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N on-linear realization is extensively studied in N = 1 supersymmetric theories with a global symmetry 
group C breaking down to its subgroup H. A subgroup Ii of C e

, the complexification of the group C, is 
defined in such a way that it leaves the minimal point of the effective potential invariant. The Ii 
determines the types of the non-linear realization. The general structure of Ii is fully investigated and 
summarized inseveral theorems. General methods are shown how to construct the supersymmetric non
linear lagrangians. Discussions are also given on matter fields. 

§ 1. Introduction 

About fifteen years ago, Coleman, Wess and Zumino elucidated the general structure 

of effective lagrangian theories and presented the method to construct invariant lagran

gians in which fields are transformed in accordance with non-linear realizations of an 

internal symmetry group_I) Recently, Zumino investigated the supersymmetric non-linear 

(J model with scalar fields taking values in a Kahler manifold and gave a simple explicit 

formula for the case of the Kahler manifold U(P+q);'U(p)0U(q)_2) In this case, the 

number of massless scalars is equal to the dimension of the manifold U (p + q ) 

/ U(p)0 U(q) and the scalars are what is called goldstone bosons_ In supersymmetric 

models, however, it often happens that there appear a number of massless scalars in 

addition to goldstone bosons.3
) 

Several authors studied non-linear realization for more general cases of an original 

internal symmetry group G breaking down to its subgroup H. 4) They pointed out the 

importance of complex extension of the group G and showed the origin of massless 

scalars. It turns out that, even when one fixes G and H, one has a variety of non-linear 

supersymmetric lagrangians corresponding to the number of massless scalars. There 

come out, in general, massless scalars called quasi goldstone bosons in addition to 

goldstone bosons. The masslessness of the quasi goldstone bosons is guaranteed by the 

masslessness of goldstonebosons as far as the supersymmetry is unbroken. However no 

definite answer has yet been made as to how many massless scalars appear when an 

internal symmetry group G breaks down to a group H without breaking the supersym

metry. Furthermore, there has not been clarified the general method for constructing the 

corresponding non-linear lagrangian for general cases ()f G/ H. 

In this paper, we will clarify in detail the non-linear realization in supersymmetric 

theories. A brief outline of this work has already been presented in Ref. 5). After 

examining the general properties of the non-linear realization in supersymmetriC theories, 

we show what the number of quasigoldstone bosons is related with, and present the 

general methods for constructing the correponding lagrangians. 

In §2, we elucidate the general properties of non-linear realization in supersymmetric 
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314 M. Bando, T. Kuramoto; T. Maskawa and S. Uehara 

theories. The operation of an internal symmetry group G is extended to that of the 

complexified group GC of G.4l According to that, a symmetry group H can be extended 

to a group Ii which contains the complexified group H C of H. This is a special feature 

of non-linear realization in supersymmetric theories. 'After we clarify the structure of Ii, 
we can construct the corresponding lagrangian in accordance with the usual method given 

in Ref. 1). We show explicitly how to construct non-linear lagrangians without quasi 

goldstone bosons when an internal symmetry group U (N) breaks down 

to U(nl)®U(n2)®···®U(na) with L:f=lni=N in §3 and when Q(N)[SP(2N)] breaks 

down to O(m)[SP(2m)]® U(nl)®···®U(na) with m+2 L:f=lni=N[m+ L:f=lni=N] in 

§4. In Appendices, we give a brief proof of Ii -structure theorem (Appendix A) and 

present general forms of Ii for the case of G and H being classical groups (Appendix B). 

§ 2. General properties and methods 

In this section we consider models in which a global symmetry group G breaks down 

spontaneously to its subgroup H preserving (N = 1) supersymmetry. It is well known 

that the number of goldstone bosons is equal to the dimension of the coset space G/ H. If 

we assume that the supersymmetry is preserved, each goldstone boson must be a 

component of a chiral superfield consisting of two scalar bosons and a fermion. In 

general, all the superfields containing goldstone bosons (goldstone superfields) are 

classified into two types, which we call "P-type (Pure-type) superfield" and "M-type 

(Mixed-type) superfield". In a P-type superfield, both of scalar components are goidstone 

bosons, while, in aM-type superfield, only one of them is a goldstone boson. The 

supersymmetry gurantees that all the components of those superfields are massless. 

Hence, a P-type superfield cotains a massless fermion (quasi goldstone fermion) besides 

two goldstone bosons, while aM-type superfield consists of a goldstone boson, a quasi 

goldstone boson and a quasi goldstone fermion. The supersymffietric non-linear realiza

tion is categorized as follows: 

(1) "Maximal realization"; all goldstone superfields of the theory are of M-type. 

(II) "Minimal realization"; the theory contains the minimal number of M-type 

superfields with the rest being P-type superfields. 

(III) "Intermediate realization"; the number of M -type superfields is between those of the 

above two extreme cases. 

We should remark that the minimum number of M -type superfields is uniquely determined 

depending solely on the groups G and H. Certain kinds of G/ H allow all the goldstone 

superfields to be of P-type, which we call "pure realization". Which of these cases is 

realized depends on the dynamics of the system. In the following we will clarify the 

general structure of non-linear realization in supersymmetric theories and present some 

theorems. 

A. Ceneral properties and theorem 

Let .£ eff( (pA) be the effective lagrangian under consideration. It is a function of chiral 

superfields rpA, which may be either elementary or composite fields.*l In general the chiral 

*l Irrelevant su{>erfields are understood to be integrated out in ..Leff. 
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Non-Linear Realization in Supersymmetric Theories 315 

superfields belong; to a reducible representation p in a compact Lie group C. It is 

assumed that .£ eff( ¢A) is invariant under C and realizes a spontaneous breakdown 

preserving a subgroup H of C as well as supersymmetry. The effective potential is 

obtained by substituting the constant fields ¢A for field variables in ...c eff 

Veff( ¢A) = -...c eff( ¢A). (2'1) 

The minimal point ¢OA of Veff is a fixed point of H by the assumption, 

p(H)¢o=¢o. (2'2) 

(1) Since ¢A is a complex field, we can extend the domain of p from C to CC, 

"complexification of C". It does not mean that CC is a symmetry of ...c eff. We define the 

extension as follows. Since any irreducible representation can be obtained by the 

irreducible decomposition from direct products of elements of the fundamental system of 

irreducible representations,S) choose the natural ,extension of the fundamental system. If 

one wants to use complex conjugate representation p* of them, one adopts the contra

gradient representation (p T)-1 as its extension. This extended representation preserves 

irreducibility and is analytic in the coordinate variables of CC. We will call it "analytic 

representation" . 

(2) Equation (2'2) is rewritten in terms of Lie algebra f), {AaH}*) 

(2'3) 

for any real number Ca. The first equality holds even for a complex number, because we 

choose the "analytic representation" as an extension of p ( C) to p ( CC). Then ¢o is a fixed 

point of H C
, "complexification of H". We define ii as follows: 

(2'4) 

By definition, 

(2'5) 

(3) Let ~ be "representatives" of CC/ii. 4b
)-d) Because the operation p(~) is effective on 

¢o (i.e., if p (~1 )¢o = p (~2 )¢o, then ~1 = ~2), the field variables ¢ can be represented by ~ and 

the rest freedoms (J, 

(2'6) 

At the vacuum point ~ and (J are chosen to be zero. 

(4) The effective potential Veff consists of two parts, D-term VD and F-term of super

potential WF. If an analytic function of ¢A is C-invariant, then it is also CC-invariant 

owing to analytic extension of p. Since WF is an analytic function of ¢A, WF is CC_ 

invariant.4a
) Therefore WF is independent of the variables~. On the other hand, VD is 

written as 

(2'7) 

where Fa is the F-component of a chiral superfield ~ or (J and the metric gap(~, (J) is non

singular at the vacuum point.' Hence the auxiliary field Fa is given by 

*) We use small German letter for Lie algebras and capital Latin letter for the corresponding Lie groups. 
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316 M. Bando, T. Kuramoto, T. Maskawa and S. Uehara 

(2'8) 

From this equation, together with the condition of preserving supersymmetry, 

Feld~o=O , (2'9) 

Equation (2'9) can be regarded so as to define the minimal point of Veff, the condition of 

which is expressed as 

(2'10) 

at the minimal point. One should notice that the manifold made up of the whole of the 

minimal points is invariant under GC because the minimal point is determined by the GC 

invariant condition (2 ·10). Note that ,po' = p (g ),po, (g E GC
) with any minimal point ,po, is 

also a minimal point of Vett. This is a remarkable feature particular to the supersym

metric theory, which we would like to emphasize in the following statement. 

Statement 1 Let ,po be a minimal point and· fj be its isotropy group. Then each of 

,po' =p(g ),po(V gE GC), 

is also a minimal point of Vett. The Corresponding isotropy group is 

fj' =p(g )fjp(g-l). 

Equation (2'10) leads to 

F a =(const)6+(higher power of 6 and ~). (2'11) 

From Eqs. (2·7) and (2'11), one observes that there is no mass term of ~,4d) and only 

interaction terms can appear. If the supersymmetry is broken, Fdld~O*O, then it is easily 

seen from Eq. (2'7) that the quasi goldstone bosons get masses. We have the following 
theorem.4d

) 

Theorem 2 Let ~ = (~i) be a representative of GC 
/ fj, then all ~i correspond to massless 

particles and the number of quasi goldstone bosons N Q is given by 

N Q = dim[ GC 
/ fj] - dim[ G/ H]. *) 

Note that the proof is valid even in the case of dynamical symmetry breakdown. The 

structure of fj is clarified in theorem 3. 

(5) Which of the complex subgroups of GC can be candidates for fj? The following 

theorem on the structure fj will answer the question. 

Theorem 3 (fj -structure theorem) 

Let p be an "analytic representation" and 

~= {x; p(x ),po=O, xEgc}, (2'12) 

then 

(2'13) 

*) The symbol "dim" counts real dimensions of a manifold. 
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Non-Linear Realization in Supersymmetric Theories 317 

Here 'f)c is a direct sum of semisimple Lie algebra and u(l)c factors,and t is a nilpotent 

ideal of $ such that all the eigen values of the restriction of gC -adjoint representation on 

t vanishes. 

Because t is an ideal, the group Ii is a semi-direct product of H C and R, H C * R ,*) 

(h, r). (h', r')= (h· h', h'-,Irh'r'), (2·14) 

where h, h'EHc and r,r', h'-I rh'ER. 

Here we present the corollary of theorem 2. 

Corollary 4 

NQ=dim[CIH]-dimR. 

One may recall Levi's theorem which tells us that any Lie algebra is a direct sum of 

a semisimple part and a radical. 6
) In our case condition (2'12) provides us with more 

detailed information on the structure of Ii. The brief proof of this Ii -structure theorem 

is given in Appendix A. In this paper, we will exhibit all possible $'s for every classical 

simple group. 

An important remark is in order: It is a result of Weyl's theorem6
) that, for any 

complex simple Lie algebra, one can choose a real form, which generates a compact Lie 

group. In our case, however, the real structure is a priori specified by C. Hence if we 

pick up a complex simple subalgebra gs of gC, its compact real form is, in general, not 

included in g. The fQllowing example will make this phenomenon understandable: 

Suppose that C=SU(3), 

3 

'f)= n::: aaAa ,aa; real number, Aa; Gell-Mann matrices} 
a=1 

and gESU(3)C. If we define 'f)s=g'f)g-t, 'f)s generates a compact real form su(2) but 'f)s is, 

in general, not included in su(3). When the compact real form of gs is not included in g, 

we call such embedding "twisted embedding", while natural embedding refers to the usual 

simple embedding. However, in our case, we can always choose $ so that its compact real 

form is included in 9 by taking appropriate gE CC and redefining the' minimal point, <Po' 

=p(g )<Po in the CC invariant manifold of the minimal points of Veff(see Statement 1). 

Thus it is enough to consider the case of natural embedding. 

B. Non-linear realization and invariant lagrangian 

The non-linear realization in supersymmetric theory can be made for any system by 

introducing necessary quasi goldstone bosons together with quasi goldstone fermions. 

Let the coordinates of coset space CC I Ii and, at the same time, the "representative" of 

CClli be denoted by~. An element g~ with ~EccIH a~d gEC can be decomposed 

uniquely into the variables ~' E CC I Ii and ii. Eli, 

g~=~'(~, g )ii.(~, g). (2·15) 

We define the following transformation for chiral superfields~, with respect to gE C, 

~'(~, g)=g~ii.-I(~, g). (2'16)*) 

*) Hereafter we denote semi-direct product by the symbol "*". 
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318 M. Banda, T. Kuramoto, T. Maskawa and S. Uehara 

One can easily see that Eq. (2·16) defines correctly the operation of G on~. It must be 

remarked that the complex conjugate field e does not appear on the r.h.s. of Eq. (2 ·16), 

that is, the above tranformation does not mix ~ and the anti-chiral superfield ~t. 

N ext we show how to construct a supersymmetric . G-invariant lagrangian. We learn 

fromEq. (2·16) that a constant unitary matrix 9EG can be canceled by taking the bilinear 

form ~t~, 

~t~-+~'te=ii-It(e, g)~tgtg~ii-I(~, g) 

=ii-It(~t, g)~t~ii-I(~, g). (2·17)*) 

On the other hand, ii-I(~, g) and ii-It(~t, g) cannot be easily canceled, since while 

ii-I(~, g) depends on the chiral superfield~, ii-It(e, g) depends on the anti-chiral 

superfields ~ t, and ~ and ~ t are mutually independent chiral superfields. 

The following is three kinds of possible recipes: 

The first one (which we name "A-type") works when there exists such an analytic 

representation (p, V) of the group GC that the restriction of p to the subgroup Ii of GC 

contains a trivial representation. We chose a basis {ea} in a subspace of V in which 

p (Ii) is a trivial representation, 

p(li)ea=ea. 

Observing that p(~)ea is transformed under group G as 

p(~')ea =p(g )p(~)p( ii-I )ea 

=p(g )p(~)ea , 

the following turns out to be candidates for a lagragnian, 

(2·18) 

(2·19) 

(2·20) 

where f is an arbitrary function and [ ]n means taking the D-component of the superfield. 

The following examples will be helpful for understanding 

(i) G=SU(N), Ii=SO(N)C or SP(N)C and p is a second-rank tensor representation. 

p( ~)e is given by the following matrix: 

(e J~)ij = ~ia~jbJ ab , (2·21) 

where a matrix] is an invariant metric of SO(N) or SP(N), i.e., 

for gESO(N) or Sp(N). (2·22) 

(ii) G=SU(N), Ii=SU(N-S)(lsSsN-l) and p is a fundamental represen

tation. 4C) 

One takes the basis (ea);("a=N -S+ 1, ... , N) as follows: 

(2·23) 

(iii) e=r/>o(see Eq. (2·4)).4C) 

*) To be precise, this equation should be written by introducing some unitary representation p of the group 

G and the corresponding "analytic representation" of Ge" 
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Non-Linear Realization in Super symmetric Theories 319 

The second is a generalization of Zumino's2) recipe (B-type), which works in general cases. 

We introduce projections 7Ji U = 1, 2"') which have the following properties: 

(a) 7J/ = 7Ji , 

(b) P(X)7Ji=7JiP(X)7Ji XEH, 

(c) (for each i) (2'24) 

Let us consider a function with 7Ji, 

(2·25) 

where det"i denotes a determiant defined in the subspace 7Ji V. Under the group G this is 

transformed as (suffix i is abbreviated below) 

In det,,[p(~' t ~')] = Indet,,[7Jp (~'t ~')7J] 

= lndet" [7JP ( h t - I )p(~t ~)p(h-I)7J] 

=lndet,,[7JP(ht - 1 )7JP(e ~)7JP(h-1 )7J] 

=lndet,,[p(~t ~)]+ Indet,,[P(h- I)] + lndet,,[p( h- I t)]. 

Since Indet,,[P(h-I)] is a chiral superfield, 

[lndet"p(~t ~)]D, 

is also a candidate for a G-invariant lagrangian. 

(2·26) 

(2'27) 

The last one is C-type lagrangian. A field dependent group element h- I in Eq. (2'15) 
can be canceled in the following term which is an extension of the projection operators in 

the usual non-supersymmetric theories: 

U; fixed) (2'28) 

where [ ];i} means the inverse defined in the subspace projected out by 7Ji. It is transform

ed under group G as 

P' = (p(~')7J )[P( ~'t ~')]" -I( TJP (~zt» 

= peg )p( ~)p (h- I )7J [(p (ht- I )p( e ~ )p( h-I )]" -17Jp (ht-I)p (~t )p(g t) 

=p(g )(p(~)7J )(7JP(h-I )7J )[P(ht - I )p(~t ~)p(h-I )],,-I(7JP(ht - 1 »(7Jp(~t)7J )p(gt) 

=p(g )(p(~)7J )[P(~t ~)],,-I(7JP(e »p(gt) 

(2·29) 

where suffix i is omitted. Note that, 

P/=Pi , Tr Pi = const , (2'30) 

thus the candidates for non-trivial invariants are Tr PiPj ( i *- j), Tr(PiPjPk )( i *- j *- k), etc. 

and the following is a candidate for a lagrangian, 

U*-j, i*-j*-k"') (2'31) 

where f is an arbitrary function of multivariables. Some comments are in order: (0 The 
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320 M. Banda, T. Kuramoto, T. Maskawa and S. Uehara 

above A-, B-, C-type invariants in Eqs (2·20), (2'27), (2'31) are inequivalent to each other, 

in general. (ii) As for the B- and C-type formulae, all the independent lagrangians are 

exhausted by taking the fundamental representations as P in Eqs. (2'27), (2'28) and 

(2'31). For example, the invariant in Eq. (2'27) with general P is "equivalent" to that 

with the fundamental Pf since difference is expressed by those in Eqs. (2·20) and (2·31). 

(iii) The A-type and C-type formulae are invariants under G by themselves, so the general 

expression of a lagrangian can be written as a D term of an arbitrary function of A- and 

C-type invariants plus B-type term (Eq. (2'27» suggested first by Zumino.2
) (iv) In pure 

realization, only B-type terms give supersymmetric non-linear lagrangians, which clearly 

indicates that the arbitrariness of functions in Eqs. (2'20) and (2'31) comes from the 

introduction of quasi goldstone bosons4e
) (the proof of which will be shown in a separate 

paper7». 

C. Matter fields 

Let us consider matter chiral superfields N which are transformed according to a 

linear representation Po of the subgroup Ii . We define the transformation law of N under 

G as follows: 

N'=Po(ii(~, g»N , (2'32) 

where h(~, g) is given by Eq. (2'16). It is easy to construct a G-invariant lagrangian of 

the matter fields N, since we can obtain the "linear base" of matter fields: Pick up some 

representation P of GC whose restriction on Ii contains Po and define the operation p on 

N as the above embedding Po in p. Then p(~)N is transformed linearly under G, 

p(~')N' =p(g~h-l )Po(h)N 

=p(g )p(~)pO(h-l )Po(h)N 

=p(g )p(~)N. (2·33) 

Next consider matter vector superfields V, in which h in Eq. (2'32) should be 

replaced by a unitary "matrix" and consequently the transformation in G mixes the 

chirality through chiral fields ~ and anti-chiral fields ~t .*) Observing that 

(2'34) 

with 

(2·35) 

we see that ~¢> is transformed under G as 

(2'36) 

where K is a unitary "matrix" of indicated variables. Thus each of Eqs. (2· 32) and (2' 33) 

is replaced by 

*) This problem was suggested by Prof. Ohnuki. 
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Non-Linear Realization in Supersymmetric Theories 321 

(2·37) 

p(~' ¢') V' =p(g )p(~¢) V . (2·38) 

D. Structure of Ii 

In this subsection we will present all the possible candidates for ~for a given classical 

group G and its subgroup H. 

(i) G=SU(N) 

Let 'f)c be 'f)lEB···EB'f)aEBn{uc(1)} where 'f)i=~u(ni)C and n+ "2,7=lni:::;'N. An element of 

Lie algebra gC (=~u(N)C) is represented by a traceless complex NxN matrix 

in which the Lie algebra 'f)c is embedded as 

ha: 
-------------~------------

1··· i··· a a+ l···.b 

1 

a 

a+1 

b 

(2·39) 

a 
(b-a=N - "2, n;). 

i=l 

(2·40)*> 

Here each submatrix (we call it "block", hereafter) is labeled by the "block number" 
( . .) **> Z, J . 

Let us find which element is candidate for r in Eq. (2·13). Theorem 3 shows that 

r is an ideal and forms an invariant space under 'f)c. Hence if it contains at least one 

element of block tij, it includes the whole elements of tij (see Appendix B). Since r is 

nilpotent, both tij and tji are not included in r at the same time. 

One may think, for example, that the following matrix is a candidate for r 

*> Here each hi represents the corresponding su(n;)C algebra. As to every UC(l) algebra in f(, it is understood 

to be properly embedded in some diagonal elements ot the N X N matrix. 

**> UO) groups do not participate in labeling the block n~bers essentially because any representation of a 

U(l) group is one dimensional. In Eq. (2·40) each U(l) generator is understood to be embedded in the NxN 

matrix in three ways. (j) The generator of a U (1) group wholly embedded in some diagonal su( ni ) blocks, i.e., it 

is given by a suitable linear combination of unit sub· matrices of su( ni) blocks. (ii) The generator is expressed 

by a linear combination of both some diagonal su( ni) blocks and the bl.ocks from a+ 1 tob in Eq. (2· 35). (iii) The 

generator is wholly embedded in some diagonal blocks from a+ 1 to b. 
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322 M. Bando, T. Kuramoto, T. Maskawa and S. Uehara 

o 

o 

w= o 

1 

l···a a+l 

i 
o 

1 

a 

a+l 

o b 

b 

(2·41) 

In fact this matrix is commutable with f{ and the algebra a = {cw; c is a complex number} 

has no intersection with g, 

(2·42) 

However, such a matrix w is not contained. in r since the representation of r on 9 is 
nilpotent.*) 

N ow our final result is 

r= 2: Eetij, 
(i,j)EI 

where 1 is a subset of 10 defined by 

10 ={(i, j) ; l~i~j~b, i or j stand for block no.}, 

specified by the condition, 

if (i, j), (i', j')El and j= i', then (i, j')El . 

(2·43) 

(2·44) 

(2·45) 

This condition guarantees the algebra r to be closed. Here we have adopted the conven

tion to take tij from the upper triangular part of the matrix only (i <j) (see Appendix B). 

This is always possible if we properly arrange the order of the block numbers. Up to now 

we have not addressed the ordering of the factors f)iChc. However notice that, once we 

take the above convention, the freedom to choose either tij or tji is replaced by that of the 

ordering of the factors. Different ordering of the factors with a given pattern of 1 yields, 

in general, inequivalent realizations. The details can be better grasped if one learns the 

concrete forms of r for each case in the following sections. 

Next we consider the case in which some of the factors ~u(ni) in f) are replaced by 

~u(ni)or ~p(ni). Again each tij is irreducible under hC. Note that any element in the 

diagonal ~u (ni) block is not a candidate for the element of the nilpotent algebra even if 

it belongs to the space of ~u( ni)/ ~u( ni)( or ~p( ni)). The proof can be shown with the use 

of theorem 3 but we will leave it to a separate paper.7
) Thus one gets the same expression 

of r as given in Eq. (2·43). 
Similarly we can discuss when some factors f)aCf) are embedded in gC with some 

*) Any diagonalizable (J) contained in &is acturally an element of fJ" according to the ff·structure theorem (see 

Appendix A). 
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Non-Linear Realization in Supersymmetric Theories 323 

irreducible higher representations, which will be given in a separate paper.7
) 

We readily see from corollary 4 that· maximal realization corresponds to the case / 

=¢(empty set) or R= {I}, where the number ofthe quasi goldstone bosons is maximal, i.e., 

N Q ( =dim GC/Hc-dim G/H) is equal to that of goldstone bosons, NG( =dimG/H). DimR 

(=dimH-dimHC)increases, in proportion to the decrease the number of quasi gold

stone bosons. We get the maximal value of dimR when /=10, yielding minimal realiza

tion. Then under what conditions does one have the chance of pure realization? 

Equation (2'43) teaches us that the pure realization is possible only when 

(i) rank 9 = rank f) 

(ii) /=/0 

(iii) all the factors of H are unitary groups. 

(ii) G=SO(N) 

Let us consider the case when H=rU=lS0(mi)Q9IIJ=lSU(nj)Q9{U(1)}n. It is con

venient to adopt the following expression for the Lie algebra G=SO(NY, 

j= 

~O(N)c= {A:ATj + jA=O, AEgl(N, C)}, 

° ° 1 

----------,----------r----------, , , , , , , , , , , , 

o : 1 : 0 
, , , , , , , , 

- - - - - - - - - - "1 - - - - - - - - - -1- - - - - - - - - - -, , , , 

1 : 0 : 0 , , , , 
, , 

1 

a 

1 

b 

b+c 
1 

a 

or explicitly A is written as 

W x S 

----------,----------r----------, , , 
y Z : -X! 

1 

a 
1 

I : b+c 
-- - - - - -~ - - -t - -- - -- - - - -:- - - - - - - ----

: : 1 
T '_yT _WT 

a 

ZT=-Z, ST=-S and TT=-T.**) 

(2'46)*) 

(2'47) 

With this expression, it is found that in any element of ~. one can put Y and T to be zero 

*) The suffices stand for the block numbers as defined before (see the explanation below Eq. (2·40)), and here 

they are renumbered in each stibmatrix for later convenience. Actually, the metric J should be slightly modified 

under certain circumstances corresponding to the embedding of the U(1) groups of H into G (see the next 

footnote). 

**) For example, Z=-ZT means that Z=-ZT(Z€Z). Hereafter we adopt such an abbreviation. 
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324 M. Banda, T. Kuramoto, T. Maskawa and S. Uehara· 

by taking an appropriate basis (see Appendix B). 

Now each factor of f)c is embedded in Z and W in A as 

~u(nl) 1 

2 

W= ~u(n2) 0 (2·48)*) 

0 ~u(na) a 

~u(ml) 1 
~u(m2) 2 

Z= ~u(mb) b (2·49) 

0 
b+l 

: 

b+c 

Let each of the submatrices W, Z, Sand Y be expressed by a sum of irreducible 

submatrices under f), 

a iZ 

W=~~EBWiJ, 
i=lj=l 

b+cb+c 
Z=~~EBZpq, 

P=lq=l 

a b+c 
X=~ ~EBXiP' 

i=lP=l 

where the notations are understood to be quite analogous to Eq. (2·39), and 

S .. ={SijEB( - Sli) 
1.3 Sa 

for i=l=-j 

for i= j. 

(2·50a) 

(2·50b) 

(2·50c) 

(2·50d) 

(2·51) 

Any non-diagonal part of block Zij (i =I=- j) is not included in the nilpotent ideal "C, since the 

antisymmetric property of Z (see Eq. (2·47)) automatically enlarges the group fj to 

include ~o(ni+nj) instead of ~o(n;)EB~o(nj) (see Appendix B). If one notices that the 

*) Precisely speaking, this matrix is undersoood to include all the U(1) generators of H which are wholly 

embedded in the diagonal elements of the matrix. Hence in the case when some of the U(1) generators are not 

given by linear combinations of unit sub-matrix of i3u(s,) blocks, one should make W larger just to include the 

whole i3u(n,) and u(1) algebra in H. As to the enlarged part of W, the block number should be assigned for every 

one column or row since any repressentation of a UO) group is one dimensional. According to this enlargement, 

the metric in (2·46) should be modified: 

a a+l a+2 a' 

W= --------------------
* 

* ... 

* 

1 

a 

a+l 
a+2 

a' 

,j= 

1 

1 
, a' 

------~------1------- 1 

, 1 ' 
, , , , 

------r------,-------, , 
1: ' 

b+c' 
1 

a' 
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Non-Linear Realization in Supersymmetric Theories 325 

commutators among 5, X and Z do not produce W, the candidates to be included in rare 

obtained in a similar manner, 

(2·52) 

where J is defined in Eqs. (2·44) and (2·45). If one adopts the block X iP as a candidate 

for r, the commutator, 

I I r I I I 

[

W: : I [:X: :X: I 
[--T-T-~~ ,-:TEX:T 

1 c :__T __ )~X:T '(2'53) 

r I I I I I 

I I I I I I 
I I ,. ., 

implies that, in order for $ to form a closed algebra, we must include in r all the blocks 

of the following: 

X K = 2: EBXiP, 
(i,P)EK 

where K is a subset of Ko defined by 

KeKo, 

Ko={(i, p); i=l, 2"'a, p=l, 2···, b+c} 

specified by the condition, 

i/(j, P )EK and (i, j)EJ, then (i, P )EK . 

Further the commutation relation, 

requires that the blocks 5ij of the following are also included in r, 

LeLo , 

where L is such a subset of Lo given by 

L -{(' .).'<' 1<' '< } 0- Z, J ,Z-J, -Z, J-a 

that 

if (i, p)EK and (j, P)EK, then (i, j)EL. 

Our result is 

(2·54) 

(2·55) 

(2·56) 

(2·58) 

(2·59) 

(2·60) 

(2·61) 

When some of the factors ~u(nk)(nk; even) are replaced by ~.\)(nk) (k=kl, k2, ···kd ), the 

discussion can be made quite in a parallel way, only by noticing the fact: Each of the 
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326 M. Banda, T. Kuramoto, T. Maskawa and S. Uehara 

diagonal blocks Sklk, is now reducible, which is decomposed into singlet parts S~%, pro

portional to the SP-metric and the rest S~~k~), so Eq. (2'51) is replaced by 

1 
SijEB( - Slj) 

~ 5ij= Sii 

S (S) =s(n. s) . k,k,'lJ k,kl 

for r=f::.j 

for i= j=f::.ki 

for i=i=ki. 

Accordingly the SL part of (2'61) should be replaced by 

where each of M(S) and M(ns) is a subset of ML defined by 

(2'62) 

(2'63) 

(2'64) 

By similar discussion, it turns out that the pure realization is possible when rank 9 = rank 

'f) and'f) includes at most one $u(m) factor with the condition 

a 

G/H=SO(N)/ (SO(m)®I1 SU(ni)®{U(1)}n) 
i=l 

(2'65) 

with 

a 

N -m=22!(ni-1)+2n, 
i=l 

n?=a. (2'66) 

(iii) G=SP(2N) 

We can give discussion almost similar to the previous subsection. Let H be I1Z=1 
SP(2mp)®I1~=1SU(ni)(or SO(n;)®{U(1)}n.*) The Lie algebra of GC=Sp(2N)C is 

expressed as 

$p(2N)C= {A; A T,Q+,QA=O,.AEg1(2N, e)} 

with 

o o 1 

----------1----------~---------· 

· . · . 
Q= 0: Qo : ° · , , , , , 

- - - - - - - - - -, - - - - - - -.- - -1- - - - - - - - - --, , , , , , 
-1 : 0 : 0 , , 

A b 

c=2N- 2!2ni- 2!2mp 
i=1 P=1 

or explicitly A is written as 

1 

a 
1 

2b+c 
1 

a 

*) It is quite similar to treat the U(1) groups in H as before. 

**) Of course the expression Sij defined in (2'51) should be replaced by 

for i*j, 
for i= j. 

(2'67) 

(2'68)**) 
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Non-Linear Realization in Super symmetric Theories 327 

[ 

W X, 5 I - --. ---- ---- --------- -j- ---- ---; _. 
A- Y Z: QoX , 

---------- ----------~----------

T -yTQo: _WT 
, 

(2-70) 

1 a 

and 

o 
1 

o 2 . 

Z= 
~.):J(2mb) 

b (2-71) 
-------------

b+l 
0 

2+c 

1 2 b b+l···b+c 

we get our final result for t, 

(2-72)*) 

where WI, VK and SL,M are defined quite analogously to Eq. (2-52), (2-54) and (2'63). It 

is evident that pure realization is possible when rank 9 = rank f) and at most one ~.):J factor 

is included in f) with the condition: 

a 

C/H= Sp(2N)/ (SP(2m)® II SU(n;)®{U(l)}n), 
i=l . 

a 
N -m= 2:(n;-l)+n, 

i=l 

a::;;;'n. (2-73) 

Here we summarize the results in the form of a theorem. 

Theorem 5 Let 9 be a simple classical algebra, the nilpotent ideal t is given by 

for g=~u(N), (2'74) 

and 

*) Of course one should n~tice that in this case the diagonal block Skik, is decomposed into singlet part 

proportional to SO metric and the rest. 
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328 M. Banda, T. Kuramoto, T. Maskawa and S. Uehara 

for g=~u(N) or ~.\J(2N). (2·75) 

Here 1, K and (L, M) are subsets of 10 , Ko and (LoML) defined in Eqs. (2·44), (2·55), (2·59) 

and (2·64) under the constraints (2·45), (2·56) and (2·60). There it is assumed that the 

embedding of each factor of 1) in 9 is "natural". The prime in (2·75) means that SL or 

S L,M is properly adopted according to the corresponding H. 

E. Extension to semisimple Lie groups 

This subsection deals with the case where G= GIQ9G2 and the H is embedded in G 

in a non-trivial way. Extension to general cases of G given by the direct product of 

multifactors GIQ9GZQ9G3Q9·", is straightforward. Consider the group G. 

(2·76) 

in which the subgroup H is embedded in such a way that H=HvQ9HLQ9HR CG, where Hv 

= {gQ9g; gEHv}, H L= {gQ91; gEHd and H R = {lQ9g; gEH2}. The complexification of G 

is a direct product of the complexifications of Gl and G2, 

(2·77) 

Let Rl and R2 be the nilpotent groups corresponding, respectively, to the coset spaces 

GdHvQ9Hl and G2IHvQ9H2 as before. Then Ii is given by 

(2·78) 

which turns out to form a group, since each of the corresponding Lie algebra 1:1 and 1:2 is 

the ideal of $. 
Let ;1Q9;2 be represetatives of the coset space GClli, then each of ;1 and ;2 is 

transformed under G(3g1Q9g2) as 
\ 

(for i=l, 2, fixed) (2·79) 

where 

(2·80) 

The G-invariant non-linear lagrangiansare obtained in the same way as before according 

to the three kinds of recipes. For example, the B-type invariants are given by 

where the projections TJi satisfy the conditions 

with hEHc. (for fixed i) 

Furthermore, if there exists a matrix r which satisfies 

Pl(hrl)-lrp2(hr2)=r, 

(2·81) 

(2·82) 

then Pl(;I)rp2(;2)-1 is one of the correspondents to p(li)e in Eq.(2·18), since it is 

transformed under the group G as . 

(2·83) 
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Non-Linear Realization in Supersymmetric Theories 329 

Here we present an example which is one of the most familiar types of (C /i9 C2) I H. 

Example: C=SU(N)®SU(N) and H={g®g, gESU(N)}. 

Since C1c= C2c=H c
, both of Ri are {I}. Hence only maximal realization is possible 

in this case. We can choose ;®;-l as a representative of CClli. The transformation 

law of the goldstone superfields is given by 

where 

From the above equation we have 

(2'84) 

(2·85) 

(2'86a) 

(2· 86b) 

Notice that e is transformed linearly and just corresponds to Cronin's M matricS
) in a 

usual non-supersymmetric theory. 

As to a matter chiral superfield N which is in a p-represention under H, it is 

transformed under the group C as 

N'=(p(h)®p(h))'N and (p(h)®p(h))T/=T/(p(h)®p(h))T/, 

where h is given by Eq. (2·81b). Thus, 

{(p(; )®p(;-l)). NY = {p(;')®p(;'-l)}. N' 

= {P(gL)®P(gR)}' (p(;)®p(;-l)) • N . (2·88) 

§ 3. Pure realization: G= U(N) 

We have clarified the general properties of non-linear realization in supersymmetric 

theories in the previous section. In this section we show how to construct the lagrangian 

explicitly, which will be helpful for practical use and also for further understanding the 

general discussion in §2. Here in this paper, we exhibit all kinds of pure realizations 

leaving the study on the other ones (maximal, intermediate and minimal) in a forthcoming 

paper.71 We start with the case of CI H= U(N)I (U(nl)® U(n2)®"'® U(na))("2.f=lni 

=N). 

Before going into general case (i.e. H= U(nl)®"'®U(na)) we consider the a=2 

case (U (m + n) I ( U ( m)® U (n) ), 4b) which was already investigated by Zumin02
) some 

years ago. He took notice of the properties of the Grassmann manifold Cm,n ~ U (m + n) 

I (U(m)®U(n)) and wrote down the non-linear lagrangian in an intuitive way. Here we 

try to construct the same lagrangian in a more systematic way according to the recipe 

explained in §2. 

In this case gC and ~c are parametrized as follows: 
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330 M. Bando, T. Kuramoto, T. Maskawa and S. Uehara 

m n 

gc={ [~ ~]:' all elements are complex numbers}=u(m+nY, (3-1) 

m n 

l)c={ [~ ~]:; aEu(mY, dEu(n)C}=u(mYEBu(nY . (3-2) 

Let us give candidates for the maximal groups of R. Since the matrices band c in Eq. 
(3-1)*> are respectively in the irreducible representations (m, n*) and (m*, n) of H, each 

component of them cannot be independently combined with l)c to make an algebra~. Of 

course both of band c cannot be combined with ~c. Thus the possible candidates for 
~ (~CC) are given by 

m n 

or ~2=[ ~ ~]: (3-3) 

If we interchange m and n, h2 can be represented by upper triangular matrices, 

(3-4) 

Let us exhibit non-linear realization for the case $=~l, the results with ~2 being given by 

interchanging m and n, the physiCal meaning of which will be discussed later. According 

to corollary 4, this case corresponds to a pure realization (NQ=O). The projection TJ is 

given by 

m n 

TJ=[ ~ ~]: (3- 5) 

The goldstone superfields**> are identified with the representative of GC 
/ Ii , 

*> Here the matrices band c simultaneously mean such elements of gC as is represented by 

m n m n 

[ ~ b]m [0 o]m . and , respectively. 
One 0 n 

**> Hereafter we take the convention that all chiral superfields are left·handed unless we make special mention 

of it. 
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Non-Linear Realization in Super symmetric Theories 331 

m n_ m n 

~=exPi[ ~ ~ 1 :=[ ~ ~ 1 (3-6) 

Here we choose J[ as goldstone superfields, *> which leads us to the same parametrization 

as Zumino's. Under the U(m+n) group ~ is transformed as 

(gE U(m+n)) (3-7) 

where ~' ( E GC 
/ fi) and fi ( E fi) are functions of indicated variables. In the matrix form 

Eq. (3-7) is represented by 

m n m n m n n 

[~ ~ 1 . [~ ~ 1 : = [~, ~ 1 ~,l ' - (3-8) 

where 

J['=(C+ DJ[)/ (A + BJ[), 

D'=D-J['B. (3-9) 

Note that the goldstone superfields are in the (m*, n) representation of the isotropy group 

U(m)@U(n), and J[* does not appear on the r.h.s. of Eq. (3-9). 

The supersymmetric non-linear lagrangian is obtained in terms of the following 

vector superfield: 

m n m n m n m 

=lndet {
m[l 

0] [~ ~ 1 [~ ~ 1 [ ~ 1 (3-10) 

where 

(3-11) 

The superfield V is transformed under the U ( m + n) group as 

V(~', ~'t t= V(~, ~t)+ lndet [A + BJ[]-l+lndet[A t + J[t Bt]-l . (3-12) 

Then the lagrangian is given by 

*> Of course we may choose cas goldstone superfields. 
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332 M. Bando, T. Kuramoto, T. Maskawa and S. Uehara 

.1'=(const)[V(~, ~t )]D, (3 ·13) 

which exactly coincides with the one given by Zumino. One comment is in order: If we 

adopt $2 in place of $1, projection (3·5) and the goldstone superfields (3·6) are replaced by 

m n m 

o ] n 
Om' 

~(2)=[ 1 0] n 
7[(2) 1 m· (3 ·14) 

Thus 7[(2) is in the (m, n*) representation of the isotropy group U( m)Q!;J U (n). Though 

7[(2)* is in the same representation as 7[ in (3·6), it has an opposite chirality (chiral 

superfield of the opposite chirality) to 7[. Hence in the presence of m.atter fields, the 

system with 7[(2) is, in general, distinguished from that with 7[. 

Here we show that the bosonic part of lagrangian (3·13) is in the same form as 

constructed by the G-covariant projection operator P in a usual non-supersymmetric way. 

[For a moment ~ represents (complex) scalar components of the superfield]. The projec

tion operator, 

_ 1 
P=~q ~/ ~q ~qt , 

is transformed under the U (m + n) group as 

P ' _ f:: ' 1 f:: ,t _ P t 
- <;q ~q t' ~q' <;q - g g , 

The lagrangian is given by 

gEU(m+n). 

.1'=Tr a"Pa"P=2Tr(1- p)a,,~q ~q; ~q a,,~q t , 

where use has been made of the equation 

ap=a~q~) ~7J ~/ +~q~) ~q {-a(~q t ~q)}~) ~q ~/ +~q~) ~q a~q t 

= (1 - P )a~q ~q; ~q ~q t + ~q ~:~q a~q t (1-P). 

On the other hand, the bosonic part of (3·13) is given by 

.1'Boc[a,,~/ affqt J[a,,~qa~Jlndet(~qt~q) 

= [ a,,~q t affq t JTr ~q; ~q ~q t a,,~q 

=Tr ~) ~q (- a,,~q t ~q) ~) ~q ~q t a,,~q+Tr ~) ~q a,,~q t a,,~q 

1 
= Tr(l-P )a,,~q ~q t ~q a,,~q t 

which coincides with that in (3·17). 

(3·15) 

(3·16) 

(3·17) 

(3·18) 

(3·19) 

Next we proceed to the a=3 case U(l+m+n)/U(t)Q!;JU(m)Q!;JU(n).4b) gC and f)c 
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Non-Linear Realization in Supersymmetric Theories 333 

are parametrized as follows: 

I m n 

tlm tlm] 
hm tmn 

tnm hn 

:; all elements are complex numbers} 

=uU+m+n)C, (3-20) 

I m n 

"~{[ f' 
0 

U 
I 

i~l, m, n} . h m m· hiE u(i)C , 

0 n 

(3-21) 

According to the general discussion in the previous section, the maximal one of candidates 

for r is given by 

I m n 

t~{[ ~ 
tIm t.r} 0 

~mn = ' (3-22) 

0 

and thus 

I m n 

~~{[ f' tIm 
t," ] 

:} hm tmn (3-23) 

0 hn 

With the above $max we can carry out the pure realization (N Q =0). Here we will make 

one comment: Besides $max in (3-23) we have precisely the following five kinds of candi

dates for $ providing pure realization [all of dim[$] below are equal to dim [$max]], 

$(nml)=l [~, L ~."]~}, ~(nlm)=l [~' ~: f]~}, 
tnl 0 hn n tnl tnm hn n 
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334 M. Bando, T. Kuramoto, T. Maskawa and S. Uehara 

1 m n 1 m n 

G(·""~l [ 
hi 0 U l G(.m)~{[ ~~, 

0 
t," 1 

=} 
tml hm hm tmn (3·24) 

tnl tnm 0 hn . 

Every set of goldstone superfields ~(iJk) corresponding to the above ~(ijk) (i, j, k, = I, m, n 
and (lmn)=max) is in the representation of the isotropy group U(t)Q!;;U(m)Q!;;U(n) 

different from eath other. Hence each non-linear lagrangian is inequivalent.*) If one 

properly rearranges the matrices in terms of I, m and n for each ~ in (3·24), every ~ can 

be represented by an upper triangular matrix ~s seen in·(3·23), 

u, j, k~ I, m, n)} . (3·25) 

Therefore it is sufficient to consider the case of~max in (3·23). We have two kinds of 

projections, 

1 m n 1 m n 

"'~[ : 0 n 1 

"'~[ : 0 n 1 

0 m, 1 m. (3·26) 

0 n 0 n 

The goldstone superfields are represented by 

1 m n 1 m n 

<~ex. i[ t~, 
0 T [ 1 

0 

~l 
1 

(3·27) 
0 o m= J[ml 1 m (E GCjlimax ) 

tnl tnm o n J[nl J[nm n 

They are transformed under the U ( 1 + m + n) group as 

where 

gE U(l+m+n), (3·28) 

which is represented in a matrix form as 

1 m n 0 m n 1 m n 1 m n 

[ 
HI Tim 

T'"][ 
1 0 

~ 1 ~~[ 
1 0 

~][ t 
Tim 

!'" 1 
1 

, 
lim Tml Hm Tmn J[ml 1 J[ml 1 Tmn m, 

Tnl Tnm Hn J[nm 1 n . 
, 

J[~m 0 lin J[nl J[nl n 

(3·29) 

*) Though ~(ijk) and ~(kji)' are in the same representation of the U(l)Q9U(m)Q9U(n), they are of opposite 

chirality to each other. Hence in the presence of matter fields, the system with ~(ijk) is, in general, distinguished 

from that with ~(kji). 
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Non-Linear Realization in Super symmetric Theories 335 

where calculation of each component of the Lh.s. is straightforward and is left to the 

readers. 

The supersymmetric non-linear lagrangian is given by 

(3'30) 

where c;'s are constant parameters whose ratio is arbitrary. The superfields 

In det "t(c~t~) can be rewritten as 

(i=1,2) 

where 

I I m 

(3·31) 

Note here that the G-covariant projection operators are given by 

(3·32) 

They satisfy the equation 

(3·33) 

which implies that the C-type recipe gives only a trivial invariant. 

It is now easy to proceed to the general case (U(N)/(U(nl)®···®U(nl»). The 

algebras gC and ~ are parametrized as 

nl n2 "'na 

C =ll~: ~: ::: ~::J ::) = (N)C 9 .. " . u , 
: : e.: : 

tal ta2··· ha na 

a 

(N = "2. n;) 
i=l 

(3·34) 

nl n2"'nl 

6~[ l :' t,,··· t'"J n, ) h2···t2a n2 
(3·35) .. . . 

' .. 
ha na 

We have a! kinds of different candidates for ~ which lead, in general, to inequivalent non

linear lagrangians. Again it is enough to study only the above case. There are a-I 

kinds of projections, 

(3·36) 
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336 M. Bando, T. Kuramoto, T. Maskawa and S. Uehara 

The goldstone superfields are represented by 

n1 n2 na n1 n2 ... na-1 na 

0 1 
n1 

n1 

t21 0 1 0 
n2 

n2 7(21 

~=exp i t31 t32 
n3 

E ce/Ii, 0 n3= 7(31 7(32 ". 

1 na-1 

tal t a2 · .. taa-1 0 na 7(a1 7(a2'" 7(aa-1 1 na 

which are transformed under the U(N) group as 

gE U(N), 

The supersymmetric non-linear lagrangian is given by 

where c;'s are constant parameters whose ratios are arbitrary. 

§ 4. Pure realization: G= O(N) or Sp(2N) 

In this section we consider the cases 

a 

(m+2L: n;=N) 
i=l 

a 

C/H= Sp(2N)/ (Sp(2m)0 U(n1)0U(n2)0···0 U(na)). (m+ L: ni=N) 
i=l 

(3·37) 

(3·38) 

(3·39) 

(3·40) 

(4·1a) 

(4·1b) 

Besides the U (N)/ ( U (n1 )0···0 U (na)) in §3, the above two are the only manifolds 

which allow pure realization for the case of C and H being classical groups as is easily 

seen in §2. We parametrize the O(N) (Sp(2N)) group in terms of U(N) (U(2N)) with 

the constraints, 

n mn 

O(N)={g; gE UrN) s.t. gT1g=1 with 1=[ I I I 1 =(~n.=n)}, (4·2a) 

n m m n 

SP(2N)={g; gEU(2N) S.t. gTQg=Q with Q=[ 

-1 

1 1 j n m a 

(L: na= n)}. 
m ;=1 

n 

-1 

(4·2b) 
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Non-Linear Realization in Supersymmetric Theories 

Hence each of gC is parametrized as 

O(Ny=j [ t m 

X 

Z 
~yT 

n 

W 

2m n 

X 

WEu(nY, ZEo(mY, ST=-S, 

WEu(n)C ST=S TT=T, 

337 

(4·3a) 

•• (2NY={ [ sr y Z U 2m: ' , 

T V 
T ZE~lJ(2m)C, U=QoXT, V=- yTQo' 

-W n 

m 

(4·3b) 

where all matrix elements are complex numbers. Note that every element of the o(N Y 
or ~lJ(2N Y satisfies the following conditions: 

AEO(N)C. (4·4a) 

(4·4b) 

Each of f{ is given by 

nl 

n2 H'Eu(n.>'1 (4·5a) . , 
ZEo(mY , 

l1a 

According to the general discussion in §2, the pure realization is provided by the following 
$: . 
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338 M. Banda, T. Kuramoto, T. Maskawa and S. Uehara 

where 
ni n2 n3 ···na 

HI TI2 T I3 ··· T ia ni 

H2 T23 ··· T2a n2 

Hp= (4-7) 

Ta- Ia na-I 

0 Ha na 

There are a! kinds of different candidates for ~ which are obtained by taking the permuta

tions between n;' s (i = 1, -_., a) in the same pattern of matrices as that in (4 -7). The 

projections corresponding to ~'s in Eq. (4-6) are given by*) 

n 

TJi(O) = 
[

Ii 

o 

with 

n+m 

0
0 1 n 

m+n 

n+2 

00 1 n 
n+2ni ' 

nC·-ni 

n 

TJ
(O) _[ 0

1 

a+I-

o 

n 

TJ
(SP) _[ 0

1 

a+I-

o 

m 

o 
1 

o 

2m m 

o 
o ;m 01· 1 

o o n 

1,=�----~T-I:: (;=1, -", a) 

(4-8a) 

(4-8b) 

(4-9) 

The goldstone superfields are represented by 

n m n 

<'O)=ex. { 
Wp 0 

o r [ wp 0 

(wp~)-,l y 0 o m= y 1 EGc/ii(O) , (4-10a) 

T _yT -WpT n t _(yWp-IV 

n 2m n 

. <"P)=exp i[ 
Wp 0 

~ }m=[ 
Wp 0 

~ 1 E G' / H,,,,), Y 0 y 1 

T - yT.Q
O -Wp n t (.QoyWp -1 V (WpTt i 

(4-10b) 

*) If C=O(N), Sp(2) and SP(4), a.=l and 1z.=1, then C/H are irreducible Kiihler manifolds and two 

invariants constructed by using 7). and 7)2 are equivalent to each other. 
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Non-Linear Realization in Supersymmetric Theories 

nl n2·'- na-l na nl n2 ... na-l na 

0 nl 1 nl 

t2l 0 0 n2 1[21 1 0 n2 

Wp= t3l t32 n3 , . Wp= 1[31 1[32 

... ... 

tal ta2 ··• t aa- l 0 na 1[al 1[a2···1[aa-l 1 na 

with the constraints, 

wpTt+tTWp+yTy=O for G= O(N), 

-wpTt+tTWp+yTQoy=O for G=Sp(2N). 

Hence if we parametrize the matrix elements t and y in Eq. (4 ·10) as 

nl n2 na 
nl n2···na 

al 7'12 7'1 a nl 

fl2l a27'23 7'2a n2 
p,···P. j t= fl3l fl32 [ p. y= 

7'a-la na-l 

flal fla2 flaa-l aa na 

m(G= O(N) or 2m(G=Sp(2N)), 

339 

(4·11) 

(4·12a) 

(4·12b) 

(4·13) 

we see that each of 1[ij, flij, Pl and antisymmetric [symmetric] part of al have 2ninj, 2ninj, 

2nlm[4 nrm] and ntCnl-1) [nl( nl + 1)] independent goldstone modes while 7'ji 

and symmetric [antisymmetric] part of al are only dependent modes for the case G= 0 

(N)[SP(2N)](i=2, ... , a; j=l, ... , a-I; 1=1, ···,a). Note that Eqs. (4·12) are the same 

as the conditions, 

~to,] ~(O) = ] , 

Mp).Q~(sP)=.Q . 

The transformation law of goldstone superfields is given by 

gEG, 

Of course the transformed fields satisfy the corresponding conditions (4·14), 

~'Tr~' = (ii- l yegTrg~ii-l= (ii- l yer~ii-l , 

where 

(ii- l yrii-l=r , 

for G= O(N), 

for G=Sp(2N). 

The supersymmetric non-linear lagrangian is given by 

where c;'s are constant parameters whose relative values are arbitrary. 

(4·14a) 

(4·14b) 

(4·15) 

(4·16) 

(4·17) 

(4·18) 
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340 M. Banda, T; Kuramoto, T. Maskawa and S. Uehara 

§ 5. Matter fields 

We have studied the non-linear lagrangians for the goldstone superfields in the 

previous sections. In this section we show how to construct invariant Iagrangians for 

matter fields. The mass terms of matter chiral superfields are obtained throuhg F terms, 

whereas kinetic terms come from D terms. We have already shown in §2 that a matter 

. field N in the representation Po of Ii transforms under. G as 

N'=PoUi(~, g»N, 

where the transformation .property of h( ~, g), 

gEG, 

h(~, gl g2)= h(g2~h-l(~, g2), gl)' h(~, g2), 

indicates that above N is in a representation of G, i.e., 

(5'1) 

(5·2) 

(5·3) 

In §2 we have shown that a linear basis p(~) N in G is constructed by picking up some 

representation P of G whose restriction to Ii contains Po. 

Now let us discuss the case of pure realization of G= U(N) (N=2Jf=lni) and H 

= U(nl)®···® U(na). In this case elements hE~ are expressed as 

u(nl) .. 
* 

h= 
u( ni) . * (5·4) 

0 ·it(nJ) 

0 
u(na) 

Now define submatrices PiJ(h)(isj) as those indicated by dotted line in Eq. (5'4), 

(5'5) 

From (5'4) and (5'5) it turns out that PiJ(h(~, g» satisfies the same algebraic relation as 

shown in Eq. (5'2), which implies PiJ(h) is a candidate for Po. Also its contragradient 

representation (pi./(h)V obeys the same relation (5'2). Mass terms' can be, in general, 

obtained as follows: If there are a pair of matter fields N(i, j) and N(k, I), which are 

in PiJ and (PklV representations, respectively, with i, j and k, I being ordered as 

isksjsl. (5·6) 

We define operators 7JiJ which project out the blocks (i ... j) from (i ... j ... I), and express the 

matter fields N(i, j) and N(k, I) as 
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Non-Linear Realization in Supersymmetric Theories 

NCi, j)= T}iJ 

N(k, l)=T}kl 

They are transformed under G as 

If one notices that 

NCi, j) 

o 

i 

j 

j+1 ' 

o I 

o i 

o 

N(k, l) 

k-1 

k 

I 

PiJT}iJ= T}iJPilT}ij 

then 

turns out to be invariant under G, 

341 

(5·7a) 

(5·7b) 

(5·8) 

(5·9) 

(5·10) 
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342 M. Banda, T. Kuramoto, T. Maskawa and S. Uehara 

l 

N(i, j)] 
~(O···ONT(k. 1)).".0 ! . ~NT(k, I)·N(i, n. (5·11) 

On the other hand, if one tries to get kinetic terms, one has to construct linear basis 

of G from matter chiralfields N(i, j) or N(k, l). The following statement is evident: 

Statment 6*) Let the fundamental representation of G be denoted by Pf. Then the 

restriction to fj of the following types of antisymmetric representations (ASR) of Pf (or 

(Pf-1V) include Pij (or (Pi~/V),**) 

(nl + n2+ ... + ni-l + 1)-th ASR of PfIIi::JPij, 

(nl+n2+···+ni-1)~th ASR of pfIIi::J(Pi.l)T, 

(nl+nl+1+···+na-1)-th ASR of (Pf-1VIIi::JPkl, 

(nl+l+nl+2+"'+na+1)-th ASR of (Pf-1VIIi::J(PklV. (5'12) 

The statement provides linear basis-under G (see Eq. (2·32» for any matter field N(i, j) 
or i/(k, l). Extension to more general cases including matter fields in higher ~epresenta
tions is now easy. 

N ow an explicit example would be helpful to the readers. Take the pure realization 

of the case of G/H= U(l+m+n)/U(t)@U(m)@U(n). One ~f the expressions of $ is 

given by Eq. (3'23) and the corresponding goldstone field is expressed as Eq. (3·27). 

Thus various types of p;/s are 

Pll = [hl], P22= [hm], P33= [hn], 

[hl 
P12= 0 ~:J, [hm 

P23= 0 
tmn] 
hn ' 

[ h, 
tl m 

I .. 1 
P13= ~ hm tmn . 

0 h n 

(5·13) 

If we denote the correspo'ndingmatter fields as N(i, j) and N(k, t) (for (Pkl V), then we 

get various types of mass terms as follows: 

N(I, IV, N(I, 1), N(l, 2V' N(I, 1), N(I, 3V, N(I, 1), (5'14a) 

N(2, 2V' N(I, 2), N(2, 3V, N(I, 2), N(2, 2)T. N(2, 2), N(2, 3)T. N(2, 2), 

(5'14b) 

N(3, 3V· N(2, 3); N(3, 3Y'N(3, 3), (5'14c) 

NO, 2)T. N(I, 2), N(I, 3V, N(I, 2), (5'14d) 

*) Our previous argument") does not give a general method to obtain mass terms of matter fields. One of the 

examples which was proposed by Yanagida has led Us to the general discussion presented here. 

**) In general the transformation property under U(l) of fj of the representations pij or (Pu' Y in Eq. (5'12) 

is different from those of Eq. (5'5). U(1) charges of matter fields introduced here are supposed to be assigned so 

as to be consistent with Eq. (5'12). 
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Non-Linear Realization in Supersymmetric Theories' 

N(2, 3)T -N(2, 3), N(3, 3)T -N(2, 3), 

N(I, 3)T -N(I, 3), 

343 

(5-14e) 

(5-14f) 

each of which has the mass term of the type Nfii<Nl (5-14a), N'{;.*Nm (5-14b), N~*Nn 

(5-14c), Nf*Nl+N'{;.*Nm (5-14d), N'{;.*Nm+N~*Nn (5-14e), or Nf*Nl+N'{;.*Nm+N~*Nn 

(5-14f). 

N ow we consider a chiral superfield linearly transforming under G, 

[ 

1 0 

. ~N/= 7rml 1 

7rnl 7rnm 

with Nf which transforms under G as 

N/=h(7r, g)Nf . 

Then linearly transforming fields in G, 

are introduced in a simple way (1/13 = 1). Similarly we have 

[ ~l*l Nm* 

Nn* 

and linearly transforming chiral fields, 

, 

(5-15) 

(5-16) 

(5-17)*) 

(5-18) 

(5-19) 

As for the linear basis rei event to the matter fields such as N(2, 2), N(2, 3), N(3, 3), 

N(I, 2), N(2, 2) or N(I, 1), we have to choose an appropriate higher representation 

*) The superfices (. ) are added to matter fields N only to distinguish independent fields. 
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according to statement 6.· 

Appendix A 

-- Outline of the Proof of ii-Structure Theorem--

In the following, all the standard properties of Lie algebra are assumed to be known 
to the readers. 

Discussion 0 First 9 is assumed to be a compaCt semi-simple algebra. As to U(l) 

factors we will deal with them in the last part of this appendix. 

Discussion 1 Levi's theorem tells how to decompose ~ 

(A-I) 

where go is a semi-simple algebra and r is a radical. Since r is solvable, Engel's theorem 

enables us to decompose r further as 

(A-2) 

where r(l) is nilpotent. 

Definition 2 With any X, Y E g, 

ad(X)Y=[X, Yl (A-3) 

Statement 3 Suppose that there exists such n as leads to [ad(XW=O and that an 

irreducible. representation (p, V) of 9 i~ traceless, then all the eigenvalues of p (X) vanish: 

proof) Let VA be a subspace of V and the eigenvalue of p(X) be Ain VA, 

VACV, 

then I 
(p(X)l A)n+mp( Y) VA = ~n+mC;p(ad(X)iY)(p(X)-A)n+m-i VA=O. 

i 

Thus 

Since p is an irreducible traceless representation, 

VA= V and ,.1=0. 

Discussion 4 With any XEr(O) we can decompose 9 as follows: 

g=~ga , 
a 

If one defines D in such a way that 

DXa=aXa (XaEga), 

(A-4) 

(A-5) 

(A-6) 

(A-7) 

(A-8) 

(A-g) 

then it is well known that D is an inner derivation and there exists XOEg with which D 

is expressed as 

(A -10) 
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Non-Linear Realization in Supersymmetric Theories 

Hence we can decompose X as 

X=Xo+ X+ and [XO, X+]=O. 

Statement 5 If there exists XEg with which p(X)¢o=O, then 

p(XO)¢o=O and p(X+)¢o=O. 

345 

(A·U) 

(A·12) 

Proof) It is enough to consider for each irreducible component of p. Any finite dimen

sionalrepresentation of a semi-simple algebra known to be traceless and 

(A·,13) 

Let p(X+) be represented by Jordan's standard form, then this statement is self-evident by 

noticing Statement 3. 

Discussion 6 One can choose a Cartan subalgebra gsub so that any element Xo is 

given by a linear combination of HiEgsub. 

XO=2:.ciHi and eigenvalues of P(Hi) are real. , 

By taking p (Hi )-diagonal basis and recallirig (A ·12), we are led to the result: 

p(gO)¢o=O, 

so go should be also included in ~, 

where gO=ci*Hi, 

gOE~. 

Discussion 7 Let us consider OJ of the following form, 

OJ=[~ 5z]. 

(A·14) 

(A·15) 

(A·16) 

(A·17) 

Then the closure of {e i8W
; 8=reaI} is equal to U(l)®U(l) (Kroncker's discussion). 

Hence if we write 

XO+ gO=2:aiA i , 
i 

then each Ai corresponds to the generator of a U(l) group and 

AiEr. 

Statement 8 All Ai commute with both the semi-simple part of ~ and reo), 

[go, Ai]=[r(O), Ai]=O. 

Proof) 

(i) All the representations of Ai are of one dimension. Since 

[Ai, der and [Ai, r(I)]Cr(I), 

we can choose such reo) that satisfies 

If [Ai, r(O)]*O, there exists some XEr(O) which satisfies 

[Ai, X]=l\ iX . 

(A ·18) 

(A·19) 

(A·20) 

(A·2l) 

(A·22) 

(A·23) 
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Since 

[Ai, X]Ct(l) and XEt(O) , 

then 

Ai=O and [Ai, t(O)]=O. 

(ii) If there exists stich an element E that 

[Ai, E]=A£ 

and 

E=H+w 

then AEt and [1)0, t]Ct imply 

with Ai*O 

(H E1)o, wEt), 

[/1i, E]Et. 

Thus H=O and 

(A·24) 

(A·25) 

(A·26) 

(A·27) 

(A ·28) 

Discussion 9 By repeating the above procedure, and noticing the nilpotency of ad(X) 

where XE [t, tl (Engel's theorem), t(O) is decomposed into U(1) part and t+ (see Eq. 

(A ·11 », where t+, together with t(1), is nilpotent. Thus we obtain the following state

ment. 

Statement 10 ~ can be decomposed as 

where 

1)1 =1)oEB~u/(1), 

and all the eigenvalues of ad(X) (XEtNP) vanish. 

(A·29) 

(A ·30) 

Discussion 11 Since any two Cartan subalgebras, 1)sub and 1)~ub, are connected by automor

phism g, 

(A·31) 

there exists gEg C that 

(A·32) 

where 1)lR is a compact real form of 1)1. 

Discussion 12 Up to now 9 has been assumed to be a semi-simple algebra. We can make 

the same discussion when 9 includes U(1) factors; if any D(1) factor is to be included in 

$, it cannot belong to nilpotent part but to 1)1 and the discussion is not altered. Thus we 

get the same results for $ structure. 

Appendix B 

-- General Expressions of Matrices of $ --

Definition 1 Consider spaces, V, W, W' and W" and an algebra $ which are subject to 

the following conditions: 
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Non-Linear Realization in Supersymmetric Theories 347 

WcV, ~WCW 

and, if W = W' + W", w' n w" = ¢ with f) Wt(t')c W'("), then w'(")=O or W. Then we call 

the $-invariant subspace W"irreducible in terms of direct sum" (IDS). 

B-1. The case g=~u(N) 

Discussion 2 Let $ be a subalgebra of 9 and V ( = eN) be the fundamental representation 

space. 

Decompose V into IDS $-invariant subspaces Va, 

t 

V=~ Va. (B·!) 
a=l 

Discussion 3 Take the non-zero $-invariant subspace Wa1 the dimension of which is the 

minimal among those subspaces· of Va. Then a space Val Wa1 is $-invariant. 

Discussion 4 From the $-invariant space Val Wa1 we have another invariant subspace 

Val Wa2 according to the same procedure as of Discussion 3. Repeating the above 

procedure, we finally obtain the following sequence: 

where each of Waa is a $-invariant subspace 

$WaaCWaa (a=l, ... , s(a)). 

(B·2) 

(B·3) 

Discussion 5 By introducing successively appropriate bases of Waa in conformity with 

those of Waa-l, $ is represented by 

(B·4) 

Was(a)= Va 

B-11. The case g=~u(N) or ~'p(N) 

Definition 6 Let $ be a sub algebra of 9 and V ( = eN) be the corresponding fundamental 

representation space. Taking a $-invariant subspace W of V, we define N( W) as 

N( W)= {v; (v, r'v' e)=O, eE W, vE V}, 

where r is the corresponding metric (see Eq. (4·2)), 

Statement 7 

r={~ 
for G= O(N), 

for G=Sp(2N). 

$N( W)cN( W) and dim N( W)=dim V -dim W. 

(B·5) 

(B·6) 

Proof) The latter equation is self-evident by definition. The proof of the former equa-
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tion is as follows: Let us take h:E~, nEN( W) and (!E W. Since fieE Wand fiTr+ r 

h=O, then we have 

(hn, re)=(n, hTre)=-(n, rhe)=O, 

which indicates that ~N( W)cN( W) (see Eq. (B·5». 

(B·n 

Discussion 8 Let V be IDS ~-invariant subspace of V and suppose that the h-invariant 

non-trivial ("* ¢) subspace V' of V is of the minimal dimension among those h-invariant 

subspaces of V. Then 

~(N( V')n V')C(N( V')n V') (B·8) 

implies 

N(V')n V'=¢ or N(V'):JV. (B·9) 

Which of the above two cases is realized? In the former case, we have, from the 

dimensional analysis, 

V= V'+N( V) (B·lO) 

with each of V' and N ( V') being ~-invariant. Thus (B ·10) contradicts the assumption 

that 11 is IDS 6-invariant subspace. Hence we are led to the latter case, N( V'):J V', 

. which implies that V' is a zero-norm space. 

Definition 9 Let W be the maximal ~-invariant zero-norm subspace of V, 

~WC Wand (e, re')=O for e, e' Ewe V . (B·n) 

Define a subspace E of V as 

V=E+N(W) and EnN(W)=O. (B·12) 

Discussion 10 From Statement 7, 

dim E=dim W. (B·13) 

One can introduce the basis {ei} of Wand {fin} of E in such a way that 

(ei, r//)=aii, (B·14) 

with the use of the properties of N ( W) (Definition 6). Here we introduce the bases of the 

rest of the space N ( W), 

{nan, a=l, 2,···, dim N(W)-dim W}, (B·15) 

which, combined with the basis (ei} of W, form the whole bases of N(w). The metric 

tensor constructed by the elements defined by the inner products of those bases, is given 

as 

[

(ere) (ernO) (er/o)] [0 0 aii ] 
(nOre) (nOrnO) (nor/O) = 0 r'ap Aaj , 

(fore) (f°rnO) (pr/O) Caij CAiP Bij 

(B·16) 

where lsi, jsdim W, lsa, psdim[N(W)/W] and c=l(-l) for i3o(N)(i3p(N». 
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Non-Linear Realization in Supersymmetric Theories 349 

Now let us redefine other bases {na} and {f;} so that the submatrices A and B may 

vanish. This can be done, for instance, by choosing them as 

{ 
li= lio

- ~ Bijej 

na= nao- Aajej . 

Observing that 

fiTr+rh=O 

we "finally get to Statement 12. 

for hE~ , 

(B-I7) 

(B-18) 

Statement 12 If one takes an appropriate set of the bases {e}, {n} and {f}, one can 

express a general expression in the matrix form of an algebra ~ with the relevant metric 
r as 

~: 

and 

where 

[ 

W X 

~ ~ 
5 1 e -ToXT n 

_WT 1 

r: 

e={ 1 
-1 

for g=~o(N), 

for 9 = ~lJ(N). 

(B·19) 

(P-20) 

(B-2!) 

(B-22) 

Statement 13 The submatrix Z which appears in Eq. (B-19) in Statement 12 is complete

ly reducible. 

Proof) 

If Z is not completely reducible, there exist some zero-norm vectors in the manifold 

N( W)/W (from Discussion 8). This contradicts th~ maximality of W. 
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