Nonlinear reduced Braginskii equations with ion thermal dynamics
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Starting from the Braginskii fluid equations, a set of nonlinear reduced equations are derived which
describe the low frequency dynamics of electron and ion energy and density in a toroidal plasma.
The equations have an energy integral. The equations are appropriate for studying the relation
between electron and ion thermal transport and particle transport in low temperature plasma near the
edge of plasma confinement devices. 1®97 American Institute of Physics.
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I. INTRODUCTION effects. This work is complicated by the fact that finite Lar-

) ) .mor radius effects must be systematically included as out-
The understanding of anomalous transport in magnetif,od in Ref. 8.

cally confined plasmas requires the development of models  ajthough the electrostatic approximation is prevalent in
which can describe the dynamical evolution of potential,, merical studies of turbulent edge transport, the models dis-
density, temperature, and possibly magnetic perturbations. Ig,sseq here avoid that approximation and retain the magnetic

systems in which the ambient scale lengths are long CoMserrhations. Estimating the importance of these perturba-
pared to the characteristic Larmor radii of either ions or elec}jons from Ohm’s law as shown later. one expects an elec-

trons pe;, instabilities driven by density or pressure gradi- yostatic model to be sufficient ot = — °RB’ <1—a
ents typically have characteristic time/space scales which arg,nqition which is often violated in the edge of high perfor-
slower than the characteristic gyro-frequencieg.; and  .ance tokamaks.
longer than the Larmor radii, In Section Il we present a brief derivation of the reduced
Braginskii equations with full ion dynamics and then in Sec-
d piz tion Il discuss the energy conservation properties of the
a ﬁ“’ci<“’°i’ (1) equations. In Section IV we show that the general reduced
Braginskii equations can be further truncated using a linear-

with L, a characteristic transverse scale length of theization procedure when the characteristic scale length of the
L

plasma. In this case it is useful to derive a set of reduce(?urbulence is. small compared With the equilibrium scale
equations in which the cyclotron motion of the particles is ength. The fmal equations are s'wtabl'e'for studying both
eliminated. The resulting equations describe only the |OV\FIe(_:tron and ion the_rmal transport in collisional plasm_as such
frequency motion of the system and therefore are suitable fof> m_the edge region of tokamaks and other confinement
studying the long time evolution of low frequency instabili- machines.

ties in magnetized plasmas.

N We focu_s_ specifically on Iovﬁ plza.\.smas vyhich are ;uf- Il. REDUCED BRAGINSKII EQUATIONS

ficiently collisional that the Braginskii equatichare valid.

Reduced equations of various subsets of the Braginskii equa- We start the derivation of the reduced Braginskii equa-
tions have been derived by many auth(sse, for example, tions from the momentum balance relations

Ref. 2, neglecting either ion or electron temperature dynam-
ics, assuming an adiabatic electron response or applyingyn
other additional approximatioris® For a survey see Ref. 7.

For the cold ion limit the complete set of reduced equations @
is derived in Ref. 5 including the corresponding energy inte-

gral. The earlier treatments of the ion press(gee, for ex- 0=—Vpe—en
ample, Ref. 4 suffer from the neglect of the compression

due to the ion polarization drift. Recently Kiet al® dem- where the electron mass is neglected, electron and ion den-
onstrated how to treat this term properly. The electron part ofities are both denoted by, assuming quasi-neutrality, and
the dynamics, however, is still neglected in this work. SinceE=—V¢—(1/c)dA/dt. Keeping collisional effects only in
previous derivations remain incomplete it is the primary goathe direction parallel to the magnetic field, the momentum
of this paper to extend Ref. 5 to fully include ion thermal transfer term takes the form

Reij= —Rigj=(nenjj—0.7InV|T,), J'H:e“(vni—vue)(
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with 7, the Spitzer resistivity. In the ion stress-tensor we  In this low-frequency limit, the motions of the plasma
neglect terms depending on the collisional tirfleeeping are governed by the vorticity equation, which can be ob-
only the finite Larmor radius contributiorand parallel gra- tained as follows. Since we assume the plasma to be quasi-

dients. The remaining components yield neutral the ion and electron continuity equations
b an
V-P,=—minvgi-Vou;+p;Vx— -V, ek N(Ve+vgi+Upotv)) =0,
wCI (9)
+V P ——V.-bxy;| +bxV P —V, v (5 n —+V-n(vg+vgetvje)=0
1 2(1)C| i 2wc| 1 i ot E de le

with b=B/B, the ion cyclotron frequency.=eB/m,c and  Must yield the same evolution af The implied constraint is
the ion diamagnetic drift-velocity 4 = c/(enB) Bx Vp; obtained by subtracting the two equations and leads to the

A fundamental assumption made in deriving a set of vorticity equation
reduced equations for plasma dynamics is that the character- i ..
istic time scales are slower than the ion cyclotron frequency V- NV o+ Vie +V'n(vdi_vde)zoa (10
and space scales are longer than the ion Larmor radius. Un-
der these conditions the perpendicular components of th&here we have used the relation fgrgiven in Eq.(4) and
first and third terms on the right hand side of E2) domi- VH=5-V.
nate and to lowest order the ion velocity perpendicular to  In the low g limit the diamagnetic depression of the

B is given by toroidal field can be neglected and the magnetic field can be
. .. written in terms of the vacuum toroidal component and a
viio=vditve, (6)  poloidal flux functiony=—A| as

with v=cExB/B2. The remaining terms in Ed2) are of B=RyBoV{+RyV{xVy, (11)

orderp,/L2<1 We formally obtaln the correction to the
lowest order velocltyupo,—zuI U.io by inserting Eq.(5)
into Eq.(2), crossing withb and keeping corrections of order

whereBy is the vacuum toroidal field &=R,, and{ is the
toroidal angle. An equation fog follows from the parallel
component of the generalized Ohm’s law in E§), with

m, Rei given in Eq.(4),
- b _d. 1 b 1 0.71
Upol™ dth.lo + M[ bx pIVx VUJ_IO 77”1”— —Vjo+ < c enVHpe o —VTe. (12
- pi .- pi - Neglecting the displacement curreft= cV2 ylar.
+bxV, B V-bxv, o] =V, 200, Vi-viio To obtain an equation for the evolutlon of we add the
parallel components of Eq&) and(3) using Eq.(5), which
(7 gives
with d/dt—a/at+(uE+vp0|+u”|) -V.  As discussed d 5
previously> energy conservation requires the retention of the min—v}i=— Vj(pi+pe) — PV X—Vuy;. (13
polarization drift in the convective derivative even though it dt Wi
is formally small in the ordering. Similarly we obtain from The ion temperatur@; is evolved according to the Bra-
Eq. (3) the electron perpendicular velocity ginskii equation
D e=Vget Ve, ® 341 3 VT pys 458 { b o }
L + + - =X
with  the  electron  diamagnetic  drift-velocity 2" at var ART 2e |P
ge=—C/(enB?)BxVp,. P VG0, (14

Because the frequency of compressional magnetosonic
waves, o~ VaV, with Va=B/\4mp, typically satisfies where we neglect the collisional perpendicular heat flux and
w<w:, the description of such waves is still contained inthe parallel heat conduction. Keeping only the finite Larmor
the formalism at this point. Now, however, we extend theradius parts of the stress tensor and neglecting parallel gra-
low-frequency assumption to the regime<wy,, where the  dients, we obtairP;(v):Vo =0 (an explicit specification of
plasma motion is nearly incompressible. In this regime the; s ot required to obtain this resultv-v; is eliminated
electromagnetic contribution 8, , which is associated with using Eq.(9),
perturbations in the toroidal component Bf can be esti-
mated from the condition of total pressure balance, [dod piV-v;= +nog VT,
d; given by Eq.(1)] leads to corrections that af@(B)<1.

As a result, ianO| as well as in the expressions fofdt that (19
follow, we can take the perpendicular electric field to bewhere we have used the reIatiouﬁ@,-VpFO andp;=nT;.
electrostatic so thasz(c/Bz)éxV¢. The fourth term in Eq(14) is transformed to

dn
'dt

dn .
_Ti a-ﬁ-vdi-Vn
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5 c b 5 As noted in the introduction, the importance of the mag-
78 [p,( XVT; ” Envdi-VTi netic perturbations can be estimated from Ohm’s [&4q.
(12)] by comparing the time derivative of the poloidal flux
5 ¢ Jyl ot to the resistive term z)j = (c?/4m) V2 . When the
+ > épi ng -VT;. (16 resistive term dominates, magnetic perturbations can be
neglected. Assumingl/dt~ vy, and V2~1/L3 for vy,, Lg
Inserting Eqs(15) and (16) into Eg. (14) we obtain the ion characteristic  of  drift-resistive  ballooning modes:

temperature equation yo=12p"IRmn|*2,  Li=(qRO?m 7y ye/V4, one finds
R dylat is negligible under the condition given earlier,
3 dT; _I_dn 5¢ v b YT.—0 1 mna<l.
2"dt  Tar T2 eP| Vg) VT=0 0
The ion pressure equation resultglii/dt is evaluated using
the ion continuity equation Ed9), IIl. ENERGY CONSERVATION
3 dpI 5 b To derive the energy conservation we multiply Ef0)
T 2D|V (Vet )i+ Upol) *3 xg |- V(piTi)=0. by e¢ and integrate over all space. Integrating by parts and

(18) dropping the surface integrals yields

The electron temperatufk, is determined by the Braginskii . _ .
equation f dV[egV-nvyo—j Vo —(pi+pe)V-vg]=0. (23
3 DT, 3 . _ . .
>N Dt "2 -VTo+peV- ve Vik Vi Te Integration of the ion pressure equation Etg) yields
5S¢ b 0.71_ . avi > P Vet oyt 24

“2evPe EXVTE) e TeVi=0, (19 f 2 gt " PV (et Uit gl | = 24
with D/Dt=3/dt+(ve+0ve)-V and ve=v,+vj.. The Adding the terms with,, in Egs.(23) and(24) and insert-
parallel electron velocity, can be written in terms of; ing Jpol [Eq. (7)] leads to
and j; asve=vji—]jj/ne. Similar manipulations as before

yield the electron temperature equation - -
dV[epV-nv poi+ piV-v ol

3 DT, _ Dn 5c b
EnD—t Te Dt _VHK”VHT - = pe VX -VTe
071 :f dVInmywcibX(veg+vgi) -vpol
- 'TTEVH j|=0, (20)
- - d b I
and the electron pressure equation :J dV| (vetvg) | nm g +piVx——-V|(vetva)
I
3Dpe 5 - -
5> Dt +EpeV'(UE+U\\e)_VHKHVHTe nm; [ d e
= dVv|— 2 dt+vd| (UE+vdi)
5¢ . .
55l VX V(PeTe) = —~TeV)jy=0. @D \yhere the last two terms in EQ7) for v,y arising from the
. ion stress tensor exactly cancel and where we have used the
Equations(9), (10), (12), (13), (18), and (21) completely relation

describe the dynamics of plasma with finite electron and ion
pressure. 5

At this point we clarify the accuracy with which the f anVx_.Vf:j dvmmjdi.vf_
magnetic field must be specified in the various locations in Wei

the equatlons The magnetic fieftl which appears in the Terms fdV[n df/dt] are treated using the continuity equa-
ExB, diamagnetic drifts and the ion and electron pressurgjgn

equations can be approximated by the vacuum toroidal field

[first term on the right side of Eq11)]. The V; operator d . of .
must be written as f dVv|n aJrvdi'V)f}:f dV|n—-—fV.n
Aside from Ohm’s law{Eq. (12)], this is the only location :f dv nEJFfE :
where the poloidal magnetic field and poloidal magnetic per-

turbations enter the equations. Therefore the sum of Eq$23) and (24) takes the form
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d m - 3 T - A ed
dtJ’ dv[ 7 wetva)t 5P, =1 p‘:;)_-l’ e’ b=5 et
e0 i0 0 e0 s (29)
. - AN c?
=f dV[j Vi +peV-ve—piVjy)il- (25 Y= wc'z Aw, J=Va—5 V24,
CSBO Wi
Treating the electron pressure equation @4) analogous 0 jith ¢2=T_,/m;, VZ2=B%/(47nm), and
the ion pressure equation yields soeTh TATTO '
h=¢—p,—0.71T,, 7= Tio __Teo (30)
- - — VU. 5 - = - —2
at 2] dVp.= f dV| p.V- (UE+UH )+ VHpe ¢ ¢ Teo 7|No€

Note the relatiorp.=n+ T, which holds for the normalized

0.71 . - . .
+ —J”VHT } (26) fluctuating components. After some manipulations we obtain
2 d 2. .
The equation for the parallel ion velocity is multiplied by ;ZVL'aVL(¢+ 7Pi) = V|J —2=bX k- V(pe+ mpi) =0,
v|i, and we obtain cl ¢
I (31
2
J dv f dVL(pi+Pe) Vjuyil- ep dn & 194 G _
dt d —_—+ — oa L 3y +2wc bXK -V(gp— pe) +CSV”UH V”J 0,
Adding Egs.(25), (26), and(27) and using Eq(12) leads to (32)
the total energy theorem §ﬂ_@ z %i_i @ _ﬂv o
d nm 2.dt dt wgl2Ly, LyJay ng I\ "I7e
de |UE+Ud|+U\|l| +35 (pe+p|)
dt . o
S
—|—-0.7vJ=0, (33
1 _ weVaLt 9 ) I
+G|VL¢|2 :—f dVayjf (28 ciVART, Y
dp; 3 ¢2 1 ¢ 2
where the sink term on the right side reflects the Ohmi at Ew_L_<9_+5w_bXK V(gp+1p) + = CsVHUu
heating, which we did not include in the temperature equa- ci bpy 7Y ¢l
tions. 5 c2 d
s —
—EZEVL'aVL(¢+Tpi)—0, (34)
IV. PARTIALLY LINEARIZED EQUATIONS cg 1 T\ Y
e _ CgquE s ViPet P | ] (39
For numerical simulations the set of equations derlveod CivA\ =pe pi) %Y

above is still very complicated. The complications arise be- ’

cause we have as yet made no assumptions with respect t6 th ‘w Cs i 0_71 4 h (36)
the magnitude of the fluctuations. In principle, for example,Va dt = @¢Va|L Lt, I

the equations can describe density fluctuations of order unity.

A simpler set of equations can be derived in the limitind ¢
which the perturbations have scale lengthsmuch smaller  §; = EJF
than the characteristic equilibrium scale length of the

pressure or density profiles. In this limit the ratio of fluctu- 2R
ating to the average of a quantity scales like/L,<1 and V= Vuo“‘
many of the nonlinearities which appear in the earher equa-

tions can be discarded. We separate the turbulent v::lrlabl%s>< — VRX V¢ (39
into averagengy, Teg, Tio and fluctuating componentsle- '

noted by a tildg and linearize the equations, but keep thewherevno is the equilibriumv;, L Z=n/n’|, |_T =|T/TY,

E x B-convection terms, which provide the dominant nonlin-etc. In the linearized equations the ion cyclotron frequency
ear interaction. The curvature drift of either the electrons ory ; should be evaluated with the magnetic fidlg. These
i0NS v e~ Tei/MejRwce; Can be neglected in the convec- equations are a generalization of those presented in Ref. 5 to
tion terms since in a driftwave ordering in which include finite T; and a generalization of those of Ref. 8 to
e/ Teo~n/no, the characteristic time variation is given by include the non-adiabatic dynamics of electrons and electro-
Al t~vell, ~vgeil/LL ~(RILp)veei/Li>veei/LL . Fi-  magnetic perturbations.

nally, the curvature terms can be evaluated explicitly as A straightforward calculation, in which for simplicity the
Vx(B/B?) =(2B)bx k= (2/B;) VRXV{ with k=b-Vb. In  ambient gradients are discarded, reveals that B§3—(35)

the resulting equations, we use the abbreviations satisfy the conservation law,

2
CsO

VixVe-V, (37)

Wi

VXV, (38)
A
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d1 c2 ) , s 5. 3, equilibrium scale lengths, the fluctuation amplitudes are

at Ef dV{;z-_HVL(@ZH )2+ |V %] +of+n’+ 5Te small and many of the nonlinearities in the system of equa-
¢l tions can be discarded. The resulting equations are less com-

3 J? K| ) plicated and can be readily utilized to study the relationship

+ 5P :—f dv P n—(VnTe) , (400 petween particle and electron and ion thermal flux in low

0 temperature plasma.
which plays the role of the energy in this partially linearized
system.
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