, [3]

where Kd is the equilibrium dissociation constant.
In this work, we will not explicitly include the stochastic effects

of transcription, translation, and dimerization. Stochastic f luc-
tuations are dominant when the mRNA or protein concentra-
tions are low (15–17). Nevertheless, our formulation in Eqs. 1–3
corresponds to the statistically averaged results of more complex
models that do include these stochastic effects (18). The advan-
tage of our approach is that it allows us to rapidly elucidate the
average behavior of each circuit for all combinations of its
parameters. By demanding that the average protein concentra-
tions not be too small, we can identify those (desirable) combi-
nations of parameters for which the circuit behavior is mostly
insensitive to stochastic effects.

Results
For each circuit shown in Fig. 1 a and b, we want to identify the
effect of cooperative stability on its function by using the
quantitative model described above. Toward this end, we first
determine the parameter regime where the circuit is operational
(i.e., bistable or oscillatory) without cooperative stability (�p1

�
�p2

) and then with cooperative stability (�p1
� �p2

). For the latter
case, we make the (reasonable) assumption that dimer turnover
occurs mainly by cell growth�dilution, whereas monomers can
experience accelerated degradation. Thus, we take the typical
half-life of dimers to be of the order of the cell-doubling time
(	50 min for bacteria in the exponential growth phase), whereas
the typical half-life of monomers can be shortened to a few
minutes. In this section, we present our results for the bistable
circuit. The effect of cooperative stability on oscillation is equally
striking; the detailed results are presented in Supporting Text,
Table 2, and Figs. 5–12, which are published as supporting
information on the PNAS web site.

Bistable Circuit. Because this circuit consists of a single gene with
positive autoregulation, and only dimers can activate transcrip-
tion, the promoter activity increases with the dimer concentra-
tion. This promoter activity function gA is sketched in Fig. 3a,

Fig. 1. Two simple genetic circuits. (a and b) The circuits shown are capable
of bistability (a) and oscillation (b). Genetic circuits consist of genes (drawn as
circles) that regulate the transcriptional activity of one another. This regula-
tion can be activating (arrow) or repressive (blunt line). (c–f ) Exemplary
cis-regulatory architectures in bacteria by using one (c) or two (d) operator
sites for activation and one (e) or two ( f) operator sites for repression. The core
promoter to which RNA polymerase (RNAp) binds and the operator sites to
which the TFs bind are drawn as open or black boxes, respectively. The dashed
lines depict cooperative interaction between regulatory proteins, whereas
overlapping operators (indicated by hatched boxes) denote repression medi-
ated through excluded volume interaction.

Fig. 2. Schematic of the basic parameters involved in transcription, transla-
tion, degradation, and dimerization. Transcription is governed by the tran-
scription rate ��g([TF]), where � is the mRNA synthesis rate at full activation.
Each mRNA is translated into protein monomer at a rate � and degraded at a
rate �m. The cellular concentrations of monomers (p1) and dimers (p2) are
related by the dimer dissociation constant Kd. The protein degradation rate
can be different for monomers (�p1) and dimers (�p2).

Fig. 3. Log–log plot of the relative promoter activity g([TF]) vs. the TF
concentration [TF] for activation (a) and repression (b). The general expression
for the promoter activity function is written above each plot. The peak activity
of a promoter is defined to be 1, the fold-change between LOW and HIGH
plateaus is described by f, and the DNA-binding dissociation constant of a TF
for its operator (�) is the concentration that separates the HIGH plateau from
the transition region. The log–log slope (s) of the transition region [referred
to as ‘‘sensitivity’’ or ‘‘gain’’ in the literature (10)] quantifies the degree of
cooperativity in transcriptional control. It is determined by the Hill coefficient
n and the maximum fold-change f, with maximum s approaching n for large
f (see Supporting Text). Both a and b are approximations to promoter activity
functions derived from the detailed thermodynamic treatment of transcrip-
tional initiation (see Supporting Text and refs. 11–14).
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with [TF] � p2. For any initial mRNA and protein concentration,
this circuit will settle into a steady state given by the condition

��gA�p*2� � �p1
��Kd p*2 � 2�p2

�p*2 [4]

where p*2 denotes the steady-state dimer concentration, and � �
�����m is the protein synthesis rate of this gene at full activation.
Eq. 4 is a simple statement that at steady state, the protein
synthesis rate (left-hand side) must balance the total protein
degradation rate (right-hand side).
Regime of bistability. Bistability results when Eq. 4 has two stable
solutions for p*2, so that the gene can settle in either a HIGH or
LOW state depending on the initial condition. This property
depends on the parameters �, Kd, and the �p values, as well as the
shape of the promoter activity function gA(p2). The latter function
is characterized by the following three parameters (13, 14) as shown
in Fig. 3a: (i) f, the fold change in promoter activity between the
basal and fully activated levels; (ii) �, the TF concentration where
the promoter activity begins to saturate; and (iii) n, the effective Hill
coefficient that describes the cooperativity of the promoter activity
function. Among these parameters, � and � can easily be varied over
several orders of magnitude by means of choice of the operator (19)
and the ribosomal-binding sequences (20), respectively (we refer to
these parameters as ‘‘programmable’’). In contrast, the parameters
f, n, and Kd tend to be more constrained physiologically. For
example, although there is no intrinsic biochemical constraint for Kd
to be small (see footnote ¶ in Table 1), values around Kd 	 10 nM
nevertheless appear to be typical according to in vitro measure-
ments,� e.g., Kd 	 20 nM for �CI (21), Kd 	 8 nM for Arc (22), Kd 	

10 nM for NtrC (23), and Kd 	 1 nM for Crp (24). Similarly, the
maximal fold-change f in activation, which reflects the strength of
the interaction between the activator and the RNA polymerase (13,
14), is typically limited to the order of 10 
 100 (25). Moreover,
although there is no intrinsic difficulty in modifying the strength of
the protein–protein interaction through natural or directed evolu-
tion (26), in practice f is not expected to be very programmable due
to pleiotropy, because the modification of activator–polymerase
interaction would simultaneously affect the expression of all genes
controlled by the activator. Table 1 summarizes the physiological
range for all of the parameters introduced in our model. Because
our goal is to study the circuit behavior for typical physiological
parameters, we will perform our analysis for a wide range of values
in the programmable parameters � and � and only a few represen-
tative values of f, n, and Kd.

Since the bistability of the circuit depends only on certain
combinations of the parameters (see Supporting Text), it is
revealing to plot the regime of bistability as a function of the
programmable parameters by using the combinations Kd�� and
��(��p2

) on the horizontal and vertical axes, respectively (see Fig.
4a). The remaining parameters are fixed at n � 1 and f � 100,
which corresponds to a strong activator (e.g., Crp) with a single
operator site as shown in Fig. 1c.
Circuit without cooperative stability. For �p1

� �p2
, the corresponding

bistable regime is the narrow black strip at the lower right corner
of Fig. 4a. For a given value of Kd, the black region defines an
acceptable range of � for each value of �. The circuit behavior
within the bistable regime is shown in Fig. 4b by plotting the
steady-state monomer and dimer concentrations (gray and black
curves, respectively) in the bistable HIGH and the LOW state
(solid and dashed lines, respectively) as a function of �, by using
the typical dimer dissociation constant of Kd � 10 nM. Note that
the steady-state TF concentrations are very low, not exceeding
p*2 
 10 nM, which corresponds to 	10 molecules per bacterial
cell. Such low concentrations are difficult to maintain reliably,

�The effective value of Kd in vivo is expected to increase with respect to its in vitro value
because of dimer turnover. The amount of increase depends on the dimer association and
dissociation rates ka and kd. We find Kd � (kd � �p2)�ka instead of the usual in vitro
expression Kd � kd�ka. However, for typical small proteins, this increase is estimated to be
less than 	1 nM and hence is not important for this discussion (see Supporting Text).

Table 1. Physiological range of the model parameters

Parameter Description Typical in vivo values Principal molecular determinants Refs.

f Maximum fold-change in
promoter activity

10
100 (activator)
10
1000† (repressor)

Strength of TF–RNAp interaction 25, 27

n Cooperativity in promoter
activity

1
2 Number of operator-bound TFs
interacting with RNAp

28

� TF-operator dissociation
constant

1
1,000 nM‡ Operator sequence, binding interface
of TF

19 and refs. therein

�m
�1 mRNA half-life 	5 min 29

�p
�1 Protein half-life 	50 min (dilution);

approximately a few
minutes (proteolysis)

Growth rate (dilution), protein
stability, degradation tag
(proteolysis)

1, 30

� Protein synthesis rate at
full activation

0
100 nM/min§ Ribosome-binding site, transcriptional
efficiency

20, 31

Kd Dimer dissociation constant 	10 nM¶ Monomer–monomer affinity 21–24

Summary of the important parameters in our model together with their typical in vivo values in bacteria and the principal molecular properties that determine
their values. The entries shown in boldface refer to those parameters that are programmable over a wide range; these programmable parameters play important
roles in the natural evolution and synthetic design of promoters (12, 19). The last column lists exemplary references for the indicated physiological parameter
range.
†Because repression involves TF–RNAp exclusion (a much stronger type of interaction than the weak attraction between RNAp and activators), the achievable
fold changes in repression can readily be much larger, e.g., f 
 1000.

‡The programmable parameter � can be tuned by changing the number of bases matching the sequence for optimal TF-operator binding.
§Another programmable parameter is � through choice of the ribosome-binding site (RBS). Maximum protein synthesis rate is limited by the rate of elongation
of the ribosome. In bacteria, the elongation rate of ribosome is 	20 codons/sec and ribosomes occlude 	10 codons (31). Thus, the absolute maximum rate of
protein synthesis per mRNA is 	120 proteins per min. Typical genes in bacteria have on average approximately two mRNA per cell (29), so that even with an
optimal RBS, the maximum � is less than 	240 nM/min. For proteins that are diluted through cell division (	50 min), this range of � produces steady-state protein
concentrations of 0
10,000 nM.

¶A number of bacterial TFs, e.g., BlaI (32), FIS (23), and CopR (33), have Kd in the micromolar range. However, they are all ‘‘atypical’’ regulatory proteins whose
in vivo concentrations in the active state exceed the order of 10 	M (32–34). It is generally believed that the overexpression of many TFs can be deleterious to
the cells. For example, the maximum concentration for typical TFs in bacteria is not much more than 	100 nM; even the global regulator Crp is present only
at 	1,500 nM (35). Thus, typical bacterial TFs tend to be at lower concentrations in vivo and tend to have smaller Kd.
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and the circuit will be susceptible to various sources of stochastic
f luctuations (36, 37). Similar results are obtained by using our
model with f � 11 and n 	 1.7, which mimics the bistable circuit
studied experimentally by Isaacs et al. (8) (see Figs. 6 and 8). We
note that strong fluctuations were indeed observed in that
experiment.

The steady-state protein concentrations could be raised (con-
sequently reducing stochastic effects) by increasing Kd, e.g., to
Kd � 1,000 nM as shown in Fig. 4c. In this case, however, the
concentration of the nonfunctional monomers (gray curves) is
significantly larger than the concentration of functional dimers
(black curves). Indeed, without cooperative stability, monomer
overproduction is a generic consequence of leveraging cooper-
ativity from dimerization because the system can only exploit this
source of cooperativity when the total protein concentration is
much less than Kd (i.e., when the protein exists primarily in
monomer form). Although the overproduction of monomers
may or may not be detrimental to the cell for an individual gene,
the monomer ‘‘load’’ can become a significant problem if weak
dimerization becomes a strategy widely adopted by the cell, e.g.,
if every regulatory gene contributes 10 
 100 nonfunctional
monomers in the LOW or HIGH states. This observation is a
conceivable explanation for the small Kd values found for typical
dimeric proteins.
Effect of cooperative stability. The gray and hatched areas in Fig. 4a
show how the bistable parameter regime is shifted when coop-
erative stability is introduced with �p1

��p2
� 3 and �p1

��p2
� 10,

respectively. For a given value of Kd, cooperative stability shifts
the bistable regime toward an increased rate of protein synthesis

�. An elevated � reduces the susceptibility of the bistable circuit
to stochastic f luctuations by increasing the protein concentra-
tion. This increase is seen explicitly in Fig. 4d, where we again
plot the steady-state monomer and dimer concentrations in the
bistable HIGH and LOW states with the typical Kd � 10 nM as
in Fig. 4b but with 10-fold cooperative stability (�p1

� 10�p2
).

Comparison of Fig. 4 d and c demonstrates that cooperative
stability also reduces the monomer load significantly.

Oscillatory Circuit. In general, oscillation is favored when the
following characteristics apply: (i) the fold-change f is large, (ii)
the protein monomer and mRNA turnover rates are comparable,
and (iii) there is a large cooperativity�nonlinearity in synthesis
and�or degradation (see Supporting Text). We study repressive
promoters with a single operator site (n � 1; Fig. 1e). Our results
(Fig. 10a) show that in the absence of cooperative stability (�p1

�
�p2

), the system cannot sustain oscillations for typical Kd � 10 nM
and typical � 
 1–1,000 nM. However, by introducing cooper-
ative stability and destabilizing the monomers with respect to the
dimer species (�p1

� �p2
), oscillation becomes possible with the

parameter range of typical molecular components (see Fig. 10b).

Discussion
Benefits of Cooperative Stability. We examined the function of
simple genetic circuits with dimeric TFs that exhibit different
degrees of cooperative stability, where the turnover of mono-
mers is more rapid than that of the functional dimers. In the
absence of cooperative stability, the desired operation of both
the one-gene switch and the three-gene oscillator requires
parameters that are on the edge of what is physiologically
realizable. These limitations can be understood in simple terms.
Proper function of most biological circuits requires a sufficient
degree of cooperativity in the circuit components. Cooperativity
at the transcriptional initiation stage (controlled by the fold-
change f and the Hill coefficient n in our model of transcriptional
control) is usually quite limited. It is thus crucial to harness
cooperativity from the other processes involved in the operation
of gene circuits. A simple and direct source of cooperativity that
does not involve additional genes and proteins is the nonlinearity
in TF dimerization. To harness this source of nonlinearity,
however, it is necessary to maintain the cellular TF level at or
below the dimer dissociation constant Kd. This constraint leaves
the system with two undesirable options. One option is to use
typical dimeric TFs with Kd 
 10 nM and maintain the TFs at
a very low level (e.g., �10 molecules per cell); this option leaves
the system vulnerable to stochastic f luctuations. The alternative
is to maintain a higher TF level (e.g., 	100 nM) to reduce these
fluctuations. However, this alternative requires the use of TFs
with large Kd that exposes the system to an increased load of
nonfunctional monomers.

We have shown that cooperative stability removes the link
between the cellular TF levels and the Kd values. Cooperative
stability makes it possible to simultaneously maintain a cellular
TF level that is robust to fluctuations while allowing the circuit
to harness dimer cooperativity for the typical (strong) dimers;
the latter property relieves the system of the monomer load
problem. This benefit of cooperative stability stems from the fact
that dimer cooperativity can be used as long as monomer
degradation is the predominant degradative pathway (�p1

�p1 �
2�p2

�p2; see discussion below and Supporting Text). Thus, by
increasing �p1

� �p2
, the in vivo concentration over which dimer

cooperativity can be harnessed is extended (beyond the limit
imposed by Kd).

From the perspective of gene expression, the effect of coop-
erative stability may be characterized as that of amplification,
because it can produce a larger fold change in dimer expression
compared with the fold change in mRNA expression. Consider
the situation where monomer degradation much exceeds dimer

Fig. 4. Quantitative characteristics of the bistable circuit with a single
operator promoter (n � 1) and a strong activator ( f � 100). (a) Regime of
bistability in the parameter space for the circuit with linear degradation
(�p1��p2 � 1) and with cooperative stability (�p1��p2 � 1). The axes show
combinations of the parameters that are both useful for discussion and
natural in the quantitative description (see Supporting Text). (b and c) For
linear degradation, the steady-state monomer (gray) and dimer (black) con-
centrations (i.e., p*1 and p*2, respectively) are plotted for different values of �,
with Kd � 10 nM (b) and 1,000 nM (c). For each choice of Kd and �, � is chosen
such that the system is in the middle of the bistable regime, i.e., the black band
in a. For both p*1 and p*2, the solid curve is the concentration in the HIGH
bistable state and the dashed curve is the concentration in the LOW bistable
state. (d) Same plot as b for the circuit with cooperative stability (�p1��p2 � 10).
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degradation (�p1
�� �p2

). In this limit, an x-fold change in protein
synthesis (due to an x-fold change in mRNA expression) must be
balanced by the same x-fold change in monomer degradation in
the steady state. The latter requires an x-fold change in monomer
concentration, which implies an x2-fold change in the dimer
concentration due to the monomer–dimer equilibrium condition
of Eq. 3. Thus, the potential power of amplification derivable
from cooperative stability is substantial and not limited by the
value of Kd. Although we have not discussed higher-order
oligomers, similar estimates show that an x-fold change in mRNA
expression can result in up to an xm-fold change in protein
concentration for obligatory m-mers, making the power of
amplification even larger and independent of the multimer
dissociation constant.

We note that the effect of cooperative stability is independent
of the function of the protein product itself. In particular, the
protein multimer does not need to be a TF and can, for example,
be an enzyme that is needed at a high level in one state and must
be kept to a very low level in another state. Thus, cooperative
stability can be a versatile and generic way to amplify the fold
change in the expression of a large class of genes. However,
cooperative stability has associated costs that should prevent its
extensive usage: Because it relies on the active proteolysis of
monomers, extensive use will saturate the proteolytic machinery
in the cell. Similarly, a higher degradation rate would require a
higher synthesis rate. However, because most of the increase in
synthesis would be in the low state where monomers predomi-
nate, the increase in synthesis is not expected to be substantial
(see Supporting Text).

Natural Occurrences of Cooperative Stability. How common is
cooperative stability in cells, and how readily can cooperative
stability be implemented (e.g., evolved) molecularly if the need
arises? We already mentioned in the introduction a number of
specific examples (1–6) where oligomerization provides protec-
tion against degradation. In these instances, the mechanisms of
cooperative stability fell within the following two classes: (i)
oligomerization enhances the thermal stability of the protein
subunits, making them more resistant to proteolysis, and (ii)
oligomerization buries the degradation tags that would have
been exposed in monomeric subunits. However, most of the
existing studies have been on heteromeric complexes. There has
been a lack of focused systematic studies on state-dependent
degradation of homodimers. One exception is the class of TFs
mediating quorum-sensing pathways in bacteria. For example,
the TF TraR is degraded within a few minutes in the monomeric
form (in the absence of autoinducer) but becomes stabilized by
at least 30-fold in the dimeric form in the presence of autoin-
ducer (38). This big difference in degradation rates is attributed
to major changes in the molecular structure between the mono-
mers and dimers: TraR, like the other LuxR-family of TFs, is
believed to be largely disordered (i.e., unfolded) in the mono-
meric form, becoming folded only upon dimerization in the
presence of the autoinducer (39). The rapid monomer turnover
then can be understood as a generic consequence of the rapid
proteolysis of unfolded molecules in cells (5, 6).

It is currently unknown to what extent cooperative stability
occurs for other TFs, many of which function as homodimers.
However, the properties of the TraR system described above
suggest that cooperative stability may occur generically if the
monomers are unfolded. Here, we want to point out that there
is in fact a large class of proteins (mostly regulatory proteins)
that are natively unfolded, i.e., proteins that fold and are
thermally stable only upon association with their targets (40).
They include the so-called ‘‘two-state dimers’’ (41), an example
of which is the Arc repressor of phage P22 (22). Conspicuous
molecular features of the two-state dimers include the large
number of intermonomer contacts (compared with intramono-

mer contacts) and the hydrophobicity of the interfacial contacts
(42, 43). We conjecture that two-state dimers are ideal molecules
to mediate cooperative stability, because unfolded monomers
are generally more susceptible to generic degradation (5, 6), and
their exposed hydrophobic surface patches are natural targets of
various proteases (30). Spontaneous unfolding of monomers may
be an elegant way by nature to keep the basal protein level low,
while not disturbing the stable oligomers in the HIGH state.

Acquisition of Cooperative Stability. For the purpose of synthesiz-
ing robust genetic circuits in bioengineering applications (8, 9,
44–46), it will be useful to develop methods to endow a generic
TF with cooperative stability. Such experiments would be useful
for understanding how cooperative stability can arise over the
course of natural evolution. A synthetic way of generating
molecules with cooperative stability may have already been
developed more than a decade ago: 
-galactosidase molecules
engineered with various N-end residues (obtained from in vivo
N-terminal deletions) displayed non-first-order degradation ki-
netics in pulse-chase experiments (47). The authors already
speculated that the slow degradation regime might correspond to
the degradation of ‘‘matured’’ 
-galactosidase tetramers that are
more resistant to targeting and�or degradation by the N-end rule
pathway (47). This finding is consistent with the idea that
multimerization can stabilize a molecule by burying its degra-
dation signal, in this case the unusual N-terminal residue ac-
cording to the N-end rule (48). Systematic characterizations
along the line of ref. 47 are clearly needed for a variety of
molecules with various types of degradation tags, e.g., the N-end
degrons (48) and C-terminal ssrA-tags (49). It is interesting to
note that although ssrA-tags have been widely used to control
protein turnover in synthetic genetic networks (9, 50, 51), the
precise effect of ssrA-tags (e.g., whether they enhance the
degradation of monomers and dimers equally and whether they
preferentially enhance the degradation of monomers or dimers)
has never been characterized. The occurrence of cooperative
stability will depend on details of the protein structure, e.g.,
whether the C-terminal residues are buried in the interior of the
protein complex.

In a different set of experiments (K. Plaxco, personal com-
munication), stably folded proteins can become natively un-
folded upon the deletion of a few residues at the peptide termini,
and yet such proteins can still fold upon target presentation. The
result is consistent with the expectation that peptide termini
away from the interaction surface contribute toward the stability
of the monomers but not the complex. If this result is generic for
dimeric proteins and if unfolded molecules are rapidly degraded,
then their degree of cooperative stability will be readily tunable
by either synthetic molecular engineering or natural evolution.

Consequences for Circuit Modeling. Cooperative stability (�p1
� �p2

)
has been included in the modeling of genetic circuits. For
example, in Drosophila, reduced protein degradation by multim-
erization has been suggested to play a significant role in the
genetic circuit controlling circadian rhythm (52, 53). Also, in
modeling the phage �’s entry into lysogeny, Arkin et al. (54)
assumed that CI monomers were degraded with a half-life of
	15 min, and Cro monomers were degraded with a half-life of
	5 min, while leaving the long-lived dimers to dilution by cell
growth. With a cell-doubling time of 	30–50 min, these assump-
tions implicitly invoke cooperative stability with �p1

��p2
	 2–3 for

CI and �p1
��p2

	 6–10 for Cro.
In general, however, many models describing bistability or

oscillation are often unintentionally locked into forms that
assume either no cooperative stability (i.e., �p1

� �p2
) or extreme

cooperative stability (i.e., �p2
� 0). For example, in their analysis

of the robustness of phage �’s lysogenic phase (55), Aurell et al.
(56) and Zhu et al. (57) assumed that monomers and dimers were
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degraded with equal rates and concluded that additional
source(s) of cooperativity are needed to explain the observed
robustness. We suggest that cooperative stability might be
another possible source of cooperativity that needs to be exam-
ined critically. In fact, it was speculated long ago (58) that
concentration-dependent degradation of Cro (as suggested by
the data in ref. 59) might provide some of the cooperativity
needed to reconcile discrepancies between theory and experi-
ment. Given the strong impact that even a modest degree of
cooperative stability can make on the phase diagram and the
circuit stability (see Fig. 4), knowledge of the monomer�dimer
turnover rates is crucial to guide quantitative studies of the
�-switch and to help resolve puzzles regarding the stability and
robustness of lysogeny. More generally, we hope our results will
motivate the modeling community to be more attentive to
protein degradation in future studies.

Evolutionary Aspects. As shown above, cooperative stability has
broadened the parameter space for desired circuit operations.
We suggest that this broadening of the operable parameter space
is not only useful in relaxing the design constraints in synthetic
biology experiments but may be important for such circuits to
emerge from natural evolution: Evolvability of a circuit requires
that before selection can exert any effect, it should be possible
for the organism to spontaneously assemble a primitive circuit
that can sustain some rudimentary operation conferring some
limited fitness advantage. This possibility is enhanced if the

circuit can operate by using components widely accessible to the
cells. Of course, cooperative stability is not the only strategy to
boost the degree of cooperativity needed for circuit operations.
There exist alternative strategies that may provide stronger
cooperativity, including nonlinear feedback at the level of tran-
scriptional and translational initiation�termination as well as
proteolytic control involving posttranslational modifications.
However, such processes require additional genes and proteins.
They may be the final outcome of extended refinement of genetic
circuits through a prolonged evolutionary process. In contrast,
cooperative stability does not require any additional molecular
components except for the dimeric protein itself. Moreover,
cooperative stability itself may be a readily evolvable molecular
trait for typical dimeric proteins as just discussed above. There-
fore, it may be used at early stages of evolution to provide a
circuit with some rudimentary functions beneficial to the host,
so that selection can begin to exert some effect.
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