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1. INTRODUCTION
Passive optical limiters based on nonlinear refraction have been
demonstrated and analyzed for a variety of materials and laser
wavelengths1 A common geometry is illustrated in Fig. 1 .The
laser beam is focused into a nonlinear refractive material and is
then collected through a finite aperture in the far field. At high
irradiance the far field beam distortion arising from the self-
action of the laser beam inside the medium will result in the
limiting of the transmitted light through the aperture. Most of
the published analcal work regarding such a device has dealt
with thin samples. Here, ' 'thin' ' means thinner than the depth
of focus. Under this thin sample condition, it has been shown7'8
that the position of the sample with respect to the beam waist
(z in Fig. 1) is important in determining the output limiting
characteristics. We note that for a thin medium, a displacement
of the sample in z by a distance of the order of the depth of
focus, can result in reversing the operation of the device from
limiting to a transmittance enhancement.9 We have recently de-
veloped a sensitive technique for measuring the sign and mag-
nitude of the nonlinear refractive index 2 based on the z de-
pendence of the transmitted fluence, which we call a Z-scan.9'1°
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than the depth of focus of the input beam (i.e., internal self-action). A
simple model based on the "constant shape approximation" is adequate
for analyzing the propagation of laser beams within such media under
most conditions. In a tight focus geometry, we find that the position of
the sample with respect to the focal plane, z, is an important parameter
in the fluence limiting characteristics of the output. The behavior with z
allows us to perform a "thick sample Z-scan" from which we can determine
the sign and magnitude of the nonlinear refraction index. In CS2, we have
used this method to independently measure the negative thermally in-
duced index change and the positive Kerr nonlinearity with nanosecond
and picosecond CO2 laser pulses, respectively. We have experimentally
examined the limiting characteristics of thick CS2 samples that qualita-
tively agree with our analysis for both positive and negative nonlinear
refraction. This analysis is useful in optimizing the limiting behavior of
devices based on self-action.

Subject terms: nonlinear refraction; optical limiting; Z-scan; aberration-free ap-
proximation; self-focusing; internal self-action; CS2.

Optical Engineering 30(8), 1228- 1235 (August 1991).

We observe an analogous, but more complicated z dependence
for thick limiters (i.e. , nonlinear material thickness greater than
the depth of It is often desirable to use such thick
materials in limiting geometries to either keep the focus away
from damage prone surfaces or use in a ''self-protecting'

'
ge-

ometry.3"2 Figure 2 shows the energy transmitted through the
aperture of Fig. 1 as a function of input energy of 300-ns (FWHM)
1O.6-p,m pulses using thermal defocusing in CS2 as the nonlinear
mechanism. Plots are shown for three different sample positions
relative to the focal plane, showing the sensitivity to sample
placement as described above.

Based on a simple ' 'distributed lens' ' model, we explain the
observed limiting behavior of thick limiters as a function of
position z. We find that the lowest threshold for limiting is
achieved by focusing the beam at the front surface for negative
nonlinearity (zn < 0) and rear surface for positive nonlinearity
(n > 0).

2. MODEL
The nonlinear wave equation governing the propagation of a
laser beam inside a nonlinear refractive medium is expressed as

v2E_[(no+n)2E]=o, (1)

where E is the electric field, no is the linear index of refraction,
and the nonlinearity is introduced through in, which in general,
may include various order contributions such as ...
etc. Here, we consider the lowest order effect, namely a
(Kerr-type) nonlinearity, which is commonly expressed in terms
of the nonlinear refractive index 2 (esu) as En = n2IEI2/2. In
a thick medium, transverse variations accounted for by the V2
term in Eq. (1) become significant and an exact numerical so-
lution to Eq. (1) can be quite complex. A useful technique to

1228 / OPTICAL ENGINEERING / August 1991 / Vol. 30 No. 8



NONLINEAR REFRACTION AND OPTICAL LIMITING IN THICK MEDIA
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Fig. 1. Schematic of the limiting geometry where z is the distance
between the focal plane in free space and the center of the sample,
and d is the distance from this plane to the aperture plane.
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that depend on the local beam irradiance. The effective focal
length of the m'th element in the stack can be written as

aw2m
fm 4Eflm1SL ' (3)

where Wm and Eflm the beam radius and on-axis index change
at that element, respectively. AL denotes the separation between
two adjacent lenses and should be chosen to be much smaller
than both the diffraction length of the beam and fm . The latter
requirement can be written as

AL << (aw/4Inml)1"2 . (4)

For a given z position of the sample, the input Gaussian beam
can be propagated through the nonlinear medium using succes-
sive ABCD matrices defined for the m'th element in the stack as

(Am Bm'\ (i — AL/flOfm 1L/fl0 5
\Cm Dm) 1/fm 1

()

A final free space propagation ABCD matrix is used to obtain
the beam radius at the position of the aperture, Wa , which is
now a function of the sample position z and the distance to the
aperture. The effect of linear absorption in the numerical cal-
culation can be simply included by replacing i.flm by
exp(—mcthL) in Eq. (3).

In the absence of nonlinearity, the field at any position z' is
given by

F W
E(r,z ,t) = E0(t)—--Iuu w(z)

I r2 ikr2\
x exp— w2(z') 2R(z')) exp[—i4(z',t)]

(6)

where w2(z') =w(l + z'2/zo) is the beam radius at z' , Z =
kw/2 is the depth of focus of the beam, k = 2'rr/X is the wave
vector, X is the laser wavelength, all in air, and R(z') = z'(l +
ziz'2) is the radius of curvature of the wavefront. Here, 4(z',t)
contains all the radially uniform phase terms. The term E0 de-
notes the electric field at the focus and contains the temporal
envelope of the laser pulse.

35 -

0-
0 20 40 60 80

Input Power (a.u.)
Fig. 2. The limiting characteristics of liquid CS2 at 10.6 im measured
at various z positions indicated by the arrows in Fig. 9, as explained
in Secs. 3 and 4.

simplifythis problem is known as the ''aberration-free' ' or ' 'con-
stant shape' ' 13 14 in which a Gaussian beam
propagating through the thick nonlinear medium is assumed to
preserve its Gaussian shape. This requires that the radial van-
ation of the index of refraction be parabolic. For a Gaussian
beam and cubic nonlinearity such a requirement is satisfied by
using the following approximation:

tn(r) = LIn(O) exp( —2r2/w2) — zn(O)(1 — 2r2/aw2) , (2)

where zn(O) is the on-axis index change, w is the local beam
radius (HW1/e2M in irradiance) and we introduce a as a cor-
rection factor to account for the higher order terms that have
been omitted in the expansion of exp( —2r2/w2) . Previous ap-
plications of the aberration-free approximation set a = 1 (Refs.
13 and 14). Our use of a + 1 allows for good quantitative
agreement in evaluating the nonlinearity or the limiting thresh-
olds. It is expected that the value of a that gives the best fit to
the Fresnel wave optics analysis will be geometry and power
dependent, and as we will show, a may take on values between
3.77 and 6.4. For a thin medium, the parabolic approximation
of Eq. (2) implies that the medium behaves as a thin spherical
lens. Therefore, as depicted in Fig. 3, a thick sample can be
regarded as a stack of such nonlinear lenses with focal lengths

flf2 . f

Fig. 3. In the "distributed lens" approximation, the thick nonlinear
medium is regarded as a stack of thin nonlinear lenses whose focal
lengths depend on the local beam irradiance.
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+

The quantity measured in a limiting experiment or Z-scan
experiment is the power PT (or energy) transmitted through the
aperture of radius ra placed after the sample in the far field.

a — 6.4(1 — S)°35 for 0 S 0.7 and o 'rr/2
(12)

Given the assumption of a Gaussian beam, this quantity, which
we write as a function of z, is given by

Numerical analyses show that at larger phase distortions a will
decrease further. For very large induced phase distortions in

PT(Z) = Pa[l exp( — 2r/w] , (7)
thick materials we choose a = 3.77 for reasons explained in
Sec. 4. The low-field small-aperture (S — 0) limit of this re-
lation (a = 6.4) can be easily derived from Eq. (9) as shown

where Pa 5 the linear power transmitted to the aperture. Ac- in the Appendix. The deviation of a from Eq. (12) at higher
counting for the temporal variation of a pulse, Wa can be con- irradiance reflects deviations from the constant shape approxi-
sidered a function of time t. The normalized transmittance is mation at large phase distortions.
then given by

3. Z-SCAN

JPT(Z,t) dt
Plotting the zdependence ofthe transmittance as shown in Fig. 4
is a sensitive and useful way to characterize the limiting prop-

T(z) = , (8)

SI- Pa(t) dt
—

erties of the nonlinear material. Such pronounced variations of
the beam transmittance through the aperture as a function of the
sample position z have also provided the basis for an extremely
simple and sensitive technique that we call Z-scan and use for
accurate measurements of refractive nonlinearities.9'1°

where S is the aperture transmittance given by PT/Pa in the linear
(small signal) regime.

We first compare the results for a thin sample using the thin
lens approximation to the solution of the wave equation using
the Fresnel wave optics approach given in Ref. 10. This allows
us to determine the value of the constant a that best approximates
the Gaussian beam shape. For the sample at position z with
respect to the original focal plane,we can use a single thin lens
ABCD matrix. With the aperture placed a distance d behind the
original focal plane, this leads to the following expression for

The Z-scan technique is based on the transformation of phase
distortions to amplitude distortions during beam propagation.
The Z-scan experimental apparatus is as shown in Fig. 1 , where
the sample is moved along the propagation direction z while
keeping the input pulse energy fixed. A qualitative physical
argument that explains the transmittance variations in the Z-scan
experiment10 can be given as follows: Starting the scan from a
distance far away from the focus (negative z), the beam irra-
diance is low and negligible nonlinear refraction occurs leading
to linear transmittance. We normalize the linear transmittance

the spot size Wa; to unity. As the sample is brought closer to the focus, the beam

2
7 2Io(D —x)\
\ 1 —

a(1 + x2)2 ) (9)

irradiance increases leading to self-lensing in the sample. A
negative self-lensing prior to focus tends to collimate the beam
and reduce the diffraction leading to a smaller beam at the
aperture and an increased transmittance. As the scan continues
and the sample crosses the focal plane to the right (positive z),

where D = d/zo and x = z/zO. Here, z4?o is the on-axis nonlinear
phase shift at focus (z = 0), given in terms of the corresponding 1 . 1 0
index change Ifl as

a)

M0 — kiXnoL , (10)
0
ç

where L is the thickness of the sample. In the case where linear
0

I 05-
absorption (coefficient a) is present L should be replaced by E
[1 — exp(—aL)]/ct.

Ignoring the temporal dependence, as is appropriate for a
steady state condition, and using Eqs. 7 and 8 we obtain

cn
C

i .00

1 — exp(—2r/w)
(11)T(z) .

S

0
N.—
- 0.95

For a thin sample in the geometry of Fig. 1 , the transmittance E
calculated using the Fresnel wave optics approach as a function
of sample position for a fixed input irradiance is shown in Fig. 4
along with the results obtained from Eq. (1 1).'° In these cal-
culations a positive nonlinearity with a zIo of 0.5 rad was
assumed. As shown in Fig. 4, the agreement in the total trans-
mission change (from the valley to the peak) is quite good choos-

L
z

o.90
6 .0 4. 0 2 .0 0 .0 2 .0 4. 0 6.0

Z/Z0
ing a = 5 for S = 0.5 . Ingeneral, based on a detailed numerical
analysis, we find that the peak to valley transmittance change
is fit to within 5% accuracy by choosing a as given by

Fig. 4. The Z-scans of a thin nonlinear medium as calculated using
the methods of wave optics (solid line) and the thin lens approxi-
mation (dashed line). A 50% aperture is assumed (S = 0.5).
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— — (thick)
Leff —

T_(thin)
L

with zXto defined by Eq.(1O).
To graph the results in a way that will be useful in extracting

the total phase distortion in the thick sample, we define the
dimensionless parameters leff Leff/flOZO, and 1 = L/n0z0. Fig-
ure 6 shows 'elf for various values of 0/a as a function of 1.
Figure 6 also shows how defocusing (0 < 0) lowers leff and
self-focusing (0 > 0) raises leff as the beam size within the
thick (1 > 2) material is broadened (0 < 0) and narrowed
(0 > 0), respectively. The curves in Fig. 6 were calculated
using S = 0.5. Further calculations have shown that leff 5 highly
insensitive to S.

We see, as expected, that lleff for small 1 and that most of
the total phase distortion or index change is achieved within a
sample of thickness —2z. Further increases in the sample length
lead to only small increases in the Z-scan signal (T ) and in
the same way will be less effective in lowering a limiting thresh-
old. Applications exist(e.g., when linear absorption is present)
where we wish to maximize the phase distortion with a minimum
of sample length or linear loss.

As given in Fig. 6, leff also can be used to obtain an accurate
estimate of the induced phase change 0 and, thus, the nonlinear
refractive index of the sample. This can be achieved by noting
that combining Eqs. (13) and (14) yields
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the same sign on both sides of the focal plane such that the far
field beam pattern is relatively unaltered.

The observations reported in the ''Chinese Tea' ' paper15 are
easily understood from the above analysis. In that paper, they
observed a beam narrowing and expansion depending on the
position of the focus within the linearly absorbing sample. This
was interpreted as a change in sign of the nonlinearity. Clearly,
for a purely defocusing nonlinearity both beam expansion and
beam narrowing can be obtained in a thick sample depending
on the position of the focus within the sample. We, therefore,
explain their results as being due to simple thermal defocusing
caused by linear absorptive heating.

The existence of a large internal self-action results in a larger
transmittance change for a positive nonlinearity than for a neg-
ative one of the same magnitude as seen in Fig . 5 . This results
from the fact that with a positive nonlinear index the resultant
self-focusing is a self-strengthening effect similar to an ava-
lanche process, whereas with a negative nonlinearity we have
self-defocushig inside the medium, which leads to a self-weakening
of the nonlinear refraction. Nevertheless, at small enough phase
distortions where variations of the beam diameter inside the
medium due to nonlinear refraction are insignificant, nonlinear-
ities with opposite signs will give rise to the same peak to valley
transmittance changes.

It is useful to look at what we call the effective interaction
length inside the nonlinear material. Clearly for samples much
thicker than z, making the sample thicker will no longer increase
the total — . We define Le11 as

(13)

where —(thick) is calculated using the distributed lens method
and LT — (thin) is calculated assuming that the sample is much
thinner than the depth of focus. As reported in Ref. 10,

—(thin) is given by

T_(thin) 0.406(1 — S)°25z4o (14)

the same self-defocusing effect will tend to augment diffraction
and reduce the aperture transmittance . A prefocal transmittance
maximum (peak) and a postfocal transmittance minimum (val-
ley) are, therefore, the Z-scan signature of a negative nonline-
arity, while a positive one, following the same analogy, will
give rise to an opposite valley-peak configuration. With a small
phase shift and a thin sample, the peak and valley are9'10 sym-
metrically positioned about the focal plane and are separated by
a distance — — 1 .7z. This separation is given by the wave
optics calculation, while the constant shape approximation gives
a somewhat smaller value, as described in the Appendix.

We have used such thin sample Z-scan data to measure 2 of
a large class of materials with a demonstrated sensitivity of
X/300 wavefront Here we extend the applicability
of the Z-scan method to thick samples. With a limiting device
in mind, the obvious optimum sample position to minimize the
limiting threshold is the z region where the valley occurs. We
will exploit this feature further in optimization of thick limiters.

The calculated Z-scan for a rather extreme case in which
L/(nozo) 15 is shown in Fig. 5 . Fora thick sample, z is defined
as the distance from the center of the sample to the position of
the focus in air in the absence of the nonlinear medium. A cubic
nonlinearity with either sign and with 0/a = 0.5 is assumed
where 0 —kn0zno2zo. Note that 0 is approximately the induced
phase distortion accumulated in the sample between —zO to + zO.
An interesting feature of the thick sample Z-scan is that the
separation between peak and valley of these curves is now dom-
mated by the optical length of the sample, L/no. Furthermore,
the two extremes correspond to focusing the laser beam on either
surface. More enerally, we find _(thick) [(L/no)2 +

)(thin)1 where LZ —(thin) is the thin sample limit of
— 1 .7z. Also evident from Fig. 5 is the existence of a nearly
flat transmittance region where the beam is focused near the
middle of the medium. This simply signifies the fact that al-
though the laser beam experiences a large local phase distortion
within the medium, the effects of prefocal and postfocal non-
linear refraction are nearly cancelled in the far field. Using the
lens analogy, the effect is similar to placing a pair of lenses of

1.4
i)0
Ca: 1.2
E
(I)
CaL10
-a
ci)
N- 0.8
E
0z

0.6

4-- L/noz

+

I
f 'I

6 —8 0 8 16
z/zo

Fig. 5. Calculated Z-scans of a thick medium using the distributed
lens method for both positive (solid line) and negative (broken line)
nonlinearities (0/a = 0.5). The arrows on the z-axis indicate the
corresponding positions at which the limiting curves of Figs. 7 and
8 were obtained (see Sec. 4). Here, we chose n = I and S = 0.5.
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Fig. 7. The normalized limiting curves for a negative nonlinearity
(fl2 < 0) calculated for various sample positions (z) as indicated by
the arrows in Fig. 5. The broken line shows the linear transmittance.
(S = 0.5 was used in the calculations).
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Fig. 8. The normalized limiting curves for a positive nonlinearity
("2 > 0) calculated for various sample positions (z) as indicated by
the arrows in Fig. 5. The broken line is the linear transmittance curve.
Catastrophic self focusing occurs in all the curves at 0/a — I signified
by a sudden drop in the transmitted power. (S = 0.5 was used in
the calculations).

cx2
P1 =

2 (cgs units) . (16)32'rr 2

Numerical calculations of the nonlinear wave equation made by
Marburger18 indicate that for focused Gaussian beams in a thick

Fig. 6. Calculated effective interaction length as a function of the
sample length in units of Zo for various degrees of nonlinear phase
distortion 0/a.

iT_(thick) — 0.406(1 — S)°25 —f2
. (15)

Here °leff/2 can be interpreted as the effective on-axis nonlinear
phase shift when the focus is at the center ofthe sample. Because,
according to Fig. 6, knowing leff requires knowledge of the
value of 0 , an iterative procedure can be used that converges
rapidly to give 0 and, thus, L\n0. One may start by assuming a
small fO (O.2). Using Fig. 6, given this 0 and 1, we obtain
an leff. Using this 'elf, a new 0 can be reevaluated from Eq. (15).
Repeating the process quickly converges to the correct 0. Al-
though the curves in Fig. 6 were obtained assuming a lossless
medium (a = 0), the same curves can be used if linear ab-
sorption is present, provided that the left-hand side of Eq. (15)
is multiplied by the absorption factor [1 — (exp —aL)]/(aL).
Numerical calculations show that this procedure works well for
aL<2aslongasO <2.

4. LIMITING
As for the case of a thin sample, to maximize the limiting effect,
we must place the thick sample at a position where the trans-
mittance shows a valley similar to the one in Fig. 5 . The the-
oretical limiting behavior of the thick medium of Fig. 1 is shown
in Figs. 7 and 8 for negative and positive nonlinearities, re-
spectively. As the sample is positioned farther from the valley,
the limiting threshold increases. We define the limiting threshold
as the input at which the transmittance drops by a factor of two.
For negative nonlinearity, the lowest limiting threshold is ob-
tamed at the valley corresponding to focusing at the front surface.
This threshold is given by 0 — a. Focusing near the rear surface
yields a transmission enhancing behavior that is undesirable for
a limiting device. Similarly, for a positive nonlinearity, the low-
est limiting threshold occurs at the valley that corresponds to
rear surface focusing. However, as seen in Fig. 8, a sudden drop
of transmission occurs at 0 — a due to the onset of catastrophic
self-focusing. This threshold is seen to be nearly independent
of the sample position. The term 0 can also be expressed as a
power ratio:P/Pi , where P denotes the radiation power and P1
is defined as the first critical power for self-focusing16"7:
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medium with positive nonlinear index(n2 > 0), a catastrophic
self-focus will occur at a critical power of P = 3.77 Pi (0 =
3.77). The distributed lens method, therefore, predicts the cor-
rect result, choosing a = 3.77, as stated in Sec. 2 for large
induced phase distortion.

Referring to Fig. 8, when the self-focusing threshold is reached,
the laser beam is predicted to collapse and the local beam ir-
radiance to become infinite. However, the paraxial approxi-
mation and, hence, the analysis breaks down as the beam radius
becomes19 comparable to the wavelength X. In addition, at the
high irradiance produced by the self-focusing effect, one must
consider higher order nonlinearities as well as plasma production
and subsequent optical breakdown of the medium.

5. EXPERIMENTS

Optical limiting in liquid CS2 was examined using a TEA CO2
laser with single longitudinal mode pulses of 300-ns duration.
The laser beam was focused to wO 60 im (zo 1mm) into
a 24-mm cell (with NaC1 windows) filled with spectrophoto-
metric grade CS2. With o = 1.63, the ratio L/nzo 15, in-
dicating a thick medium. First, we performed a Z-scan on this
sample to verify the locations of the peak and valley of the
transmittance. The result for a 1-mJ pulse energy along with the
theoretical fit is shown in Fig. 9. The curve exhibits features
predicted by the distributed lens method for a negative nonlin-
earity, namely the peak and valley corresponding to the second
and first surface focusing, respectively, and a nearly flat portion
corresponding to focusing near the center of the cell. The origin
of this negative nonlinearity is believed to be thermal, arising
from the finite absorption of lO.6-pm radiation in CS2 (a
0.22 cm 1) Thermal lensing in liquids arises from the thermal
expansion of the medium and has a rise time given by the '' acous-

tic transit time,' ' which is effectively the time a sound wave
takes to traverse the beam radius.20 Knowing the sound velocity
in CS2 (v 1.5 X i05 cmls) and the focal beam radius (=60
rim), a response time of 40 ns is obtained, which is almost
an order of magnitude smaller than the laser pulsewidth. The
decay of the thermal lens, however, is governed by the thermal

diffusion process, which is on the order of 0. 1 s, which is orders
of magnitude larger than the pulsewidth and can be neglected.2°
Under such quasi-steady state conditions, the time averaged non-
linear index change ((Zno)) arising from nonuniform heating can
be estimated in terms of the laser pulse fluence (F) at the focus1°

(no)=—------ , (17)
dT 2pC

where p is the density, C is the specific heat and dnldT is the
thermo-optic coefficient of the medium. The factor of 2 comes
from the temporal The coefficient dn/dT has long
been investigated for CS2, and a value of = — 8 x i0 °C
has been reported in the literature.21 With the known value of
pcv = 1 .3 J/Kcm3 for CS2, we obtain (zno) = 1 . 1 x 10 at a
=17 J/cm2 fluence. This is in good agreement with the (ino)
— 1 .0 x 10 used to fit the Z-scan of Fig. 9. Note that in this
calculation , a value of =5 , as obtained for S = 0.5, was used
for the a parameter. Note also that the z = 0 point in the Z-scan
curve is defined as the position of the focus in air in the absence
of the nonlinear medium. After the insertion of a thick sample
with o > 1 , the beam waist inside the sample no longer will
coincide with our z = 0 point. This is why the z = 0 point of
the Z-scan in Fig. 9 differs from that of Fig. 4, which was
calculated assuming no = 1.

The limiting behavior of the same CS2 cell at 10.6 im was
shown in Fig. 2, where the normalized transmitted power was
plotted versus the input power as measured for the various sample
positions indicated in Fig. 9 . They exhibit the predicted features
given in Fig. 7. It is evident from Eq. (17) that thermal self-
action can be enhanced by increasing the absorption coefficient
of the medium. We obtained a limiting threshold of =0.5 kW
(150 1iJ) in CS2 at 10.6 xm by desolving impurities (e.g. , sulfur)
to increase the absorption coefficient to 2 cm . This is shown
in Fig. 10 where the results for two samples ofpure and modified

4.00 1

•PureCS2

,//// •
- 3.20

/1 .O

2.40
)=1O.6 im ,/'•

•
t =300nsp /'•

C //•
F-• 1.60 ,1'/
0 I'z

0.80 , oo. 00000000

,0000

0 0 0 0

0.00 ' I
0.00 1.00 2.00 3.00 4.00 5.00 6.00

Input Power (KW)
Fig. 10. A low-threshold fluence limiter at 10.6 m using modified
Cs2 (a = 2 cm1) as compared to pure CS2 (a = 0.22 cm1). The
measurements were obtained using a 3-mm cell placed at the trans-
mittance valley.

0 6
Z (mm)

Fig. 9. The measured Z-scan of a 24-mm thick CS2 sample using 300-
ns TEA CO2 laser pulses at 10.6 rim. The theoretical fit (solid curve)
is obtained based on thermal self-defocusing in CS2. The arrows on
the z-axis indicate the positions at which the limiting data of Fig. 2
were obtained. Because flo * 1, the curve is no longer symmetric
about z = 0.
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Cs2 are compared for a 3-mm cell positioned in the transmittance thin sample were used, leff << 1 . Given that the result shown
valley. in Fig. 1 1 was obtained with the maximum energy available

Liquid CS2 is also well known for its strong optical Kerr from our picosecond source, a measurement of 2 would not
effect with a relatively dispersionless nonlinear index 'y — + 3
4 x 1 0 14 cm2/W (n2 — 1 .3 x 10 esu) .

22-24 This effect was
have been possible with a thin sample. Furthermore, we have
shown that a quick estimate of the nonlinear coefficient can be

ignored when the thermal nonlinearity was dominant as was the deduced from the Z-scan transmittance curve of a thick media
case with 30-ns pulses. With picosecond pulses, however, t,, << by using the calculated effective interaction length leff, intro-
tac and nonlocal nonlinearities such as thermal or electrostriction duced in Sec . 3.
no longer dominate. Thus, the reorientational Kerr effect with2 picosecond decay time22 becomes the dominant mechanism

The results of this modeling as applied to limiting indicate
that the minimum limiting threshold is obtained by positioning

for nonlinear refraction. Using 130-ps ''optical free-induction the focus at the front (or rear) surface of the sample for a negative
decay' ' pulses at 10.6 xm (Ref. 25) and a peak power of 350 (or positive) nonlinearity, respectively. In both cases this cor-
kW, we performed Z-scans with the 24-mm CS2 cell. The result responds to the Z-scan valley. Such a conclusion might lead one
as shown in Fig. 1 1 exhibits a valley-peak configuration showing to believe that such limiters are inherently prone to damage,
self-focusing indicative of the positive sign of the Kerr coeffi- because a positive 2 with a long propagation path leads to
cient. The theoretical fit in Fig. 1 1 with S = 0.4 is obtained
using fl2 — 1 .5 x 10 esu, which is in close agreement with

catastrophic beam collapse. Similarly, for a negative 2, the
beam must be focused on the damage-prone front surface. How-

previously reported values of 2 in CS2 measured in the visible
and near IR regions.23'24 Note that use of gentler focusing gives

ever, other geometries for limiting may be envisioned that do
not have this problem. For example, the simple addition of a

a larger diffractive length (zO = 4 mm or 1 = 3.7), resulting in second lens behind the sample will reverse the order of peak
the disappearance of the rather flat portion of the Z-scan that
was more visible in Fig. 9 .

and valley in some plane after the lens. Thus, for a negative 2,
the limiting is optimized with the focus at the rear surface.26

A quick estimate of the nonlinear phase shifts can be evaluated Although to consider the optimization of other possible geo-
from Eq. (15) and Leff as obtained from Fig. 6 for both nano- metries is beyond the scope of this paper, the method of analysis
second and picosecond Z-scan experiments. introduced here should be adequate for such a task. However,

the model has been applied to a purely refractive third-order
6. CONCLUSION nonlinearity in the presence of linear absorption. Nonlinear ab-

We have shown that limiting in thick Kerr-like media may be
simply modeled using a modification of the aberration-free ap-
proximation. For small nonlinear phase shifts (0 < 2), this model
shows excellent agreement with our Z-scan and limiting exper-
iments. Therefore, we conclude that the method is of consid-
erable use both in experimental measurement of 2 in thick media
and in designing optimized limiting devices.

This extension of our ability to measure z2 in media thicker

solPtion, such as occurs in semiconductor limiters, has not yet
been included.

.
light of the conclusions madehere, the observations re-

potted in the ' 'Chinese Tea paper are easily understood as
being due to simple thermal defocusing. The reported sign change
of the nonlinearity was not in fact a sign change , but simply the
consecutive observation of the transmission ''valley'

' to "peak"
as the sample position was changed with respect to focus.

than the depth of focus may find application for media where
the nonlinearity is small and the laser beam must be focused E DIXAPP N
very tightly to see a measurable effect. This is exemplified by
our picosecond 1O.6-m measurement of 2 in CS2, shown in

To examine the validity and limitations of the ''constant shape"
approximation, we compare Eq. (9) in the limit of the small

Fig. 11 . Here, 1 = 3 .7 so that leff — 1 .5 , whereas if a truly phase distortion with that of Ref. 10, which was obtained using
the Fresnel wave optics approach.

The far field condition imposed by having D >> 1 (see Fig. 1)
along with the small phase distortion assumption (4Io < 1)
will reduce Eq. 9 to

w 2(1 4xLW?o/a
18—D (1+x2)2 ( )

The on-axis(S — 0) irradiance is then inversely proportional to
the beam area (irw/2). Therefore, the normalized on-axis trans-
mittance is simply obtained as

iI:o 4x
T(Mo,x) — 1 + —— (1 + x2)2

(19)

The extrema (peak and valley) of the transmittance can be ob-
tamed from dT/dx = 0. This gives = 1/V3 as compared
to the more rigorous result of 0.858 as given in Ref. 10. The
peak-valley transmittance difference can, therefore, be deduced as

= T(cIo,x) — T(Mo,x) = , (20)

10
z (mm)

Fig. 11. The measured Z-scan of the 24-mm CS2 sample using 130-
PS CO2 laser pulses. The broken line is the calculated result using
fl2 1.5x1011 esu. Here S = 0.4 giving a = 5.4.
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where p = 3\//(2a). Equating this value for p with the value
of p — 0.406 (Ref. 10) yields a — 6.4, indicating the signifi-
cance of introducing this correction factor into the aberration-
free approximation theory.
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