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Nonlinear quantum capacitance
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We analyze the nonlinear voltage dependence of electrochemical capacitance for nanoscale
conductors. This voltage dependence is due to the finite density of states of the conductors. Within

Hartree theory we derive an exact expression for the electrochemical capacitance—voltage curve for
a parallel plate system. The result suggests a quantum scanning capacitance microscopy at the
nanoscale: by inverting the capacitance—voltage expression one is able to deduce the local spectral
function of the nanoscale conductor. 99 American Institute of Physics.
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It has been well known that density of states affects thgpacitance, hence a finite bias applied at the reservoirs injects
capacitanckof a system. In this work we investigate a non- a charge density into the capacitor plates which, through in-
linear bias voltage dependence of the electrochemical capaderaction, induces a local response. The total net chidhge
tance of a model capacitor at the nanoscale for which theum of injected and induced chajg# a platea, p,, is thus
density of statedDOS) also plays the crucial role. The established at equilibrium. We calculgig by extending the
physical origin of this bias dependence which we have exstandard nonequilibrium Green’s functioiNEGH tech-
amined isnot because of depletion of charges on a capacitonique. To save space we refer interested readers to literature
plate, which has been understood in semiconductor researctyr standard technical details; here we will only discuss the
but because of the finite DOS of the plates. We show that thenost important extension to the standard approach.
accumulated charge on a conductor has a nonlinear bias de- The quantum scatteringnjection of electrongis deter-
pendence due to DOS effects, and it is this nonlinear chargmined by the retarded and advanced Green's function
that leads to the nonlinear capacitance. For conductors &"?(E,U): note that we have explicitly included the elec-
nanoscale, it is knowhthat the very small DOS plays an trostatic potential buildup inside our capacitd=U(r),
important role in the behavior of the capacitance. Howeverinto these Green’s functions. In the Hartree approximation
the DOS induced nonlinear capacitance has not been studied 1
before and our investigation suggests an interesting applica- G"2(E,U)= — )
tion that is the quantum scanning capacitance microscopy. E-H-quU-x"

Central to the problem is the determination of chasgge whereH is the Hamiltonian for our nanoscale conductors
accumulated on a conductor labeled dayin generalp, is a
nonlinear function of bias voltagd¥/ s}
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where Ca[;:&\/ﬁpa is the wusual -electrochemical
capacitancé;’ C,z,= 07\,/3(9\,7%,5 etc., are the nonlinear
electrochemical capacitance coefficients, @yg({V,}) is

the general voltage dependent nonlinear capacitance. So fal
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investigations on quantum correction to capacitaiédave ‘ Energy E (unit E,)
only considered thénear term, but in this work we focus on
a general nonlinear expression maﬁ({vy}). FIG. 1. Operation of QSCM: comparison of “measured” LPDOS to the

e . .exact one(Solid lineg exact; (circles fitted LPDOS using ten voltages;
To be specific we consider a model paraIIeI pIate Capac'(triangles) fitted LPDOS using three voltages. Upper curves are bfor

tor connected to electron reservoirs by perfect I€asishe- =0.002, lower curves fob,=0.001. The QSCM tip has been fixed with
matically shown in the inset of the Fig. 1. We adopt thep,=0.003. Upper right inset: the electrochemical capacitance vs voltage
dynamic point of vieW to calculate the electrochemical ca- V(V=V,—V,) for the two sets ob,: upper curve is fob,=0.002. The

unit of V is E}:/e. Upper left inset: schematic plot of the parallel plate
mesoscopic capacitor wit; , the external bias and ; , the internal poten-
dElectronic mail: guo@physics.mcgill.ca tial.
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written in the familiar second quantized fofhs"2 is the Co=[01(E+V;—U;)—o1(E)]/(U;—U,), 9)
self-energy describing the coupling between the conductors

to the leads which is calculated in standard fasithat ~ and

Hartree level we determing(r) by the self-consistent Pois- Co=—[0x(E+V,—U,) —ao(E)]/(U;—U,). (10)

son equation -
For a parallel plate capacit@,=A/(4ma), whereA is the

20— p < area of the plates aralis their separation. In gener@l, can
ViU 477|qf (dB2m)G=(E,V), ©® be calculated numerically. The two equatiof® and (10)

where the right hand side is just the total net charge distri-determlne the internal potentials, and U, when the scat-

bution in our conductors. Within Hartree approximation tering spectral_ functiowr, andC, are known'. Equat|on§8),
(9), and(10) give the general electrochemical capacitance—

voltage C—V) curve for quantum capacitors. It is universal
in the sense that system specific parameters only appear in
the scattering spectral functions of the conductors. From
wherel'; is the voltage dependent coupling parameter bethese general results, two useful applications follow:
tween probe and the scattering regich’ The self- C-V curve Our general results allow us to pred@tV
consistent equation®), (3), and (4) completely determine curves. For this application we note that there are well estab-
the nonlinear physics at the Hartree level. We emphasizfished methods for calculating the scattering LPD®3ei-
again that the important departure of our theory from thether by Eq.(7) after evaluating the Green’s functions, or
familiar NEGF analysi%‘ll is that we explicitly include the using the scattering wave functidfis ¢, do,/dE
internal potential landscap®l(r) into the Green’s functions =y 2/ho, whereu~\/E is the velocity anch is the Planck
self-consistently constant. Hence by solving a quantum scattering problem
The net charge pileup on a capacitor plate, measuregne obtainsr,. Let us consider a case wheyes not very
from the equilibrium background, is derived from the right sensitive to E, thus do,(E)/dE~b,/(2\E) or o .(E)

G<(E,U)=G'§B: iT(E—qVp)f(E-qVEG?, ()

hand side of Eg.(3). In the wideband lim# (I',  =p_\E, whereb, is a constant. For this LPDOS, solving
= constant) Egs.(8), (9), and(10) we obtain
dE 2 h2\p2p2
pulX)= f > T[G/G(E-aV,)~ G{G3f (E) ], ctvi—vy= P VB~ 4(b1~D3)bTD3( Vs~ Vo)
®) b 2(b2—b3)(V1—V,) !
(12)

whereGg? are the equilibrium Green’s functions. Next, we

formally expandG" andG? in a power series of the internal where

potentialU, and expand the Fermi function in series of the  g— 473122+ 2b,b,(b; + b,) VE. (12
bias voltageV/,, . Collecting terms according to the powers of

U andV,, Eq. (5) reduces to the following infinite series The inset of Fig. 1 shows this electrochemi€atV curve as
which can be exactly summed: a function ofV=(V,—V;) for two sets of parametels, .
The physical reason tha& changes withV is because the

do, 1 d?o,, ini i
P =| =2 (V= U) + = ——2 (V= U) 24+ plates have finite DOS. Indeed, by making DQS very large
dE 2 dE . (by, b,—») the voltage dependence of E4.1) disappears
and C becomes purely geometrical. Furthermore, it can be
=0,(E+V,~U)—0,(E), (6) confirmed that formuld11) recovers the linedrand second
where the quantitglo,,/dE is defined as order nonlineaf’r gapacitance coefficients when we take the
(V2_V1)—>O I|m|t.
do, _ ﬁ GIT ﬁ_fGa 7 Quantum scanning capacitance microscopyr general
dE = 27| 0" agE ~0 i @) results suggest a quantum scanning capacitance microscopy

(QSCM). This idea naturally follows from the results pre-
The physical significance of the quantils,/dE can be sented above: since the electrochemical capacitance varies
identified as the linear spatial dependent local partial densitwith bias due to a finite DOS of the conductors involved, we
of states (LPDOS.>° Expression(7) has been obtained should be able to find the DOS by measurigEssentially
before!®® For a conductor, which is weakly coupled to ex- we wish to obtain spectral functian,(E) or local density of
ternal leads, LPDOS giVES the local DOS of this CondUCtorstategjo-Z/dE as a function of energy for an unknown con-
Hence the spectral functionr,(E) characterizes the local ductor, from a knowrr(E) of our QSCM “tip” which has

electronic structure of a nanoscale conductor. been calibrated® As the QSCM tip is scanned along the
The nonlinear charge distribution gives the general elecsurface of a nano-scale conductor, or along the surface of a
trochemical capacitance versus voltage curve planar dielectric layer with nanoconductors buried under-
neath, experimentally one can measure @{&) curves at
C= E+V,—Uy)—0o1(E)l/(Vi—Vs), 8 P "
Lo 1= U= an(B)Vi=Va) ® each spatial position.
where we have set electron charmgéo be unity. To deter- From Eg.(8), we obtainU; as a function of potential

mine C we must obtain internal potential$; andU, at the differenceV using the knowro; and the measured(V), by
two plates. For this purpose we introduce theometrical solving the equationo(1—U,)—04(1)=VC(V), where

capacitanceC, we have setvV;=0,V,=V, andE=1 is set at the Fermi
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energy of the QSCM tipC(V) is measured at Fermi energy scanning capacitance microscoflyQSCM includes the

of the tip EL, e.g., Eq.(11)]. Next, From Eq.(9) we obtain  quantum corrections to capacitance in mapping out the spa-
U,(V). With U; and U, we finally find o»(E) from Eq. tial charge distribution; and it gives the local density of states
(10). In particular we can solve the spectral functiep by  as a function of electron energy.

representing it into a polynomial:

n
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linear (n=1) LPDOS and nonlineam>1) LPDOS® They
are obtained by solving the following set of linear algebraic

equations which come from EL0):
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