
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

TIMO BERTHOLD? STEFAN HEINZ? MARC E. PFETSCH??

Nonlinear pseudo-Boolean optimization:
relaxation or propagation?

? Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.
?? Technische Universität Braunschweig, Institut für Mathematische Optimierung, Pockelsstraße 14, 38106 Braunschweig, Germany

ZIB-Report 09-11 (June 2009)

Nonlinear pseudo-Boolean optimization:
relaxation or propagation?

Timo Berthold1,?, Stefan Heinz1,?, and Marc E. Pfetsch2

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
{berthold,heinz}@zib.de

2 Technische Universität Braunschweig, Institut für Mathematische Optimierung,
Pockelsstraße 14, 38106 Braunschweig, Germany

m.pfetsch@tu-bs.de

Abstract. Pseudo-Boolean problems lie on the border between satis-
fiability problems, constraint programming, and integer programming.
In particular, nonlinear constraints in pseudo-Boolean optimization can
be handled by methods arising in these different fields: One can either
linearize them and work on a linear programming relaxation or one can
treat them directly by propagation. In this paper, we investigate the
individual strengths of these approaches and compare their computa-
tional performance. Furthermore, we integrate these techniques into a
branch-and-cut-and-propagate framework, resulting in an efficient non-
linear pseudo-Boolean solver.

1 Introduction

Pseudo-Boolean (PB) optimization extends the satisfiability (SAT) problem by
allowing integer coefficients in the constraints, multiplication of variables, and
an objective function. As in SAT, variables take 0/1 (false/true) values.

There are several, fundamentally different, ways to attack the solution of PB-
problems. One way is to apply a transformation to a SAT problem. This approach
is used, for instance, in the solver MiniSat+ [10]. Another way is to handle
PB-constraints directly in the solver, see, e.g., SAT4JPseudo [8], PBS [6],
and pueblo [18]. Other solvers use a constraint programming approach, e.g.,
absconPseudo [13]. Pseudo-Boolean problems can also be formulated as an
0/1 integer program (IP), in which the nonlinear constraints are linearized. For
instance glpPB uses this idea and applies the IP-solver glpk [12]. The solver
bsolo [14] combines SAT-solving techniques with IP-methodologies to solve
linear pseudo-Boolean problems, if the bounds from the linear programming (LP)
relaxation are promising. The performance of the IP-solver Cplex for linear
pseudo-Boolean problems was investigated in [5]. A variety of PB-solvers have
been compared during the Pseudo-Boolean Evaluations [15, 16].

? Supported by the DFG Research Center Matheon Mathematics for key technologies
in Berlin.

2 Timo Berthold, Stefan Heinz, and Marc E. Pfetsch

In this paper, we approach nonlinear PB-problems via constraint integer
programming (CIP). CIP is a combination of IP, SAT, and constraint pro-
gramming (CP) methodologies. CIP was introduced by Achterberg [1, 2] and
implemented in the framework scip. The basic idea is to apply a branch-and-
cut-and-propagate method. Hence, one performs a branch-and-bound algorithm
to decompose the problem into subproblems (as in SAT, CP, and IP-solvers).
One solves a linear relaxation, which is strengthened by additional inequali-
ties/cutting planes if possible (as in IP-solvers). One uses propagation techniques
(similar to CP-solvers) in the nodes of the search tree. Moreover, one applies con-
flict analysis and restarts (similar to SAT-solvers). Detailed descriptions of the
CIP-paradigm and the algorithmic design of scip can be found in [1–3].

The main goal when applying CIP to PB problems is to use the IP-machinery
with LP-relaxations, cutting planes, elaborated branching rules, etc., and di-
rectly propagating the (nonlinear) multiplications. As far as we know, all of
the PB-solvers discussed above either handle nonlinearities directly or add a
complete linearization to the problem formulation. We compare both ideas and
introduce a hybrid approach which only partially linearizes the nonlinear part
of the problem. It turns out that the combination of both, propagation and
(partial) linear relaxation, performs better than applying only one of these.

2 Problem Definition

For a Boolean variable x ∈ {0, 1}, a literal ` is either the original variable x or
its negation x := 1 − x. A (nonlinear) pseudo-Boolean problem with Boolean
variables x1, . . . , xn (n ∈ N) is an optimization problem of the following form:

min
t0∑

j=1

cj ·
∏

`∈I0j

` (1)

ti∑
j=1

aij ·
∏

`∈Iij

` ≥ bi for i = 1, . . . ,m

x ∈ {0, 1}n.

Here, m ∈ N defines the number of constraints, Iij is a subset of literals for
i = 0, . . . ,m and j = 1, . . . , ti, where ti ∈ N is the number of summands in
constraint i. All coefficients aij , bi, cj are required to be integral. Let

I := {(i, j) : i ∈ {0, . . . ,m}, j ∈ {1, . . . , ti}}.

The above formulation is quite general: one can easily incorporate maximization,
“≤” constraints, equations, and pure satisfiability problems. If |Iij | ≤ 1 for all
(i, j) ∈ I, the objective function and the constraints are linear expressions in the
variables. We call such instances linear pseudo-Boolean problems. If the objective
function equals zero (or any other constant), we have satisfiability problems,
otherwise optimization problems.

SAT problems are special cases of PB problems with bi = 1, for i = 1, . . . ,m,
cj = 0, for j = 1, . . . , t0, and aij ∈ {0, 1} for i = 1, . . . ,m, j = 1, . . . , ti.

Nonlinear pseudo-Boolean optimization: relaxation or propagation? 3

3 Handling of nonlinearities

Linear Relaxations. To deal with the nonlinear constraints, we transform
Problem (1) as follows. For each (i, j) ∈ I with |Iij | > 1, we introduce a
new Boolean variable zij =

∏
`∈Iij

`. The product can also be seen as an and-
expression zij =

∧
`∈Iij

`, for which we apply the following linearization:

zij − ` ≤ 0 for ` ∈ Iij (2)∑
`∈Iij

`− zij ≤ |Iij | − 1. (3)

After replacing the and-expressions by zij , the resulting constraint is linear
in zij . This linearization has the following nice feature.

Lemma. The polyhedron defined by (2), (3), zij ≥ 0, and ` ≤ 1 for all ` ∈ Iij
is integral, i.e., has only integral vertices.

Note that ` ≥ 0, ` ∈ Iij , is implied by zij ≥ 0 and inequalities (2). Similarly,
zij ≤ 1 is implied by (2) and ` ≤ 1 for ` ∈ Iij . Hence, PAND is bounded, i.e., a
polytope.

Proof. For ease of exhibition, denote Iij = {x1, . . . , xn} and y = zij . Consider
an arbitrary vertex solution (x?, y?) to (2)–(3), −y ≤ 0, xi ≤ 1, i = 1, . . . , n.

We first assume that y? ∈ (0, 1). Since (x?, y?) is a vertex solution, there are
n + 1 inequalities that are satisfied with equality. Since −y ≤ 0 is not satisfied
with equality, and at most one of y − xi ≤ 0 and xi ≤ 1 can be satisfied with
equality, we have

∑n
i=1 x

?
i − y? = n − 1. Let S = {i : x?

i = 1} and k = |S|. It
follows that

n− 1 =
n∑

i=1

x?
i − y? = k +

∑
i/∈S

y? − y? = k + (n− k − 1)y?.

This is a contradiction since y? < 1.
Hence, y? ∈ {0, 1}. If y? = 1, then x?

i = 1 for all i = 1, . . . , n by (3), and
(x?, y?) is integral.

Now assume that y? = 0. After removing y from the inequalities and re-
placing (3) by an equation, the remaining ones define a so-called hypersim-
plex ∆n−1(n− 1), which is integral, see Ziegler [19]. If we again relax the equa-
tion to an inequality, the polytope remains integral, since the hypersimplex is
the intersection of the unit cube [0, 1]n with one hyperplane. ut

Note that the above linearization is different from∑
`∈Iij

`− |Iij | zij ≥ 0,
∑
`∈Iij

`− zij ≤ |Iij | − 1, (4)

which is used in the Pseudo-Boolean Evaluation [16]. Both linearizations have
the property that 0/1-solutions of the corresponding systems are solutions of

4 Timo Berthold, Stefan Heinz, and Marc E. Pfetsch

their and-expressions and conversely. However, while the above Lemma holds
for the first linearization, the corresponding polyhedron of (4) is not integral,
since zij = 1

n , ˆ̀= 1 for some ˆ̀∈ Iij , ` = 0 for all ` ∈ Iij \ ˆ̀ is a fractional vertex.
Linearization (4) has the advantage that it contains only two constraints,

compared to |Iij |+1 in (2) and (3). The larger size of the first linearization can be
handled by a so-called separation mechanism, i.e., the necessary inequalities are
generated on the fly, if they are violated. More precisely, one solves an LP which
initially only consists of the objective function and the linear constraints in zij

and neglect the and-expressions (and integrality constraints). Inequalities (2)
and (3) are added, only if they violate the optimal solution of this LP-relaxation.
Then the resulting LP is solved and the process is iterated.

The advantages and disadvantages of the above linearizations have been
widely discussed in the literature, see, for instance, Glover and Woolsey [11],
Balas and Mazzola [7], and Adams and Sherali [4].

Constraint Programming. The CP approach applies a domain propagation
algorithm at each subproblem of the branch-and-bound process in order to fix
further variables. The propagation rules are as follows. If one of the operand
variables ` ∈ Iij is fixed to zero the resultant variable zij has to be zero, too.
On the other hand, if all operand variables are set to one, the resultant variables
must also be fixed to one, and vice versa. Finally, if the resultant variable zij

is zero and all but one of the operand variables are one, the remaining operand
variable can be fixed to zero.

The main advantage of this approach is that all these propagation rules can
be applied very efficiently and therefore the computation time per node is very
small. The disadvantage is that one looses the global view of the LP-relaxation
and its strong capability of pruning suboptimal parts of the tree.

Constraint Integer Programming. The hope of an integrated approach is
that on the one hand the fixings derived by domain propagation reduce the size
of the LP and therefore potentially the computational overhead. On the other
hand, these fixings may even yield a stronger LP-bound which vice versa can
lead to further variable fixings which can be propagated and so forth.

We study three different variants of integration. First, we apply the suggested
separation mechanism simultaneously with the propagation algorithm. Second,
we add the complete linearization and apply propagation. Third, we change the
strategy dynamically depending on the problem’s degree of nonlinearity.

4 Computational results

In this section, we analyze how each of the approaches performs for the nonlinear
test sets of the Pseudo-Boolean Evaluation 2007 [16].

All computations reported in the following were obtained using version 1.1.0.6
of scip [17] on Intel Xeon Core 2.66GHz computers (in 64 bit mode) with 4MB
cache, running Linux, and 6GB of main memory. We integrated CLP release

Nonlinear pseudo-Boolean optimization: relaxation or propagation? 5

Table 1. Results for the 405 Opt-Smallint-Nlc instances

Nodes Time in [s]
Setting opt sat unkn total(k) geom1 total(k) geom1

only propagation 269 321 84 152027 13477 235.3 62.6
only separation 225 276 129 67313 5583 359.3 202.5
only relaxation 236 326 79 90639 4184 340.5 194.0
separation/propagation 288 341 64 12219 1267 225.2 61.5
relaxation/propagation 284 372 33 5105 846 226.3 59.6
dynamic 291 342 63 11009 1219 223.5 64.3
MiniSat+ 279 397 8 – – 234.0 46.2

version 1.9.0 as underlying LP-solver [9]. Thus, we only used noncommercial
software, which is available in source code.

As in the PB evaluation, we set a time limit of 1800 seconds. We compared the
performance of scip for six different settings, which only differ in the way they
handle the and-expressions. The setting “only relaxation” only applies the com-
plete linearization of the and-expressions before starting the search, “only sepa-
ration” only uses separation, i.e., adding inequalities (2) and (3) when they are vi-
olated, and “only propagation” only performs propagation without using the lin-
earization. The settings “relaxation/propagation” and “separation/propagation”
linearize the and-expressions in advance and on the fly, respectively. Addition-
ally, they apply the described propagation algorithms, thereby combining CP
and IP techniques. The setting “dynamic” incorporates the latter two: If the lin-
earization of the and-expressions consists of less than 10 000 linear constraints,
“relaxation/propagation” will be used, otherwise, “separation/propagation” will
be used. The motivation was to work on the complete linear description only if
it is small and not likely to produce a huge computational overhead. We use the
inequalities (2) and (3) as linearization. All remaining parameters of scip were
set to their default values, hence we use primal heuristics such as the feasibil-
ity pump, general purpose cutting planes such as Gomory cuts, preprocessing
strategies, and we use conflict analysis and restarts.

According to the PB evaluation, the instances are split into the following
two groups, both with “small” integers, i.e., all coefficients are representable as
32 bit integers: Opt-Smallint-Nlc (nonlinear PB optimization), SatUnsat-
Smallint-Nlc (nonlinear PB satisfiability). For details we refer to [16].

We compare for how many instances optimality (“opt”) or at least satisfia-
bility (“sat”) could be proven, the number of instances for which no result was
obtained (“unkn”), total time and number of branch-and-bound nodes over all
instances in the test set and the shifted geometric means1 (“geom”) over these
two performance measures. For the satisfiability test set, we compare the number
of instances for which an answer could be found (“solved”), which we subdivide
into feasible (“sat”) and infeasible (“unsat”) instances, the time and the number
of branch-and-bound nodes in total and in shifted geometric mean as before.

1 The shifted geometric mean of values t1, . . . , tn is defined as
`Q

(ti + s)
´1/n− s with

shift s. We use a shift s = 10 for time and s = 100 for nodes in order to decrease the
strong influence of the very easy instances in the mean values.

6 Timo Berthold, Stefan Heinz, and Marc E. Pfetsch

Table 2. Results for the 100 SatUnsat-Smallint-Nlc instances

Nodes Time in [s]
Setting solved sat unsat unkn total(k) geom1 total(k) geom1

only propagation 60 50 10 40 41085 6883 72.5 86.5
only separation 70 50 20 30 671 281 55.0 57.3
only relaxation 71 51 20 29 446 161 58.4 69.6
separation/propagation 72 52 20 28 883 284 51.7 53.3
relaxation/propagation 73 53 20 27 489 154 55.7 66.4
dynamic 72 52 20 28 835 279 51.8 55.6
MiniSat+ 65 50 15 35 – – 63.1 56.4

The results of Tables 1 and 2 show that the combined approaches are superior
to the ones which use only one algorithm. For the optimization instances, each of
them solves more instances to optimality and finds more feasible solutions than
each of the “only” settings. The same holds for the number of solved instances
in the satisfiability test set. Furthermore, the combined approaches usually need
less branch-and-bound nodes and less overall running time.

As one would expect, the setting “relaxation/propagation”, the method with
the highest computational effort, needs the fewest branch-and-bound nodes for
both test sets, but spends the most time per node. In contrast, “only propagation”
requires little time per node, but needs the most branch-and-bound nodes.

The “dynamic” setting enables to solve most of the optimization problems
and only one instance less than the best setting for the satisfiability instances.
The setting “relaxation/propagation” is the best performing for the satisfiability
instances and, moreover, the best in finding feasible solutions for the optimization
problems. This can be explained by the fact that the primal heuristics work best,
if there is a full linear description present.

We conclude that combining LP-relaxation and domain propagation tech-
niques help to solve nonlinear pseudo-Boolean problems. Furthermore, for prov-
ing optimality, it is recommendable to only use a partial linearization for in-
stances with a large nonlinear part. We also performed all experiments using the
linearization (4). The results are similar, but slightly worse.

For comparison, we ran MiniSat+, the best solver for nonlinear PB prob-
lems in the PB evaluation 2007, on the same computational environment. For
the results in Tables 1 and 2 we used linearization (2) and (3), while with lin-
earization (4) MiniSat+ solved two instances less of the optimization test set
and performed slightly worse in both cases.

References

1. T. Achterberg. Constraint Integer Programming. PhD thesis, TU Berlin, 2007.
2. T. Achterberg. SCIP: Solving Constraint Integer Programs. Mathematical Pro-

gramming Computation, 1(1):1–41, 2009.
3. T. Achterberg, T. Berthold, T. Koch, and K. Wolter. Constraint integer program-

ming: A new approach to integrate CP and MIP. In L. Perron and M. A. Trick,
editors, Proc. CPAIOR 2008, volume 5015 of LNCS, pages 6–20. Springer, 2008.

4. W. P. Adams and H. D. Sherali. Linearization strategies for a class of zero-one
mixed integer programming problems. Oper. Res., 38(2):217–226, 1990.

Nonlinear pseudo-Boolean optimization: relaxation or propagation? 7

5. F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. Generic ILP versus
specialized 0-1 ILP: an update. In L. T. Pileggi and A. Kuehlmann, editors, Proc. of
the 2002 IEEE/ACM International Conference on Computer-aided Design, pages
450–457. ACM, 2002.

6. F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. PBS: A backtrack-search
pseudo-boolean solver and optimizer. In Proc. Fifth International Symposium on
Theory and Applications of Satisfiability Testing (SAT 2002), pages 346–353, 2002.

7. E. Balas and J. B. Mazzola. Nonlinear 0-1 programming: I. Linearization tech-
niques. Math. Prog., 30(1):1–21, 1984.

8. D. L. Berre. Sat4j. http://www.sat4j.org/.
9. Clp. COIN-OR LP-solver. http://www.coin-or.org/projects/Clp.xml.
10. N. Eén and N. Sörensson. Translating pseudo-boolean constraints into SAT. J.

Satisf. Boolean Model. Comput., 2:1–26, 2006.
11. F. Glover and E. Woolsey. Converting the 0-1 polynomial programming problem

to a 0-1 linear program. Oper. Res., 22(1):180–182, 1974.
12. GLPK. GNU linear programming kit. http://www.gnu.org/software/glpk/.
13. F. Hemery and C. Lecoutre. AbsconPseudo 2006. http://www.cril.univ-artois.

fr/PB06/papers/abscon2006V2.pdf, 2006.
14. V. M. Manquinho and J. Marques-Silva. On using cutting planes in pseudo-Boolean

optimization. J. Satisf. Boolean Model. Comput., 2:209–219, 2006.
15. V. M. Manquinho and O. Roussel. The first evaluation of pseudo-Boolean solvers

(PB’05). J. Satisf. Boolean Model. Comput., 2:103–143, 2006.
16. V. M. Manquinho and O. Roussel. Pseudo-Boolean evaluation 2007. http://www.

cril.univ-artois.fr/PB07/, 2007.
17. SCIP. Solving Constraint Integer Programs. http://scip.zib.de/.
18. H. M. Sheini and K. A. Sakallah. Pueblo: A hybrid pseudo-boolean SAT solver. J.

Satisf. Boolean Model. Comput., 2:165–189, 2006.
19. G. M. Ziegler. Lectures on Polytopes. Springer-Verlag, New York, 1995. Revised

edition 1998.

