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Starting from the Braginskii fluid equations, a set of nonlinear reduced equations are derived which
describe the low frequency dynamics of electron and ion energy and density in a toroidal plasma.
The equations have an energy integral. The equations are appropriate for studying the relation
between electron and ion thermal transport and particle transport in low temperature plasma near the
edge of plasma confinement devices. ©1997 American Institute of Physics.
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I. INTRODUCTION

The understanding of anomalous transport in magn
cally confined plasmas requires the development of mo
which can describe the dynamical evolution of potent
density, temperature, and possibly magnetic perturbation
systems in which the ambient scale lengths are long c
pared to the characteristic Larmor radii of either ions or el
trons re,i , instabilities driven by density or pressure grad
ents typically have characteristic time/space scales which
slower than the characteristic gyro-frequenciesvce,i and
longer than the Larmor radii,

]

]t
;

r i
2

L'
2 vci!vci , ~1!

with L' a characteristic transverse scale length of
plasma. In this case it is useful to derive a set of redu
equations in which the cyclotron motion of the particles
eliminated. The resulting equations describe only the l
frequency motion of the system and therefore are suitable
studying the long time evolution of low frequency instabi
ties in magnetized plasmas.

We focus specifically on lowb plasmas which are suf
ficiently collisional that the Braginskii equations1 are valid.
Reduced equations of various subsets of the Braginskii e
tions have been derived by many authors~see, for example
Ref. 2!, neglecting either ion or electron temperature dyna
ics, assuming an adiabatic electron response or appl
other additional approximations.3–6 For a survey see Ref. 7
For the cold ion limit the complete set of reduced equatio
is derived in Ref. 5 including the corresponding energy in
gral. The earlier treatments of the ion pressure~see, for ex-
ample, Ref. 4! suffer from the neglect of the compressio
due to the ion polarization drift. Recently Kimet al.8 dem-
onstrated how to treat this term properly. The electron par
the dynamics, however, is still neglected in this work. Sin
previous derivations remain incomplete it is the primary g
of this paper to extend Ref. 5 to fully include ion therm

a!Electronic mail: asz@ipp-garching.mpg.de
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effects. This work is complicated by the fact that finite La
mor radius effects must be systematically included as o
lined in Ref. 8.

Although the electrostatic approximation is prevalent
numerical studies of turbulent edge transport, the models
cussed here avoid that approximation and retain the magn
perturbations. Estimating the importance of these pertur
tions from Ohm’s law as shown later, one expects an e
trostatic model to be sufficient foramhd52q2Rb8!1—a
condition which is often violated in the edge of high perfo
mance tokamaks.

In Section II we present a brief derivation of the reduc
Braginskii equations with full ion dynamics and then in Se
tion III discuss the energy conservation properties of
equations. In Section IV we show that the general redu
Braginskii equations can be further truncated using a line
ization procedure when the characteristic scale length of
turbulence is small compared with the equilibrium sca
length. The final equations are suitable for studying b
electron and ion thermal transport in collisional plasmas s
as in the edge region of tokamaks and other confinem
machines.

II. REDUCED BRAGINSKII EQUATIONS

We start the derivation of the reduced Braginskii equ
tions from the momentum balance relations

minS ]

]t
1vW i–¹D vW i52¹pi2¹–Pi1enFEW 1

1

c
vW i3BW G1RW ie ,

~2!

052¹pe2enFEW 1
1

c
vW e3BW G1RW ei , ~3!

where the electron mass is neglected, electron and ion
sities are both denoted byn, assuming quasi-neutrality, an
EW 52¹f2(1/c)]AW /]t. Keeping collisional effects only in
the direction parallel to the magnetic field, the momentu
transfer term takes the form

Reii52Riei5~neh i j i20.71n¹ iTe!, j i5en~v i i2v ie!
~4!
(6)/2134/5/$10.00 © 1997 American Institute of Physics
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with h i the Spitzer resistivity. In the ion stress-tensor w
neglect terms depending on the collisional time~keeping
only the finite Larmor radius contribution! and parallel gra-
dients. The remaining components yield3

¹–Pi52minvW di–¹vW i1pi¹3
bW

vci
–¹vW i

1¹'S pi
2vci

¹–bW 3vW i D1bW 3¹S pi
2vci

¹'–vW i D , ~5!

with bW 5BW /B, the ion cyclotron frequencyvci5eB/mic and
the ion diamagnetic drift-velocityvW di5c/(enB2)BW 3¹pi .

A fundamental assumption made in deriving a set
reduced equations for plasma dynamics is that the chara
istic time scales are slower than the ion cyclotron freque
and space scales are longer than the ion Larmor radius.
der these conditions the perpendicular components of
first and third terms on the right hand side of Eq.~2! domi-
nate and to lowest order the ion velocity perpendicular
BW is given by

vW' i05vW di1vW E , ~6!

with vW E5cEW 3BW /B2. The remaining terms in Eq.~2! are of
order r i

2/L'
2!1. We formally obtain the correction to th

lowest order velocityvW pol5vW' i2vW' i0 by inserting Eq.~5!

into Eq.~2!, crossing withbW and keeping corrections of orde
mi ,

vW pol5
bW

vci
3
d

dt
vW' i0 1

1

nmivci
H bW 3Fpi¹3

bW

vci
–¹vW' i0G

1bW 3¹'F pi
2vci

¹–bW 3vW' i0G 2¹'F pi
2vci

¹'–vW' i0G J
~7!

with d/dt5]/]t1(vW E1vW pol1vW i i)–¹. As discussed
previously,5 energy conservation requires the retention of
polarization drift in the convective derivative even though
is formally small in the ordering. Similarly we obtain from
Eq. ~3! the electron perpendicular velocity

vW'e5vW de1vW E , ~8!

with the electron diamagnetic drift-velocit

vW de52c/(enB2)BW 3¹pe .
Because the frequency of compressional magnetos

waves, vm;VA¹' with VA[B/A4pr, typically satisfies
v!vci , the description of such waves is still contained
the formalism at this point. Now, however, we extend t
low-frequency assumption to the regimev!vm , where the
plasma motion is nearly incompressible. In this regime
electromagnetic contribution toEW' , which is associated with
perturbations in the toroidal component ofBW , can be esti-
mated from the condition of total pressure balance, and@for
] t given by Eq.~1!# leads to corrections that areO(b)!1.
As a result, invW pol as well as in the expressions ford/dt that
follow, we can take the perpendicular electric field to
electrostatic so thatvW E.(c/B2)BW 3¹f.
Phys. Plasmas, Vol. 4, No. 6, June 1997
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In this low-frequency limit, the motions of the plasm
are governed by the vorticity equation, which can be o
tained as follows. Since we assume the plasma to be qu
neutral the ion and electron continuity equations

]n

]t
1¹–n~vW E1vW di1vW pol1vW i i !50,

~9!
]n

]t
1¹–n~vW E1vW de1vW ie!50

must yield the same evolution ofn. The implied constraint is
obtained by subtracting the two equations and leads to
vorticity equation

¹–nvW pol1¹i
j i

e
1¹–n~vW di2vW de!50, ~10!

where we have used the relation forj i given in Eq.~4! and
¹i5bW –¹.

In the low b limit the diamagnetic depression of th
toroidal field can be neglected and the magnetic field can
written in terms of the vacuum toroidal component and
poloidal flux functionc52Ai as

BW 5R0B0¹z1R0¹z3¹c, ~11!

whereB0 is the vacuum toroidal field atR5R0, andz is the
toroidal angle. An equation forc follows from the parallel
component of the generalized Ohm’s law in Eq.~3!, with
Reii given in Eq.~4!,

h i j i52¹if1
1

c

]c

]t
1

1

en
¹ipe1

0.71

e
¹iTe . ~12!

Neglecting the displacement current,j i.c¹'
2c/4p.

To obtain an equation for the evolution ofv i i we add the
parallel components of Eqs.~2! and~3! using Eq.~5!, which
gives

min
d

dt
v i i52¹i~pi1pe!2pi¹3

bW

vci
–¹v i i . ~13!

The ion temperatureTi is evolved according to the Bra
ginskii equation

3

2
n
dTi
dt

1
3

2
nvW di–¹Ti1pi¹–vW i 1

5

2

c

e
¹–Fpi S bWB3¹Ti D G

1Pi :¹vW i50, ~14!

where we neglect the collisional perpendicular heat flux a
the parallel heat conduction. Keeping only the finite Larm
radius parts of the stress tensor and neglecting parallel
dients, we obtainPi(vW ):¹vW 50 ~an explicit specification of

vW is not required to obtain this result!. ¹–vW i is eliminated
using Eq.~9!,

pi¹–vW i52Ti S dndt 1vW di–¹nD5 2Ti
dn

dt
1nvW di–¹Ti ,

~15!

where we have used the relationsvW di–¹pi50 andpi5nTi .
The fourth term in Eq.~14! is transformed to
2135Zeiler, Drake, and Rogers
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2

c

e
¹–Fpi S bWB3¹Ti D G52

5

2
nvW di–¹Ti

1
5

2

c

e
pi S ¹3

bW

B
D –¹Ti . ~16!

Inserting Eqs.~15! and ~16! into Eq. ~14! we obtain the ion
temperature equation

3

2
n
dTi
dt

2Ti
dn

dt
1
5

2

c

e
pi S ¹3

bW

B
D –¹Ti50. ~17!

The ion pressure equation results ifdn/dt is evaluated using
the ion continuity equation Eq.~9!,

3

2

dpi
dt

1
5

2
pi¹–~vW E1vW i i1vW pol! 1

5

2

c

e
S ¹3

bW

B
D –¹~piTi !50.

~18!

The electron temperatureTe is determined by the Braginsk
equation

3

2
n
DTe
Dt

1
3

2
nvW de–¹Te1pe¹–vW e2¹ik i¹iTe

2
5

2

c

e
¹–peS bWB3¹TeD 2

0.71

e
Te¹i j i50, ~19!

with D/Dt5]/]t1(vW E1vW ie)–¹ and vW e5vW'e1vW ie . The
parallel electron velocityv ie can be written in terms ofv i i
and j i as v ie5v i i2 j i /ne. Similar manipulations as befor
yield the electron temperature equation

3

2
n
DTe
Dt

2Te
Dn

Dt
2¹ik i¹iTe 2

5

2

c

e
peS ¹3

bW

B
D –¹Te

2
0.71

e
Te¹i j i50, ~20!

and the electron pressure equation

3

2

Dpe
Dt

1
5

2
pe¹–~vW E1vW ie!2¹ik i¹iTe

2
5

2

c

e
S ¹3

bW

B
D –¹~peTe!2

0.71

e
Te¹i j i50. ~21!

Equations~9!, ~10!, ~12!, ~13!, ~18!, and ~21! completely
describe the dynamics of plasma with finite electron and
pressure.

At this point we clarify the accuracy with which th
magnetic field must be specified in the various locations
the equations. The magnetic fieldBW which appears in the
EW 3BW , diamagnetic drifts and the ion and electron press
equations can be approximated by the vacuum toroidal fi
@first term on the right side of Eq.~11!#. The ¹i operator
must be written as

¹i5R0¹z–¹1~R0 /B0!¹z3¹c–¹. ~22!

Aside from Ohm’s law@Eq. ~12!#, this is the only location
where the poloidal magnetic field and poloidal magnetic p
turbations enter the equations.
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As noted in the introduction, the importance of the ma
netic perturbations can be estimated from Ohm’s law@Eq.
~12!# by comparing the time derivative of the poloidal flu
]c/]t to the resistive termch i j i.(c2/4p)h i¹'

2c. When the
resistive term dominates, magnetic perturbations can
neglected. Assuming]/]t;g0 and ¹'

2;1/L0
2 for g0, L0

characteristic of drift-resistive ballooning modes9

g05u2p8/Rminu1/2, L0
25(qRc)2ph ig0 /VA

2 , one finds
]c/]t is negligible under the condition given earlie
amhd!1.

III. ENERGY CONSERVATION

To derive the energy conservation we multiply Eq.~10!
by ef and integrate over all space. Integrating by parts a
dropping the surface integrals yields

E dV@ef¹–nvW pol2 j i¹if2~pi1pe!¹–vW E#50. ~23!

Integration of the ion pressure equation Eq.~18! yields

E dVF32 ]pi
]t

1pi¹–~vW E1vW i i1vW pol!G50. ~24!

Adding the terms withvW pol in Eqs.~23! and ~24! and insert-
ing vW pol @Eq. ~7!# leads to

E dV@ef¹–nvW pol1pi¹–vW pol#

5E dV@nmivcibW 3~vW E1vW di!–vW pol#

5E dVF ~vW E1vW di!–S nmi

d

dt
1pi¹3

bW

vci
–¹D ~vW E1vW di!G

5E dVFnmi

2 S ddt1vW di–¹D ~vW E1vW di!
2G

where the last two terms in Eq.~7! for vW pol arising from the
ion stress tensor exactly cancel and where we have used
relation

E dVpi¹3
bW

vci
–¹f5E dVminvW di–¹f .

Terms*dV@n d f/dt# are treated using the continuity equ
tion

E dVFnS ddt1vW di–¹D f G5E dVFn ] f

]t
2 f¹–nvW G

5E dVFn ] f

]t
1 f

]n

]t G .
Therefore the sum of Eqs.~23! and ~24! takes the form
Zeiler, Drake, and Rogers
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d

dtE dVFnmi

2
~vW E1vW di!

21
3

2
pi G

5E dV@ j i¹if1pe¹–vW E2pi¹iv i i #. ~25!

Treating the electron pressure equation Eq.~21! analogous to
the ion pressure equation yields

d

dt

3

2E dVpe52E dVFpe¹–~vW E1vW i i !1
j i

en
¹ipe

1
0.71

e
j i¹iTeG . ~26!

The equation for the parallel ion velocity is multiplied b
v i i , and we obtain

d

dtE dV
nmi

2
v i i
25E dV@~pi1pe!¹iv i i #. ~27!

Adding Eqs.~25!, ~26!, and~27! and using Eq.~12! leads to
the total energy theorem

d

dtE dVFnmi

2
uvW E1vW di1v i i u21

3

2
~pe1pi !

1
1

8p
u¹'cu2G52E dVh i j i

2 , ~28!

where the sink term on the right side reflects the Ohm
heating, which we did not include in the temperature eq
tions.

IV. PARTIALLY LINEARIZED EQUATIONS

For numerical simulations the set of equations deriv
above is still very complicated. The complications arise
cause we have as yet made no assumptions with respe
the magnitude of the fluctuations. In principle, for examp
the equations can describe density fluctuations of order un
A simpler set of equations can be derived in the limit
which the perturbations have scale lengthsL' much smaller
than the characteristic equilibrium scale lengthLp of the
pressure or density profiles. In this limit the ratio of fluct
ating to the average of a quantity scales likeL' /Lp!1 and
many of the nonlinearities which appear in the earlier eq
tions can be discarded. We separate the turbulent varia
into averagen0 , Te0 , Ti0 and fluctuating components~de-
noted by a tilde!, and linearize the equations, but keep t
EW 3BW -convection terms, which provide the dominant nonl
ear interaction. The curvature drift of either the electrons
ions vce,i;Te,i /me,iRvce,i can be neglected in the conve
tion terms since in a drift-wave ordering in whic
ef/Te0;ñ/n0, the characteristic time variation is given b
]/]t;vE /L';vde,i /L';(R/Lp)vce,i /L'@vce,i /L' . Fi-
nally, the curvature terms can be evaluated explicitly
¹3(BW /B2)5(2/B)bW 3kW .(2/B0)¹R3¹z with kW 5bW –¹bW . In
the resulting equations, we use the abbreviations
Phys. Plasmas, Vol. 4, No. 6, June 1997
c
-

d
-
t to
,
y.

-
les

-
r

s

Te5
T̃e
Te0

, pi5
p̃i
pi0

, n5
ñ

n0
, f5

ef̃

Te0
, v i5

ṽ i i

cs
,

~29!

c5
vciVAc̃

cs
2B0

, J5VA

cs
2

vci
2 ¹'

2c,

with cs
25Te0 /mi , VA

25B0
2/(4pnmi), and

h5f2pe20.71Te , t5
Ti0
Te0

, s5
Te0

h in0e
2 . ~30!

Note the relationpe5n1Te which holds for the normalized
fluctuating components. After some manipulations we obt

cs
2

vci
2 ¹'–

d

dt
¹'~f1tpi !2¹iJ 22

cs
2

vci
bW 3kW –¹~pe1tpi !50,

~31!

dn

dt
1

cs
2

vci

1

Ln

]f

]y
12

cs
2

vci
bW 3kW –¹~f2pe! 1cs¹iv i2¹iJ50,

~32!

3

2

dTe
dt

2
dn

dt
1

cs
2

vci
S 32 1

LTe
2

1

Ln
D ]f

]y
2

k i

n0
¹iS ¹iTe

1
cs
2

vciVALTe

]c

]y D 20.71¹iJ50, ~33!

3

2

dpi
dt

1
3

2

cs
2

vci

1

Lpi

]f

]y
15

cs
2

vci
bW 3kW –¹~f1tpi ! 1

5

2
cs¹iv i

2
5

2

cs
2

vci
2 ¹'–

d

dt
¹'~f1tpi !50, ~34!

d

dt
v i52csS ¹i~pe1tpi !1

cs
2

vciVA
S 1

Lpe
1

t

Lpi
D ]c

]y D , ~35!

1

VA

]c

]t
1

cs
2

vciVA
S 1

Lpe
1
0.71

LTe
D ]c

]y
2¹ih5

J

s
, ~36!

d

dt
5

]

]t
1
cs
2R0

vci
¹z3¹f–¹, ~37!

¹i5¹i01
cs
2R0

vciVA
¹z3¹c–¹, ~38!

bW 3kW 5¹R3¹z, ~39!

where¹i0 is the equilibrium¹i , Ln5un/n8u, LTe5uTe /Te8u,
etc. In the linearized equations the ion cyclotron frequen
vci should be evaluated with the magnetic fieldB0. These
equations are a generalization of those presented in Ref.
include finiteTi and a generalization of those of Ref. 8
include the non-adiabatic dynamics of electrons and elec
magnetic perturbations.

A straightforward calculation, in which for simplicity the
ambient gradients are discarded, reveals that Eqs.~31!–~35!
satisfy the conservation law,
2137Zeiler, Drake, and Rogers
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d

dt

1

2E dVF cs2vci
2 @ u¹'~f1tpi !u21u¹'cu2# 1v i

21n21
3

2
Te
2

1
3

5
tpi

2G52E dVFJ2s 1
k i

n0
~¹iTe!

2G , ~40!

which plays the role of the energy in this partially lineariz
system.

V. CONCLUSION

A set of nonlinear reduced fluid equations have be
derived to describe the dynamics of electron and ion ther
fluctuations, and potential, density, and magnetic fluctuati
in magnetically confined plasma. Two limits have been c
sidered. When the scale lengths of the fluctuations and e
librium are comparable, the fluctuations can be compara
in amplitude to equilibrium quantities and no distinction b
tween equilibrium and fluctuation has been made. The
ergy conservation law is of the classical form: kinetic ene
associated with the motion of the ion fluid parallel and p
pendicular to the magnetic field, thermal energy associa
with both the electrons and ions, and magnetic energy. W
the scale length of the fluctuations is small compared w
2138 Phys. Plasmas, Vol. 4, No. 6, June 1997
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equilibrium scale lengths, the fluctuation amplitudes a
small and many of the nonlinearities in the system of eq
tions can be discarded. The resulting equations are less c
plicated and can be readily utilized to study the relations
between particle and electron and ion thermal flux in lo
temperature plasma.
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