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Nonlinear quantum capacitance
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We analyze the nonlinear voltage dependence of electrochemical capacitance for nanoscale
conductors. This voltage dependence is due to the finite density of states of the conductors. Within
Hartree theory we derive an exact expression for the electrochemical capacitance–voltage curve for
a parallel plate system. The result suggests a quantum scanning capacitance microscopy at the
nanoscale: by inverting the capacitance–voltage expression one is able to deduce the local spectral
function of the nanoscale conductor. ©1999 American Institute of Physics.
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It has been well known that density of states affects
capacitance1 of a system. In this work we investigate a no
linear bias voltage dependence of the electrochemical cap
tance of a model capacitor at the nanoscale for which
density of states~DOS! also plays the crucial role. Th
physical origin of this bias dependence which we have
amined isnot because of depletion of charges on a capac
plate, which has been understood in semiconductor rese
but because of the finite DOS of the plates. We show that
accumulated charge on a conductor has a nonlinear bias
pendence due to DOS effects, and it is this nonlinear cha
that leads to the nonlinear capacitance. For conductor
nanoscale, it is known2 that the very small DOS plays a
important role in the behavior of the capacitance. Howev
the DOS induced nonlinear capacitance has not been stu3

before and our investigation suggests an interesting app
tion that is the quantum scanning capacitance microscop

Central to the problem is the determination of chargera

accumulated on a conductor labeled bya. In generalra is a
nonlinear function of bias voltages$Vb%

ra5(
b

CabVb1
1

2 (
bg

CabgVbVg1...

[(
b

Cab~$Vg%!Vb , ~1!

where Cab5]Vb
ra is the usual electrochemica

capacitance,2,4 Cabg5]Vb
]Vg

ra ,5 etc., are the nonlinea
electrochemical capacitance coefficients, andCab($Va%) is
the general voltage dependent nonlinear capacitance. S
investigations on quantum correction to capacitance1,2,4 have
only considered thelinear term, but in this work we focus on
a general nonlinear expression forCab($Vg%).

To be specific we consider a model parallel plate cap
tor connected to electron reservoirs by perfect leads,2 sche-
matically shown in the inset of the Fig. 1. We adopt t
dynamic point of view6 to calculate the electrochemical c

a!Electronic mail: guo@physics.mcgill.ca
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pacitance, hence a finite bias applied at the reservoirs inj
a charge density into the capacitor plates which, through
teraction, induces a local response. The total net charge~the
sum of injected and induced charge! at a platea, ra , is thus
established at equilibrium. We calculatera by extending the
standard nonequilibrium Green’s function~NEGF! tech-
nique. To save space we refer interested readers to litera
for standard technical details; here we will only discuss
most important extension to the standard approach.

The quantum scattering~injection of electrons! is deter-
mined by the retarded and advanced Green’s func
Gr ,a(E,U): note that we have explicitly included the ele
trostatic potential buildup inside our capacitor,U5U(r ),
into these Green’s functions. In the Hartree approximatio7

Gr ,a~E,U !5
1

E2H2qU2S r ,a , ~2!

where H is the Hamiltonian for our nanoscale conducto

FIG. 1. Operation of QSCM: comparison of ‘‘measured’’ LPDOS to t
exact one.~Solid lines! exact; ~circles! fitted LPDOS using ten voltages
~triangles! fitted LPDOS using three voltages. Upper curves are forb2

50.002, lower curves forb250.001. The QSCM tip has been fixed wit
b150.003. Upper right inset: the electrochemical capacitance vs volt
V(V5V22V1) for the two sets ofb2 : upper curve is forb250.002. The
unit of V is EF

1/e. Upper left inset: schematic plot of the parallel pla
mesoscopic capacitor withV1,2 the external bias andU1,2 the internal poten-
tial.
7 © 1999 American Institute of Physics
 license or copyright, see http://apl.aip.org/apl/copyright.jsp
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written in the familiar second quantized form,8 S r ,a is the
self-energy describing the coupling between the conduc
to the leads which is calculated in standard fashion.9,10 At
Hartree level we determineU(r ) by the self-consistent Pois
son equation

¹2U54p iqE ~dE/2p!G,~E,U !, ~3!

where the right hand side is just the total net charge dis
bution in our conductors. Within Hartree approximation

G,~E,U !5Gr(
b

iGb~E2qVb! f ~E2qVb!Ga, ~4!

whereGb is the voltage dependent coupling parameter
tween probeb and the scattering region.9,10 The self-
consistent equations~2!, ~3!, and ~4! completely determine
the nonlinear physics at the Hartree level. We empha
again that the important departure of our theory from
familiar NEGF analysis9–11 is that we explicitly include the
internal potential landscapeU(r ) into the Green’s functions
self-consistently.

The net charge pileup on a capacitor plate, measu
from the equilibrium background, is derived from the rig
hand side of Eq. ~3!. In the wideband limit12 (Ga

5constant)

ra~x!5E dE

2p
Ga@GrGaf ~E2qVa!2G0

r G0
af ~E!#xx ,

~5!

whereG0
r ,a are the equilibrium Green’s functions. Next, w

formally expandGr andGa in a power series of the interna
potentialU, and expand the Fermi function in series of t
bias voltageVa . Collecting terms according to the powers
U and Va , Eq. ~5! reduces to the following infinite serie
which can be exactly summed:

ra~x!5Fdsa

dE
~Va2U !1

1

2

d2sa

dE2 ~Va2U !21¯ G
xx

[sa~E1Va2U !2sa~E!, ~6!

where the quantitydsa /dE is defined as

dsa

dE
[2E dE

2p S G0
r Ga

] f

]E
G0

aD
xx

. ~7!

The physical significance of the quantitydsa /dE can be
identified as the linear spatial dependent local partial den
of states ~LPDOS!.2,5 Expression ~7! has been obtained
before.13,5 For a conductor, which is weakly coupled to e
ternal leads, LPDOS gives the local DOS of this conduc
Hence the spectral functionsa(E) characterizes the loca
electronic structure of a nanoscale conductor.

The nonlinear charge distribution gives the general e
trochemical capacitance versus voltage curve

C5@s1~E1V12U1!2s1~E!#/~V12V2!, ~8!

where we have set electron chargeq to be unity. To deter-
mine C we must obtain internal potentialsU1 andU2 at the
two plates. For this purpose we introduce thegeometrical
capacitance6 C0
Downloaded 14 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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C05@s1~E1V12U1!2s1~E!#/~U12U2!, ~9!

and

C052@s2~E1V22U2!2s2~E!#/~U12U2!. ~10!

For a parallel plate capacitorC05A/(4pa), whereA is the
area of the plates anda is their separation. In generalC0 can
be calculated numerically. The two equations~9! and ~10!
determine the internal potentialsU1 and U2 when the scat-
tering spectral functionsa andC0 are known. Equations~8!,
~9!, and ~10! give the general electrochemical capacitanc
voltage (C–V) curve for quantum capacitors. It is univers
in the sense that system specific parameters only appe
the scattering spectral functions of the conductors. Fr
these general results, two useful applications follow:

C–V curve. Our general results allow us to predictC–V
curves. For this application we note that there are well es
lished methods for calculating the scattering LPDOS:14,5 ei-
ther by Eq. ~7! after evaluating the Green’s functions, o
using the scattering wave functions14 c, dsa /dE
5ucu2/hv, wherev;AE is the velocity andh is the Planck
constant. Hence by solving a quantum scattering prob
one obtainssa . Let us consider a case wherec is not very
sensitive to E, thus dsa(E)/dE'ba /(2AE) or sa(E)
5baAE, whereba is a constant. For this LPDOS, solvin
Eqs.~8!, ~9!, and~10! we obtain

C~V12V2!5
b2Ab224~b1

22b2
2!b1

2b2
2~V12V2!

2~b1
22b2

2!~V12V2!
,

~11!

where

b54pab1
2b2

212b1b2~b11b2!AE. ~12!

The inset of Fig. 1 shows this electrochemicalC–V curve as
a function ofV[(V22V1) for two sets of parametersba .
The physical reason thatC changes withV is because the
plates have finite DOS. Indeed, by making DOS very la
(b1 , b2→`) the voltage dependence of Eq.~11! disappears
and C becomes purely geometrical. Furthermore, it can
confirmed that formula~11! recovers the linear2 and second
order nonlinear5 capacitance coefficients when we take t
(V22V1)→0 limit.

Quantum scanning capacitance microscopy. Our general
results suggest a quantum scanning capacitance micros
~QSCM!. This idea naturally follows from the results pre
sented above: since the electrochemical capacitance v
with bias due to a finite DOS of the conductors involved, w
should be able to find the DOS by measuringC. Essentially
we wish to obtain spectral functions2(E) or local density of
statesds2 /dE as a function of energy for an unknown co
ductor, from a knowns1(E) of our QSCM ‘‘tip’’ which has
been calibrated.15 As the QSCM tip is scanned along th
surface of a nano-scale conductor, or along the surface
planar dielectric layer with nanoconductors buried und
neath, experimentally one can measure theC(V) curves at
each spatial position.

From Eq. ~8!, we obtainU1 as a function of potentia
differenceV using the knowns1 and the measuredC(V), by
solving the equations1(12U1)2s1(1)5VC(V), where
we have setV150,V25V, and E51 is set at the Fermi
 license or copyright, see http://apl.aip.org/apl/copyright.jsp
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energy of the QSCM tip@C(V) is measured at Fermi energ
of the tip EF

1, e.g., Eq.~11!#. Next, From Eq.~9! we obtain
U2(V). With U1 and U2 we finally find s2(E) from Eq.
~10!. In particular we can solve the spectral functions2 by
representing it into a polynomial:

s2~X!5 (
m50

n

ymXm, ~13!

where the coefficientsym[(dms2 /dXm)/(m!) are just the
linear (m51) LPDOS and nonlinear (m.1) LPDOS.5 They
are obtained by solving the following set of linear algebr
equations which come from Eq.~10!:

U2~Vj !2U1~Vj !54pa (
m50

n

ym$@11Vj2U2~Vj !#
m21%,

~14!

where j 51,2,̄ ,n. Hence by making experimental me
surements atn different voltagesVj , we obtain the func-
tional form of s2(E) from Eq. ~13!. Figure 1 demonstrate
the principle of QSCM. We use Eq.~11! as the experimen
tally measuredC–V curve~the inset! to simulate a measure
ment. Then using the QSCM ‘‘measured’’s2(E) from Eq.
~13!, we plot the local density of statesds2 /dE versus en-
ergy E. The solid line is the exactds2 /dE5b2 /(2AE) and
the dots are the QSCM result. We used ten voltages in s
ing Eq.~14! and the outcome is quite good, while using thr
voltages it already represents a rough trend.

In summary, we have developed a general nonlinea
theory which is applied to investigate the full nonline
charge distribution in nanoscale conductors. Within the H
tree theory we derived an exact expression of the elec
chemical capacitance versus external bias voltage curve
quantum capacitors. This result is generic in the sense tha
system specific information is included in the scattering lo
density of states. Hence theC–V formula has a wide range
of applicability. By inverting this formula, we propose
novel QSCM. The QSCM extends the ability of the usu
Downloaded 14 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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scanning capacitance microscopy:16 QSCM includes the
quantum corrections to capacitance in mapping out the s
tial charge distribution; and it gives the local density of sta
as a function of electron energy.
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