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Abstract. The transformation of a random wave field

in shallow water of variable depth is analyzed within the

framework of the variable-coefficient Korteweg-de Vries

equation. The characteristic wave height varies with depth

according to Green’s law, and this follows rigorously from

the theoretical model. The skewness and kurtosis are

computed, and it is shown that they increase when the

depth decreases, and simultaneously the wave state deviates

from the Gaussian. The probability of large-amplitude

(rogue) waves increases within the transition zone. The

characteristics of this process depend on the wave steepness,

which is characterized in terms of the Ursell parameter. The

results obtained show that the number of rogue waves may

deviate significantly from the value expected for a flat bottom

of a given depth. If the random wave field is represented as

a soliton gas, the probabilities of soliton amplitudes increase

to a high-amplitude range and the number of large-amplitude

(rogue) solitons increases when the water shallows.

1 Introduction

Rogue or freak waves, which rapidly and surprisingly appear

and disappear on the sea surface, are widely observed in

various areas of the World Ocean in both open seas and

coastal zones; such data is collected in Lavrenov (2003),

Didenkulova et al. (2006), Liu (2007), Kharif et al. (2009).

Several physical mechanisms are suggested to explain the

rogue wave phenomenon (Dysthe et al., 2008; Kharif

et al., 2009): (i) dispersive and geometrical focusing of

wave packets propagating with different speeds in different

directions; (ii) nonlinear mechanisms due to the Benjamin-

Feir instability and wave-wave interaction; (iii) wave
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interaction with a variable bottom, with currents and wind

flow. These physical mechanisms are the subject of intense

study in frameworks of various theoretical models of water

waves and also through simulations in laboratory tanks; see

for instance Kharif et al. (2009).

For practical purposes it is necessary to compute the

probability of rogue wave occurrence. Usually, the

distribution functions of the wind wave field including

extreme characteristics are calculated under assumption of

the non-Gaussian properties of a process using the nonlinear

perturbation technique; see for instance Dysthe et al. (2008).

The nonlinear effect of the Benjamin-Feir instability for

narrow-band wave packets over deep water is incorporated

in the statistical theory of the weak (wave) turbulence. It

leads to the non-Gaussian statistics of wind waves with

third and fourth moments (skewness and kurtosis) depending

on the Benjamin-Feir index which represents the ratio of

nonlinearity to dispersion (Janssen, 2003; Mori and Janssen,

2006). As a result, the probability of rogue wave occurrence

increases due to the Benjamin-Feir instability and this effect

has been verified experimentally in a long wave flume

(Onorato et al., 2006; Shemer and Sergeeva, 2009; Shemer

et al., 2010).

The influence of the combined effects of nonlinear –

dispersive focusing of unidirectional random waves over

shallow water (where the Benjamin-Feir instability is absent)

on the probability of freak wave appearance has been studied

within the Korteweg-de Vries equation (Pelinovsky and

Sergeeva, 2006). In this case the wave field remains non-

Gaussian, and the skewness and kurtosis are controlled by

the Ursell parameter, which is proportional to the ratio of

nonlinear over dispersive effects.

The bottom topography variability in the coastal zone

can also increase the rogue wave probability due to the

effect of geometric focusing, which leads to a spontaneous

appearance of caustics and focal points (see for instance

Lavrenov, 2003; Kharif et al., 2009). When an unidirectional
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wave propagation over variable bottom is concerned, the

wave characteristics are non-Gaussian; the runup of random

long waves on a plane beach is one of these examples. The

statistical moments for this case are studied theoretically

in Didenkulova et al. (2008, 2011) and experimentally in

Huntley et al. (1977).

The influence of the bathymetry non-uniformity on kurto-

sis and the probability of freak waves has been investigated

within the framework of the nonlinear Schrödinger equation

in Zeng and Trulsen (2010). They found that after a

depth variation, the propagating wave train may need a

considerable distance to relax towards the new equilibrium

state, which corresponds to the new depth. As a result,

kurtosis and the number of freak waves may be significantly

different from the values expected for the constant depth

environment. This analysis is limited by the narrow-band

dispersive wave packet under conditions at intermediate

depth.

The main goal of the present paper is to investigate the

effect of variable bathymetry on the unidirectional random

wave propagation in shallow water. The theoretical model is

based on the variable-coefficient Korteweg-de Vries equation

(Sect. 2). If the wave field is represented by an ensemble of

solitons with random amplitudes and phases, the distribution

function of soliton heights is shown to grow in high-

amplitude limit (the “tail” of the distribution function), and

the number of “freak” solitons increases when the depth

becomes less. The results of numerical simulations on

propagation of initially random wave field under condition

when water shallows, are given in Sect. 3. It is emphasized

within this framework, that the freak wave probability should

increase when depth decreases. The entrance of random

waves to a deeper water region leads to the reduction of the

number of freak waves, as discussed in Sect. 4. The results

obtained are summarized in Sect. 5.

2 The Korteweg-de Vries model

The Korteweg-de Vries equation is a basic equation for

describing a unidirectional propagation of weakly-nonlinear

weakly-dispersive waves in shallow waters. In the case

of a slowly variable depth when the wave reflection from

the bottom slopes can be neglected, the variable-coefficient

Korteweg-de Vries equation has been derived by Ostrovsky

and Pelinovsky (1970), Johnson (1973). It can be written as

√

gh(x)
∂η

∂x
+

3η

2h

(

h(x)

h0

)−1/4
∂η

∂s
+

h(x)

6g

∂3η

∂s3
= 0 , (1)

where the surface elevation ζ(x,t) and the time t are

introduced as follows,

ζ(x,t)= η(x,t)

[

h(x)

h0

]−1/4

, s =
x

∫

x0

dy
√

gh(y)
− t , (2)

s is the time in the reference system of coordinates, x is the

coordinate directed onshore, h0 = h(x0) is the depth of the

deepest tide-gauge where an initial condition is defined.

Equation (1) is solved numerically for the periodic domain

on s with the period T , ζ(0,x) = ζ(T ,x). Two integrals of

Eq. (1) are conserved,

T
∫

0

η(x,s)ds = const ,

T
∫

0

η2(x,s)ds = const . (3)

The pseudo-spectral method for time derivation and the

Crank-Nicolson scheme for space discretization are used, see

details in Fornberg (1998). The solution of (1) is calculated

in the discrete Fourier space for spectral amplitudes and

defined through the Fourier transform C(ω) = FFT {η(s,x)},
when the nonlinear part of (1) is calculated as Cnon(ω) = FFT
{

η2(s,x)/2
}

C(ω,x +1x) = C(ω,x −1x)
1+ iβω31x

1− iβω31x

−αFFT

{

1

2
η2(s,x)

}

iω1x

1− iβω31x
, (4a)

α =
3

2h
√

gh

(

h

h0

)−1/4

, β =
h

6g
√

gh
. (4b)

The initial conditions for (1) at x0 = 0 were defined as a

superposition of independent Fourier harmonics with random

phases ϕ uniformly distributed within the interval [0 2π ]

ζ (s,x=0)=η(s,x=0)=
∑

n

√

2S(ωn) cos(ωns+ϕn) . (5)

The total duration of each realization is about 30 character-

istic wave periods corresponding to the typical swell period

T0 = 15 s and sample frequency f = 5.7 Hz (N = 1024 data

points are used for the discretization in time s). The spatial

discretization in (4) is much less then a wave length and is

equal to 1x = 0.375h0. The spectrum of water waves at

initial location was assumed to have a Gaussian shape

S(ω) = A2exp

[

−
(

ω−ω0

δω

)2
]

, (6)

where A is the characteristic wave amplitude, and the

spectral width is set at δω/ω0 = 0.36. In the numerical

experiments two values of the initial steepness parameter

ε = Ak0 are considered: 1 × 10−2 and 5 × 10−2, where

the characteristic wave length, defined through the velocity

of long waves λ0 = 2π /k0 on the depth of 10 m was

about 150 m, providing the condition of a weak dispersion

of the waves. Although the initial irregular wave field

is supposed to be Gaussian due to the Central Limit

Theorem, in numerical experiments some deviations from

the Gaussian process naturally occur due to the finiteness of

realizations.
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The following variable depth profile is employed in the

numerical experiments:

h(x)

h0
=

1+h1/h0

2
−

1−h1/h0

2
tanh(x/L) . (7)

Here the initial depth h0 is set to 10 m, and the final depth

was h1 = 5 m. The length of the transitional zone, L, varies

from 30h0 to 120h0 (2–8 wavelengths).

The main goal of the numerical simulations is to find

the wave field statistical moments. The first two statistical

moments can be easily found analytically with the use of (3).

In particular, the first moment is

m1(x) =
T

∫

0

ζ(x,s)ds

=
[

h(x)

h0

]−1/4
T

∫

0

η(x,s)ds ∼
[

h(x)

h0

]−1/4

m1(x0) , (8)

Meanwhile, at the initial location m1(x0) = 0; therefore the

mean water level does not change with distance. The second

moment reads

m2(x) = σ 2(x) =
T

∫

0

ζ 2(x,s)ds

=
[

h(x)

h0

]−1/2
T

∫

0

η2(x,s)ds ∼
[

h(x)

h0

]−1/2

m2(x0) . (9)

The characteristic wave amplitude (defined here as half

of the significant wave height) is proportional to σ(x) as

As(x) = 2σ(x). It varies with depth according to Green’s

law h−1/4(x). The skewness and kurtosis defined as

µ3(x) =
m3(x)

σ 3(x)
, µ4(x) =

m4(x)

σ 4(x)
(10)

can not be obtained analytically, and are computed by means

of numerical simulations.

Simple analytical results can be achieved for the case when

the random field constitutes a “solitonic gas”. The soliton

turbulence within the framework of the Korteweg-de Vries

equation has specific features related to integrability: solitons

preserve their individuality, and interactions between them

are elastic, and thus do not change soliton amplitudes but

alter phases, see Zakharov (1971), Salupere et al. (1996,

2002, 2003a, b), and textbooks Novikov et al. (1980), Drazin

and Johnson (1996).

Assuming the random solitons to be located far from

each other, the soliton transformation in the coastal zone

(shoaling) may be analysed independently for every solitary

wave. This dynamics is known to depend on the ratio

of nonlinearity length with respect to the width of the

transition zone (Tappert and Zabusky, 1971; Pelinovsky,

1971; Nakoulima et al., 2005). If the solitary wave amplitude

is large, the soliton quickly adapts to the local depth, so

that its new length coincides with the local conditions. In

this case the soliton amplitude is proportional to h−1(x);

see Ostrovsky and Pelinovsky (1970), Johnson (1973). If

the solitary wave has small amplitude, and thus, large wave

length, it transforms as a linear wave, and its amplitude is

proportional to h−1/4(x); see Pelinovsky (1971), Nakoulima

et al. (2005). As a result, the distribution of soliton

amplitudes changes with depth, and the portion of large-

amplitude waves enhances more significantly than the

portion of smaller-amplitude solitons.

Thus, the nonlinear property of the soliton field tends

to increase the probability of occurrence of large-amplitude

waves (freak waves). Of course, this analysis is limited

by the low-density “soliton gas” representation of the wave

field. In general, the wave field is represented by a

superposition of sinusoidal waves with random phases (4),

and the statistical moments are calculated numerically, as

reported below.

3 Shoaling of random nonlinear waves

Let us suppose the region where the initial condition is

defined to be far from the transitional zone. Then the

Korteweg-de Vries equation for a constant depth may

be employed. It is demonstrated in Pelinovsky and

Sergeeva (2006) that during the nonlinear wave evolution, the

Gaussianity of the process breaks down after a transitional

period. Later on, a steady state is established (regarding

statistical characteristics), which differs from the Gaussian

state and is characterized by a stronger wave asymmetry

and kurtosis, when the Ursell parameter grows. The Ursell

parameter defines the ratio of nonlinearity As/h(x) with

respect to dispersion [k0h(x)]2,

Ur(x) =
As(x)

k2
0(x)h3(x)

=
2σ(0)gh

1/4
0

ω2
0h(x)9/4

, (11)

where g is the gravity acceleration. Strictly speaking,

the Ursell parameter is defined for a sinusoidal wave with

frequency ω0.

Our simulations exhibit the spectrum broadening due to

the nonlinearity effect; it also becomes asymmetrical, see

Fig. 1 (see also, Pelinovsky and Sergeeva, 2006) and a

second harmonic peak is observed. For estimating the Ursell

parameter, we used the value of ω0, obtained on the basis

of the initial Gaussian spectrum (6) through the spectral

moments,

ω0 =
∫

ωS(ω)dω
∫

S(ω)dω
. (12)

In the numerical simulations we start with the steepness

parameter ε = k0As = 5×10−3 and the corresponding Ursell
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Fig. 1. Power spectra of surface elevation at x = 150h0 and at

x = 300h0 for Ur = 0.4. Red solid line corresponds to the initial

Gaussian shaped spectrum. Constant depth h0 = 10 m.

(a)

(b)

(c)c)   

ε ⋅

Fig. 2. Variation of the skewness (a) and kurtosis (b) in the water

of variable depth with initial value Ur = 0.37 (solid line). The same

variation in the water of constant depth h0 = 5 m with Ur = 1.75

(dashed line). Variable depth profile with L = 30h0 (c).

parameter equals to 0.37. Figure 2a and b indicates the

spatial evolution of the statistical moments, the skewness µ3

and kurtosis µ4, are marked with the red solid line. The

variation of the water depth profile is presented in Fig. 2c.

While the depth is constant before the transitional zone,

the quasi-stationary state for µ3 and µ4 is achieved

(Pelinovsky and Sergeeva, 2006). It is characterized by the

(a)

(b)

(c)c)

Fig. 3. As in Fig. 1a and b for Ur = 0.73 and Ur = 3.47. Depth

profile with L = 30h0 (c).

increase of the wave asymmetry and by the growth of the

number of high amplitudes in comparison with the Gaussian

distribution; thus, the process deviates far from the Gaussian

one. The water depth variation leads to the growth of the

wave nonlinearity, and the Ursell parameter grows up to

Ur = 1.75 as well. For the new condition, a new steady state

can be observed at distances over x = 1500h0.

For a comparison, the evolution of random waves with

an initially Gaussian-shaped spectrum was considered for

the condition of constant depth, h0 = 5 m, for the same

value of the Ursell parameter, Ur = 1.75. These results were

compared with the previous simulations in Fig. 2a and b (blue

dashed lines correspond to the condition of constant depth).

Both statistical moments tend to quite similar values in the

two simulations.

An increase of wave steepness (ε = 1 × 10−2) leads, as

expected, to more significant deviations of skewness and

kurtosis from the values of the Gaussian state (Fig. 3). As

opposed to the previous case (Ur = 1.75), the comparison

with the simulation for a constant depth in the case of

steeper waves (Ur = 3.47) manifests two different regimes of

the steady state at the depth h = 5 m: a large transition zone
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(a)

σ ε ⋅ ε ⋅

a)  

ε ⋅ ε ⋅

(b)

σ ε ⋅ ε ⋅

b) 

ε ⋅ ε ⋅

Fig. 4. Exceedance probability distribution function of wave heights scaled by Hs for water depth h = 10 m (blue circles) and h = 5 m (red

triangles) for two cases of initial wave steepness: ε = 1×10−2 (a) and ε = 5×10−3 (b).

(a)a)  

(b)
b)  

Fig. 5. Spatial diagram of exceedance probability distribution function of wave heights, scaled by Hs, in the logarithmic scale for varying

depth (upper panel) and constant depth h = 5 m (lower panel) for two cases of wave steepness, corresponding to Ur = 3.5 (a) and Ur = 1.75 (b).

for a condition of constant depth and a shorter transformation

to a steady state for water with depth decrease. The

results of calculations of wave propagation over variable

depth conditions demonstrate significant increase of the

values of kurtosis and skewness compared to the condition

of constant depth.

As previously mentioned, the decrease of water depth

leads to the increase of nonlinearity and the Ursell parameter

as well. It was shown (Figs. 2 and 3) that statistical

moments also tend to increase while the water shallows.

All this influences the probability distribution of large wave

formation and leads to the growth of the tails of distribution

function after the transition zone. Figure 4a and b

demonstrates such behaviour of the probability distribution

functions of wave height, scaled by Hs = 4σ , both for two

cases of initial values of wave steepness ε=1 × 10−2 and

ε = 5 × 10−3, where blue circles correspond to the depth

of 10 m and red triangles indicate the probabilities of wave

heights in shallower water (h = 5 m).

The spatial variation of the exceedance probability

function for wave heights, log(F [H/Hs]), presented in

spatial diagrams (H/Hs, x/h0) of Fig. 5a and b, allows to

follow the formation of large waves along the distance for

the two cases examined above to be indicated. The profile of

the water depth is also given for reference by the dashed line,

and the right vertical axis indicates the depth values. For

comparison, the variations of the wave height probabilities

obtained for the conditions of a constant water depth h = 5 m

and the corresponding Ursell parameters are presented in

Fig. 5a and b below the main panels.
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Fig. 6. Depth profile (7) with various length of the transitional zone

L/h0.

For both sets of the numerical experiments the variation

of water depth correlates with the evidence of formation

of larger waves, whose heights more than twice exceed the

significant wave height, Hs, (so-called freak waves). A

visible transient zone exists for the probability distribution,

which is smaller then one corresponding to the constant

water depth case. In the steep wave case (Ur = 3.47, Fig. 4a)

the maximum amplification of wave height is observed

when the depth attains a value of 5 m. At the same time,

waves of the same heights and even higher occur during

wave evolution over water of constant depth for the same

conditions of the Ursell parameter (Fig. 5a, the lower panel).

In the case of a smaller Ursell parameter (Ur = 1.75), no such

amplification of wave height probability for variable depth

case could be observed (Fig. 5b). During the depth jump no

freak waves are found (Fig. 5a), and the wave heights do not

exceed 2Hs, in contrast to the comparative simulation for the

constant depth h = 5 m (Fig. 5a, the lower panel).

To evaluate the influence of the transitional zone length,

we consider three values of L/h0 (Fig. 6), representing steep

and smooth depth profiles. The length of the transitional zone

does not influence the quantitative parameters (Fig. 7). At

large distances from the zone of the depth transformation,

the value of kurtosis seems to slightly decay and tends to one

of steady state.

4 Wave transformation from shallower to deeper water

An increase of water depth from 5 m to 10 m leads to the

attenuation of local wave nonlinearity. Nevertheless, the

characteristics of the steady state vary significantly. The

deviations from the Gaussian statistics descend appreciably.

In particular, kurtosis (Fig. 8b) is close to the values typical

for the Gaussian sea state (µ4 = 3), and the wave asymmetry

(Fig. 8a) becomes less pronounced. The comparison of the

statistical parameters with the results obtained for the case

of constant depth for the same Ursell parameter (see the

dashed line in Fig. 8) demonstrates satisfactory agreement

for skewness, and some underestimation of kurtosis for the

case of constant depth.

(a)

(b)

Fig. 7. Transformation of the skewness (a) and the kurtosis (b) for

different values of transitional zone L/h0, h0 = 10 m, Ur = 3.47.

(a)

(b)

(c)c)  

Fig. 8. Variation of skewness (a) and kurtosis (b) in water

of variable depth with initial value Ur = 2.06 (solid line). The

same variation in water of constant depth h0 = 5 m with Ur = 0.43

(dashed line). Variable depth profile with L = 30h0 (c).
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Fig. 9. The exceedance probability distribution function of wave

heights scaled by Hs corresponded to h = 5 m (blue circles) and

h = 10 m (red triangles).

We thus conclude that the probability of extremely high

waves decreases when the water becomes deeper, which

is demonstrated in Fig. 9, where distribution functions

corresponding to h = 10 m and h = 5 m are presented.

5 Conclusions

The transformation of random (irregular) wave fields in

basins of a variable depth is analyzed within the shallow

water approximation in the framework of the variable-

coefficient Korteweg-de Vries equation. The characteristic

amplitude of the surface elevation varies with depth

according to Green’s law, which follows the theoretical

model. Skewness and kurtosis are obtained on the basis

of numerical simulations. They are shown to increase

when the depth decreases (water shallowing), and the wave

state deviates from the Gaussian. The probability of large-

amplitude (rogue) waves increases in the transition zone.

The characteristics of this process depend on the initial

wave steepness (the Ursell parameter), but not on the length

of the transitional zone. The results obtained confirm

the conclusion made by Zeng and Trulsen (2010) in the

framework of the nonlinear Schrodinger equation for narrow-

banded wind wave field, that kurtosis and the number of

freak waves may significantly differ from the values expected

for a flat bottom of a given depth. The same conclusion

was arrived at for the representation of the wave field as a

low-density “solitonic gas”; the high-amplitude tail of the

distribution function increases more significantly when the

water becames shallower. If the waves propagates into a

deeper water region, the number of freak waves decreases,

and the wave field becames closer to the linear one.

Similar effects are believed to exist for the case of

shallow-water internal wave fields described by the extended

Korteweg-de Vries equation (Holloway et al., 1997, 1999;

Grimshaw et al., 2007). In particular, rogue internal

waves are predicted theoretically in the framework of the

modified Korteweg-de Vries equation, in which the quadratic

nonlinear term equals to zero (Grimshaw et al., 2005), and

the Gardner equation has a positive cubic nonlinear term

(Grimshaw et al., 2010).
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