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1. Introduction

The asymptotic theory of nonlinear regression plays a central role in econometrics,
underlying models as diverse as simultaneous equations systems and discrete choice.
In the context of time series applications, a longstanding restriction on the range
of potential applications has been the availability of suitable central limit theorems,
effectively restricting attention to models with stationary or weakly dependent data.
While it is well known (e.g., Wu, 1981) that consistent estimation does not rely on as-
sumptions of stationarity or weak dependence, the development of a limit distribution
theory has been hamstrung by such restrictions for a very long time.

Two examples in econometrics where these restrictions are important are GMM
estimation and nonlinear cointegration. GMM limit theory was originally developed
for ergodic and strictly stationary time series (Hansen, 1982) and although some at-
tempts have been made to extend the theory to models with deterministically trend-
ing data (e.g., Wooldridge, 1994, Andrews and McDermott, 1995), traditional CLT
approaches have still been used and no significant progress has been made. Nonlinear
cointegrating models also seem important in a range of applications (e.g., Granger,
1995) and models with nonlinear attractor sets have been popular in economics for
many years. Yet, the statistical analysis of such models with trending data has been
effectively restricted to models that are linear in variables and nonlinear in parameters
(Phillips, 1991; Saikonnen, 1995). In fact, in such models not only is a limit theory
undeveloped, but rates of convergence are also generally unknown and this greatly
inhibits the use of the traditional machinery of asymptotic analysis. As Saikonnen
put it in the conclusion of his recent paper (1995)

“..the limiting distribution of a consistent (nonlinear) ML estimator may
not be obtained in the conventional way unless something is known about
the order of consistency.”

The purpose of the present paper is to introduce new machinery for the asymp-
totic analysis of nonlinear nonstationary systems. The mechanism for the asymptotic
analysis of linear systems of integrated time series that was introduced in Phillips
(1986, 1987) and Phillips and Durlauf (1986) relied on weak convergence in function
spaces, the use of the continuous mapping theorem and weak convergence of martin-
gales to stochastic integrals. These methods have been in popular use ever since and
play a major role in nonstationary time series analysis. However, they are unequal
to the task of analysing even simple nonlinear functionals, as the following example
makes clear.

1Let x; be a standard Gaussian random walk with zero initialization. Then,
n= 2z, = Xu(-) —¢ W(:). The nonlinear function f(z) = 1/(1+ x?) is everywhere
continuous and well behaved at the limit of the domain of definition of x;. What is
the limit behavior of the sample mean function ) ;' ; f(z¢) ? The standard approach



outlined in the previous paragraph suggests the following

"1 1 — 1 1 — 1 1 dr 1 dr
glﬁ—w?:E;l_'_(w_\/&)?Nﬁ;(%)QN/o X002 4, WiE (1)

n

However, while this approach looks convincing, it fails to deliver a useful result be-
cause the limit is undefined. Indeed, the behavior of the integral is dominated by
the local behavior of the Brownian motion W (r) in the vicinity of the origin and it
is well known (e.g., Shorack and Wellner, 1987) that W (r) satisfies a local law of the
iterated logarithm at the origin, so that
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and hence
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for e > 0. Thus, .[01 #:)2 = 00 a.s. and all we have shown in (1) is that } ;" , ﬁ
diverges as n — oo.

How then do we analyse the limit behavior of this apparently simple function? Our
new approach is conceptually very easy. The key notion is to transport the sample
function into a spatial function that relies on the good behavior of the function itself.
In essence, we replace the sample sum by a spatial sum and treat it as a location
problem in which we use the average time spent by the process in the vicinity of
spatial point s, i.e. s xtime(z; € [s — 8,5+ 8]; t = 1,...,n). Noting that T 18
of stochastic order Op(y/n) we set § = /ne for some small € > 0. The heuristic
development that follows outlines the essential ideas. These are made rigorous in the
rest of the paper. We start by writing
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Now as n — oo we note that max;<,(x;) — 00, ming<,(x;) — —o0, so that for large

n we have
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From these heuristics we get the approximate expression

Z 1—|—xt - (/_Z %) (2_15 /011(\W(7’)\ §€)d7'>, (2)

which is given in terms of the product of a spatial integral and a functional of the
limiting Brownian motion process. Note that the resulting formula is free of the
sample size, so that the order of the magnitude of the sample function is now properly
determined, as distinct from (1).

The final step in these heuristics is to simplify (2). Noting that ¢ was arbitrary,
we can let ¢ — 0 in (2). In fact, the final expression has a natural limit as ¢ — 0
that measures the spatial density of Brownian motion over the time interval [0, 1].
Specifically, the limit

1
Lu(1,0) = lim i/o LW ()| < 2)dr (3)

is well defined and is known as the local time of standard Brownian motion at the
origin. It is analogous to a probability density, but is a random process rather than a
deterministic function. Local time is a very useful process associated with Brownian
motion and it will be used extensively in the development of our theory, so more
exposition and discussion of its properties is provided in Section 2 of the paper. For
the moment, we are content to note that using (2) and (3), our heuristics lead us to
the following asymptotic behaviour as n — oo

ZH% ([ 5 ) o ()

Clearly, this limit expression is very different from the usual limit formulae for sample
moments of linear functionals of integrated processes, yet it is simple and neat. Ob-
viously, the heuristic argument that leads to (4) could have been used to obtain the
limit behavior of the sample mean of an arbitrary integrable function f, specifically

- ﬁﬂm —a ([ s9a) w0, ®

a formula that we will derive rigorously in an extended form in Theorem 3.2 of Section

3.



The plan of the rest of the paper is as follows. Section 2 outlines the model we will
be using, the assumptions needed, and gives some preliminary discussion of Brownian
local time and some of its properties that we utilize in our development. Section 3
provides an asymptotic theory for certain families of nonlinear functions. This section
builds on some earlier work by the authors in Park and Phillips (1997) and makes
rigorous the ideas described above. Consistency in nonlinear regression is proved in
Section 4 and the limit distribution theory is developed in Section 5. Some extensions
to additive nonlinear regression models, including partial linear regressions, are given
in Section 6. Section 7 concludes. A technical Appendix is provided and is divided
into two parts. Some useful technical lemmas are given in Section 8 and proofs of
the theorems in the paper are given in Section 9.

A final word in this introduction about notation. For a vector x = (x;) or a matrix

A = (a;;), the modulus | - | is taken element by element. Therefore, || = (|x;|) and
|A| = (Jai;]). The maximum of the moduli is denoted by |||, i.e., ||A]| = max; ; |a;;|
and ||z|| = max; |x;|. The notation || - || is also used to denote the supremum of a
function. For a function f, which can be vector- or matrix-valued, || - ||k signifies

the supremum norm over a subset K of its domain, so that || f||x = supgcg ||f(2)]].
The subset K, over which the supremum is taken, will not be specified if it is clear
from the context. Standard terminologies and notations in probability and measure
theory are used throughout the paper. In particular, notations for various notions of
convergence such as —g,., —p and —4 frequently appear. The notation =, signifies
equality in distribution. Finally, we denote by R4 (R_) the set of positive (negative)
numbers.

2. The Model and Preliminary Results
We consider the nonlinear regression model for y; given by

yr = f(xr,00) + (6)

where f : R — R is known, x; and wu; are the regressors and regression errors,
respectively, and 6 is the true parameter value which lies in the parameter set ©.
In model (6), we let x; be an integrated process and u; be a martingale difference
sequence, as will be specified more precisely subsequently. The model is thus critically
different from the standard nonlinear regression with stationary regressors. It can be
viewed as a nonlinear cointegrating regression.

The nonlinear regression (6) can be estimated by nonlinear least squares (NLS).
If we let

Qu(0) = 3" (i — Fla1,0))°

then the NLS estimator 6, is defined as the minimizer of Qn(0) over 0 € O, i.e.,

A

0, = argmax Qy(0) (7)
0co



Accordingly, an error variance estimate is given by 62 = (1/n) Y 7, 47, where @; =

v — f (xt,én). It is assumed that 6, exists and is unique for all n. Moreover, we

assume throughout the paper that © is compact and convex, and y is an interior

point of ©. This is a standard assumption for stationary nonlinear regression.
Write z; more specifically as

Ty = X1 + U

The initial value xp of x; may be any O,(1) random variable. However, we set
xp = 0 in the paper to avoid unnecessary complications in exposition. In the Op(1)
case, the initialization does not affect the asymptotic results anyway, as is evident
from Park and Phillips (1997). When the initialization is in the distant past and
x0 = Op (n%), the initial condition does affect the asymptotic theory (e.g. see
Phillips and Park, 1998) and appropriate adjustments to some of our formulae will
be required in this event, but will be fairly obvious. To focus on essentials in our
development of nonlinear regression, we will retain the simplification xg = 0.

For the time series u; and v, respectively, we define the stochastic processes U,

and V;, on [0,1] by

[ror]

[nr
Zut and V,(r) = th-s-l
t=0

where [s] denotes the largest integer not exceeding s.

Assumption 2.1

() (Un, Vi) —q (U, V) as n — oo, where (U, V) is a vector Brownian motion.

Moreover, assume for each n, there exists a filtration (Fpt), t =0,...,n, such that
(b) (ug, Fut) is a martingale difference sequence with E(u?|F, 1) = 02 a.s. for all
t=1,...,n, and sup; <<, B(|w|?|F 1 1) < 00 a.s. for some q > 2, and

(c) xt is adapted to Fri—1,t=1,...,n

Assumption 2.1 is quite weak, and is satisfied for a wide variety of data generating
processes. Condition (a) is the usual assumption routinely imposed to analyze linear
models with integrated time series — e.g., Park and Phillips (1988). It is known to
hold for mildly heterogeneous time series, as well as stationary processes. The mar-
tingale difference assumption for the regression errors in (b) is standard in stationary
time series regression. However, it is not essential for regressions with integrated
time series. As is well known, serial correlation in the errors and cross correlation
between the errors and regressors can be allowed in linear cointegrating regressions.
They do not affect, for instance, the consistency of the least squares estimator. Since
our model includes the linear cointegrating regression as a special case, it is therefore



reasonable to expect that some of our subsequent results apply without condition
(b), perhaps with some modification. It will be pointed out when this is the case.
Under condition (c), x; becomes predetermined. The condition can simply be met by
choosing the natural filtration of (ug,x¢y1) for (Fne). Note that conditions (b) and
(c) together imply, in particular, that E(y|F, 1) = f(z¢,600) a.s.

The stochastic process (Uy,V;,) takes values in D[0,1]%, where D[0,1] denotes
the space of cadlag functions defined on the unit interval [0, 1]. The space D[0,1] is
usually equipped with the Skorohod topology. However, it is more convenient in our
context to topologize it with the uniform topology, and interpret (U, V;,) —4 (U, V)
in Assumption 2.1(a) as weak convergence in D[0, 1] with the supremum norm. The
reader is referred to Billingsley (1968) for detailed discussion on the subject. It then
follows from the so-called Skorohod representation theorem that there is a common
probability space (€2, F,P) supporting (U, V,’) and (U, V') such that

(Un, Va) =4 (Uy, Vy) and  (Uy,Vy)) —as (U, V) (8)

in D[0,1]? with the uniform topology. Moreover, we have the following strong ap-
proximation.

Lemma 2.1 Let Assumptions 2.1(b) and (c) hold. Then we may represent U,
introduced in (8) by
(3)-4)
n n

with an increasing sequence of stopping times Tyt in (Q, F, P) with 7,0 = 0 such that

Tnt —t

sup

1<t<n né

' 0 (9)

asn — oo for any 6 > 2/q.

In the paper, we establish the weak consistency and derive the asymptotic distribution
of the NLS estimator 6,, defined in (7). For our purposes, it therefore causes no loss
in generality to assume (U, V) = (Uy;, V), instead of (Uy, Vy,) =4 (U, V,)) asin (8).
This convention will be made throughout the paper. It allows us to avoid repetitious
embedding of (Uy, V},) in the probabilty space (2, F,P), where (Uy, V) is defined.
Due to the convention introduced above, all the subsequent convergence results of
the sample moments with —4 s and —,, as well as those with —4, should generally
be interpreted as the correponding ones with —4. If, however, the convergence is to
a nonrandom limit, then we may as well interpret it as —, since —4 and —, are
identical in such a case.

Stronger assumptions on the data generating process for x; will often be required

to fully develop the asymptotics for the nonlinear regressions. We now introduce



Assumption 2.2 Let (a), (b) and (c) be given as inAssumption 2.1. We let

(d) ve = @(L)er = 375" Prci—k

with p(1) # 0 and > 72 4 k|log| < 0o, and assume that {e;} is a sequence of i.i.d.
random variables with mean zero and Ele,|P < oo for some p > 4, the distribution of
which is absolutely continuous with respect to Lebesgue measure and has characteristic
function c¢(X) satisfying imy_,o X"c(X) = 0 for some r > 0.

Assumption 2.2 introduces more restrictive conditions on x;, but still permits a wide
variety of models that are used in practical applications, including all invertible
Gaussian ARMA models. Under condition (d), it follows that V;; —4 V, as shown in
Phillips and Solo (1992).

Assumption 2.3 Let(a) and(b) be given as inAssumption 2.1, and let (d) be given
as inAssumption 2.2. We assume

(c) xf is adapted to Fri—1,t=1,...,n,

where x}f = x; — maxi<g<n Tt.

Condition (c) of Assumption 2.3 can be truly restrictive. Though it is certainly
satisfied when x; and u; are independent and the filtration 7, ; is suitably defined, it
may not hold for many interesting econometric models. Roughly speaking, it requires
that knowledge of deviations from the maximum taken over future and past values
of the regressor should not help in predicting future values of the regression error.
This may be unlikely and unrealistic, though it is not totally unacceptable. As will
become clear, we need the condition only to fully analyze the asymptotics for the
case of nonlinear regression with explosive regression functions.

Under condition (c) of Assumption 2.3, it is often more convenient to work with

VX(r) = Va(r) — Oilslgl Vo(s) and V*(r)=V(r)— Oilslgl V(s)

in place of V,, and V. Given condition (a), we have (U, V) —4 (U,V*) by the
continuous mapping theorem. Therefore, we may embed (U,,V,’) into the prob-
ability space supporting (U5, V,o*) and (U, V*) so that (U, V) =4 (U5, V,y*) and
(Ug,Vo*) —q.s. (U, V*) uniformly on [0,1]. This is precisely analogous to (8). More-
over, we may also represent U, by U with appropriate time changes, as in Lemma 2.1,
under conditions (b) and (c) of Assumption 2.3. This can be seen from the proof of
Lemma 2.1. For the subsequent development of our theory, we also use the convention
(Un, V,F) = (Uy, V,e*), correponding to our earlier convention (U, Vy,) = (U, V).
The asymptotic theory for nonlinear functions of integrated time series heavily relies
on the local time of Brownian motion, or more generally that of a continuous semi-
martingale. For a continuous semimartingale M with quadratic variation [M], the
local time of M is defined to be a two parameter stochastic process Ly;(t, s), which
satisfies the following important lemma.



Lemma 2.2 (The Occupation Time Formula) Let T' be a nonnegative transforma-
tion on R. Then

e}

./().tT(JVI(r))d[M}Tz / T(s)Las(t, ) ds (10)

J =00

for all t €R.

The local time, as a function of its spatial parameter s, has the interpretation as
an occupation density. In formula (10), the occupation time is defined with respect
to d[M],, which may be regarded as the natural time-scale for M in terms of its
variation. It is known that the local time Ly (¢, s) of a continuous semimartingale M
is a.s. continuous in ¢ and cadlag in s. Due, in particular, to the right continuity of
Lys(t,-), we may apply (10) with T'(z) = 1{s <z < s + &} to get

it

Las(t,s) = g%é [ 14s < ) < s+ capu,
a representation which explains why Lp(-,s) is called the local time of M at s.
Roughly speaking, Lj(t,s) measures the time, in the time-scale given by [M], that
is spent by M in the vicinity of s over the interval [0, ¢].

The formula (10), of course, applies to Brownian motion as a special case. For
Brownian motion, the result in (10) is known to hold for any locally integrable trans-
formation T'. See, for instance, Chung and Williams (1990, Corollary 7.4). It also
holds for other diffusion processes such as the Ornstein—Uhlenbeck process, which
has been used for the asymptotic analyses of models with near-integrated processes
as in Phillips (1987, 1988). For the development of our subsequent theory, we will
frequently refer to the local time Ly of the Brownian motion V. For notational
simplicity, we will in fact use a scaled local time L of V' defined by

L(t,s) = (1/0%) Ly(t,5) (11)

where o2 is the variance of V. It is often much more convenient to present our results
in terms of L, instead of Ly . If we apply the formula (10) to V, then we have for
any locally integrable T’

e} e

T(s)Ly (¢, ) ds = / T(s)L(t, 5) ds

J —00

TV dr = (1/02)
/. /

J —00

since d[V], = o2dr. The scaled local time L(t,s) can therefore be regarded as the
actual time spent by V' up to time ¢ in the neighborhood of s. It is called chronological
local time in Phillips and Park (1998).

All our subsequent results are presented in terms of the Brownian motions U and
V introduced in Assumption 2.1, the covariance of which will be denoted by 7. The
variances of U and V are, as already specified, written as 0% and 2, respectively. The
scaled local time L of V defined in (11) will also be used without further reference.



We often need to evaluate L at the maximum or the minimum of the sample path of
V', which we define by

Smax = 0213%{1 V(r) and sSpin = Orgnrig1 V(r)
Therefore, expressions like L(-, Spax) or L(-, Spmin) will often appear in our formu-
lae. Finally, some of our theoretical results involve another vector Brownian motion
W. The process W is independent of V, and therefore of L, and has variance o*1I.
Of course, we may, and do, assume that W is defined in the common probability
space (€2, F,P) containing the processes U and V. These conventions will be used
throughout the paper.

3. Asymptotics for Nonlinear Functions of
Integrated Processes

3.1 Regular Functions

We now present some preliminary results for nonlinear transformations of integrated
time series, which are used in our subsequent development of the asymptotic theory
of nonlinear regression. These are related to some earlier concepts introduced in Park
and Phillips (1997), which we denote hereafter by P2. We start with the concept of
a regular transformation.

Definition 3.1 A transformation T on R is said to be regular if and only if

(a) it is continuous in a neighborhood of infinity, and

(b) for any compact subset K of R given, there exist for each € > 0 continuous
functions T., T. and 6. > 0 such that T.(z) < T(y) < Te(x) for all |z —y| < 6
on K, and such that [,(T. —T,)(x)dx — 0 as e — 0.

The regularity conditions in Definition 3.1 are somewhat stronger than those in P2.
However, they are satisfied by most functions used in practical nonlinear time series
analyses. The class of regular transformations is closed under the usual operations
of addition, subtraction and multiplication, as we show in Lemma Al. Continuous
functions are, of course, regular. This can easily be seen by setting, for any continuous
function T on R, T.(z) = T(z) — ¢ and T.(x) = T(x) + ¢ with the usual §. for the
e — 6 formulation of uniform continuity, and these functions apply for any compact
subset of R. It is also quite clear that any continuous function on a compact support
is regular. All piecewise continuous functions are therefore regular, due to Lemma
Al in the Appendix. Naturally, we call a vector- or matrix-valued function regular
when each of its component is regular.

Logarithmic functions and reciprocals are not regular. Therefore, our subsequent
theory for regular functions are not directly applicable to these functions. However,



for such functions (7, say), we may consider T;(z) = T'(z) 1{|z| > e}+T(e) 1{|z| < ¢}
for some small € > 0 instead of T itself. For any fixed n, T and T; are identical over
any finite set of nonzero points, if we take € > 0 to be smaller than the minimum of
their moduli. Therefore, if x; is driven by an error process whose distribution is of
the continuous type, then T and T, are practically indistinguishable in finite samples.
Of course, we can make this approach more rigorous by letting ¢ be n-dependent,
say ey, such that ¢, — 0, and considering the asymptotics of T,, = T, . This is
done in P?2. We assume throughout the paper that these conventions are made for
logarithmic functions and reciprocal functions.

Extending the theory in P?, we now consider families of functions indexed by some
parameter, rather than individual functions. This extension is needed for the analysis
of nonlinear regressions. In the subsequent development of our theory, we are mainly
concerned with a family /' : R x IT — R™ of functions from R to R™ with index
set II. Below we introduce a reqular family of functions, which is fundamental to
our analysis. We have already defined the terminology regular in Definition 3.1 for
individual functions, and here it is extended to a family of functions. The asymptotics
for these families then follow. In particular, we present limiting results for the sample
functions n =137 | F(x¢/y/n,m) and n= Y237 | F(wx;/\/n, ) uq for regular F. These
will be referred to subsequently as sample mean and sample covariance asymptotics
for F.

Definition 3.2 We say that F is regular on II if
(a) F(-,m) is reqular for all m € I, and
(b) for all x € R, F(x,-) is equicontinuous in a neighborhood of x.

Conditions (a) and (b) in Definition 3.2 will be called regularity conditions. Lemma
A2 shows that regularity condition (a) is sufficient to guarantee that both sample
mean and sample covariance asymptotics for F'(-, ) are well defined for each 7 € II.
Equicontinuity of F(xz,-) in regularity condition (b) ensures, as shown in Lemma
A3 in the Appendix, the existence of a neighborhood Ny of any given my € II for
which sup, ¢y, F(-,7m) and infren, F(-,m) are regular. This is required for uniform
convergence in sample mean asymptotics. The condition is, of course, automatically
satisfied if II is a singleton set.

Theorem 3.1 Let Assumption 2.1 hold. If F' is reqular on a compact set 11, then

as n — oo
liF<ﬁ 7r> - /1F(V(r) ) dr
nt:1 \/ﬁ - 0

uniformly in w € II. Moreover, if F(-,m) is reqular, then

n

% ZF(%,W) - /01 F(V(r), m)dU(r)

t=1

10



as n — oQ.

For regular F', Theorem 3.1 shows that sample mean asymptotics involve a random
mean functional of F specifically the time average of a nonlinear function of the
Brownian motion V. The sample covariance asymptotics involve a stochastic integral
of F', which will generally have a non zero mean except for the special case where
ouw = 0, i.e., U and V are independent. This stochastic integral also has a non
Gaussian distribution, although in the special case where o, = 0 it will be a vari-
ance mixture of Gaussian distributions. For a family of homogeneous functions (like
polynomials), we may also easily apply Theorem 3.1 to get asymptotics for moments
of unnormalized functions of integrated time series. If specialized to the linear or
quadratic functions and to a singleton parameter set II, the results in Theorem 3.1
are already well known. Comparable results in this case have been obtained earlier by
several authors under conditions weaker than Assumption 2.1. The reader is referred
to Phillips and Solo (1992) and Hansen (1992), and the references cited there.

3.2 Function Classes and Asymptotics for
Unnormalized Integrated Time Series

The limit behavior of sample moments of functions of unnormalized integrated time
series critically depends on the type of function involved, as shown in P2. P? con-
sider three classes of functions — integrable functions (I), asymptotically homogeneous
functions (H) and explosive functions (E). The first class includes all integrable trans-
formations. The second class comprises functions that behave asymptotically like
homogeneous functions (including homogeneous functions as a special case). This
class also includes transformations such as T'(x) = log |x|,e” /(1 + €*), arctan x, and
T(z) = |x|*. The third class is for functions that increase at an exponential rate, and
transformations like T'(x) = € or |z|Fe® belong to this class.

We consider three different families of functions, corresponding to each of the
three types of functions studied in P?. Introduced below are regularity conditions
for the three (I-, H- and E-) families of functions. Each family is presented with
its asymptotics. Subsequently, we give asymptotic results for the sample moments
Yy Fay,m) and Y ;" | F(x;, ) uy, appropriately normalized. As before, we refer to
these as sample mean and sample covariance asymptotics for F.

3.2(a) Integrable Functions
Definition 3.3 We say that F is I-regular on 11 if

(a) for each my € 11, there exist a neighborhood Ny of mg and T : R — R bounded
integrable such that ||F(z,m) — F(x,m)|| < |7 — mo||T'(x) for all m € Ny, and

(b) for some constants ¢ >0 and k > 6/(p—2) with p > 4 given in Assumption 2.2
or 2.3, |[F(x,m) — F(y,n)|| < c|lz —y|* for all ¥ € 1, on each piece S; of their
common support S = J;~, S; C R.

11



We call the conditions in Definition 3.3 I-regularity conditions. Condition (a) requires
that F(z,-) be continuous on II for all € R, as in standard nonlinear regression
theory. The condition holds, for instance, if sup, <y OF (-, 7)/0m is bounded and inte-
grable, and implies that sup, <y |F(-,7)| is bounded and integrable, if IT is compact.
When II consists only of a single point 7, the boundedness and integrability of F'(-, )
is sufficient for the condition to hold. Condition (b) requires that all functions in the
family should be sufficiently smooth piecewise on their common support, which is in-
dependent of 7. The condition allows for functions that are progressively less smooth
as the underlying process has higher moments.

Theorem 3.2 Let Assumption 2.2 hold. If F' is I-reqular on a compact set 11, then

as n — o0
o}

% tzn;F(xt, 1) = (/OO F(s, ) d5> L(1,0)

uniformly in w € II. Moreover, if F(-,m) is I-regular,

%\/ﬁtzn;F(xt,w) Ut =g (L(l,O)/

—00

o0

1/2
F(S,ﬂ')F(S,ﬂ')’dS) W(1)
as mn — oo.

Both in sample mean and sample covariance asymptotics, the convergence rates for
functions of integrated time series are an order of magnitude slower than they are for
stationary time series. Roughly speaking, this reduction in convergence rate occurs
because observations from an integrated time series diverge in probability — at a rate
of y/n for the sample of size n. Any observation, unless it is realized in a neighborhood
of the origin, therefore loses its impact asymptotically if it is transformed by a function
which vanishes at infinity as is the case with an integrable function. The asymptotics
for I-regular F' involve the local time L of the limit Brownian motion V. Note
that both the sample mean and sample covariance asymptotics depend upon L only
through its value at the spatial parameter zero. Therefore, only the time that V
spends in the neighborhood of the origin matters for the asymptotics of I-regular
functions. The sample covariance asymptotics yield a limit distribution that is a
normal mixture with a mixing variate given by L. Note that W is independent of V,
and therefore of L.

3.2(b) Asymptotically Homogeneous Functions

For our asymptotic analysis, the class of locally bounded transformations on R will
play an important role and we denote this class by 7y, 5. Any regular transformation
T on R, defined in Definition 3.1, belongs to 7;5. We often need to consider a
sub-class 'Z}?B of 7;p consisting only of locally bounded transformations which are
exponentially bounded, i.e., transformations T such that T(z) = O(el®!) as |z| — oo
for some ¢ € Ry. Also introduced are the class 7p of bounded transformations on
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R, and its subclass 7 including all transformations that are bounded and vanish
at infinity, i.e., transformations 7" such that T'(x) — 0 as |x| — oco. As shown in
Lemma A3 in the Appendix, these are the classes of transformations on R for which
sample mean and sample covariance asymptotics can effectively be bounded. Clearly,
T]g c1p C TLOB C 1. As for regular functions, vector- and matrix-valued functions
belong to a given class of functions when all of the individual components belong to
the class.

Denote by ® the set of parameters, and by RTQ the set of m x m matrices of
positive numbers. Let z: Ry X & — RTZ be nonsingular, and a,b: Ry x & — RTZ.
We say that a = o(z) and b = O(z) on @ if, as A — oo,

|2\ w) ta(\w)|| =0 and  ||z(A,w) tH(A,w)]| < oo

uniformly in w € ®. Define Z : R x Ry x & — R™. The following definition
determines the asymptotic order of a family of functions Z(-, A\,w), parametrized by
w € O, in terms of z(\,w) for large A.

Definition 3.4 We say that Z is of order smaller than z on ® if
Z(x,\w) = a(\,w)A(z,w) or b\ w)A(z,w)B(Azr,w)
where a = o(z) and b = O0(z) on ®, sup cqg A(-,w) € Ty and sup e B(-,w) € T5.

With the notion introduced in Definition 3.4, we may now be precise about the family
of asymptotically homogeneous functions that we will consider.

Definition 3.5 Let
F(x,m) = k(A\,m)H (x,7) + R(x, \, )

where k is nonsingular. We say that F' is H-regular on II if

(a) H is reqular on 11, and

(b) R(xz, A\, m) is of order smaller than k(\, ) for all w € II.

We call k the asymptotic order and H the limit homogeneous function of F. If k does
not depend upon 7, then F is said to be Hy-regular.

The conditions in Definition 3.5 will be referred to as H-regularity conditions in our
subsequent discussions. Roughly speaking, the class of H-regular functions consists
of functions that are asymptotically equivalent to some regular homogeneous func-
tions, which we call their limit homogeneous functions. Condition (b) allows us to
establish this asymptotic equivalence. The regularity requirement for the limit ho-
mogeneous function H in the condition (a) is necessary to ensure that H has well
defined asymptotics.
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Theorem 3.3 Let Assumption 2.1 hold, and let F' be specified as in Definition 3.5.
If F is H-reqular on a compact set I, then as n — oo

n

%H(\/ﬁ, 7'(')_1 ZF(%,W) —a.s. /O H(V(T),TF) dr

t=1

uniformly in m € II. Moreover, if F(-,m) is H-regular, then

%/@(\/ﬁ,ﬂ)_l ;F(xt,w) Ut —g /01 HV(r),7)dU(r)

as n — OQ.

The limit theory for H-regular functions of unnormalized integrated time series are
essentially identical to those of regular transformations with normalized time series,
as given in Theorem 3.1. This is because

F(xy,m) ~ m(ﬁ,ﬂ)H(%,ﬁ)

and the residual is neglibile in the limit. Notice that we may write the limit for sample
mean asymptotics as ]fooo H(s,m)L(1,s)ds using the occupation times formula. This
expression is analagous in form to that of the sample mean limit of I-regular functions.
For I-regular functions, only the local time at the origin matters. Here, the local
time at all values of the spatial parameter influences the limit theory for the H-
regular functions. Sample covariance asymptotics also differ between I- and H-regular
functions. As noted earlier, sample covariances for I-regular functions have mixed
normal limits. However, for H-regular functions, the limit is given in terms of a
stochastic integral and is generally non Gaussian.

3.2(c) Exponential Functions
We start with the following definition.

Definition 3.6 Let
F(z,m) = k(As,m1)E ANz — s),7) + R(x—s,\, 8, 7)

where k is a nonsingular matriz, and define E_(x,7) = E(z,m)1{x < 0} and
R_(z, A\, s,7) = R(x,\, s,m)1{x < 0}. We say that F is E-reqular on II if

(a) E_ is I-regular, and

(b) R_(-—s, A, s,m) is of order smaller than k(As,m)/A on Ry x II.

We call k the asymptotic order, and E the limit exponential function.

These conditions will be called E-regularity conditions. The functions in the E-regular
class are essentially exponentials, as implied by the form of F' and the E-regularity
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condition (a). Note that ordinary exponential functions, when restricted to R_,
are I-regular, and therefore satisfy the condition. Similarly as in the second H-
regularity condition, E-regularity condition (b) ensures that the residual component
is negligible. Note that the parameter set over which we define asymptotic order is
Ry % II, not II. We should therefore compare R_ with x for each (s,7) € R4 x II,
not just for m € II. Naturally, the class of E-regular functions accomodates the
exponential function e*. However, unlike the corresponding condition in Park and
Phillips (1997), the function xe® is not allowed here. We can nevertheless analyze
such functions by looking at the vector function T'(x) = (e*,ze®)’. Note that we may
decompose T'(x) as

AT _ 1 0 e _ eNs 0 eMz—s)
Azer® ] T\ Xs 1 Az —s)er | 7 Aser e AMx — s)eMa—s)
from which form it is apparent that T is in the E-regular family.

Theorem 3.4 Let F be specified as in Definition 3.6. If F' is E-reqular on a compact
set 11, then under Assumption 2.2 or 2.3

1 -1 n -0
%m <1r£1ta<xnxt,7r> ;F(xt,ﬂ) —p (/_Oo E(s,m) ds) L(1, Smax)

as n — oo, uniformly in m € II. Moreover, if F(-,m) is E-reqular, then under
Assumption 2.3,

1 -1 n (0 1/2
4—\/5/4 <lr£1ta<}%xt,7r> ZF(xt,w) U —>g (L(l,smax) / E(S,W)E(S,ﬂ')ld8> wW(1)
=t t—1 J =0
as n — oo.

Asymptotics for E-regular functions have a special feature that does not typically
arise elsewhere, viz. path-dependent rates of convergence. As we will show, the
convergence rate of the asymptotic sample moments of E-regular functions depends
not only on the size, but also on the actual path of the sample. Aside from this
important feature, the asymptotics of E-regular functions is analogous to that of
I-regular functions. To find the asymptotic behaviour of an E-regular function, we
simply restrict the support of the function to R_ and evaluate the local time L at the
maximum of the sample path of the limit Brownian motion V. The asymptotics for
the function F' such that F(—-, ) is E-regular can also be easily obtained. For such
functions, we may well expect that the convergence rate is dependent upon min x;
instead of max x;. Also, the asymptotics in this case will obviously be given in terms
of L(-, Smin), N0t L(-, Syax)-

Just as for regular families of functions, I-, H- and E-regular families of functions
are closed under the operations of addition, subtraction and multiplication. It is obvi-
ous that they are closed under addition and subtraction. That they are closed under
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multiplication is proved in Lemma A6 in the Appendix. It is also straightforward to
show that all the regularity (I-, H- and E-regularity) conditions are preserved, if we
compose a regular (I-, H- and E-regular) family with certain types of functions. For
instance, if F is regular (I-, H-, and E-regular), then so is |F|. This property will
be used in some of our proofs. In subsequent discussion, we sometimes use the term
regularity to mean any of I-, H- and E-regularity as well as regularity in the narrow
sense. This should cause no confusion.

4. Consistency

This section establishes the consistency of the NLS estimator 6,, defined in (7). The
conditions for consistency are easy to verify and, in particular, do not require differ-
entiability of the regression function. They are satisfied for most of the commonly
used nonlinear regression functions, and in these cases consistency of the NLS is
readily established. However, there are some regression functions that are not cov-
ered by the conditions we impose for the consistency results in this section. They
will be considered in the next section, where we derive the asymptotic distributions
of the NLS estimator under stronger assumptions including differentiability of the
regression function.

Defining Dy, (0,6p) = Qn(0) — Qn(0y). To prove consistency, we show one of the
following two conditions.

CN1: for some sequence v, of numbers, v, ' D,,(0,09) —, D(6,6p) uniformly in 6 as
n — oo, where D(-,6y) is continuous and has unique minimum 6y a.s.

CN2: for any 6 > 0, liminf,, . inflg_g,|>5 Dn(8,00) > 0 in probability.

Both CN1 and CN2 are sufficient to ensure that én —p 0o, as shown in earlier work
by Jennrich (1969) and Wu (1981).

For the standard nonlinear regression, Jennrich (1969) proves the consistency of
the NLS estimator by establishing CN1. On the other hand, Wu (1981) derives the
consistency of the NLS estimator for possibly nonstationary nonlinear regressions
through CN2. Given the results in Section 3, it is not hard to show that the required
conditions hold for regressions with various types of regular regression functions. The
Jennrich approach is more appropriate for regression with I-regular and Hg-regular
regression functions, since the regression functions converge at the same rate for all
values of 6. We therefore show that CN1 is satisfied for such functions, under some
identifying assumption that guarantee that D(-,6y) has unique minimum 6y. How-
ever, this approach is not applicable for general H-regular and E-regular functions.
These functions have different rates of convergence for different values of 8, and the
results obtained by Wu are then more relevant. Therefore, CN2 will be shown to
hold for these functions.
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Theorem 4.1  Let Assumption 2.2 hold, and let f be I-reqular on ©. If [%_(f(s,0)—
f(5,00))%ds > 0 for all § # 6y, then CN1 holds. In particular, we have

D(6,60) = ( | o - f(s,eo>>2ds) 1(1,0)

—00
with v, = \/n.

Roughly speaking, the result in Theorem 4.1 holds for all integrable functions which
are bounded and piecewise smooth over their supports. We only require a mild identi-
fying assumption for the consistency result to go through. It holds for many density
type regression functions, as well as all linear-in-parameter regression functions of
the type f(x,0) = fa(x) with nonzero I-regular a. Theorem 4.1 is also applicable for
nonlinear regression with regression function f(x,0) = e0"" with © C R, as long
as p > 8.

It is interesting to compare two nonlinear nonstationary regressions with f(x, ) =
e97* and different specifications for x;: the first with an integrated time series x;, as
in the paper here, and the second with &y = v/t. The latter is sometimes referred to as
the first order decay model. The two regressors are comparable, since x; = Op(\/i_f).
However, their asymptotic behaviors are drastically different. The NLS estimator
is consistent for the former, but for the latter it is inconsistent, as noted earlier by
Malinvaud (1970). The reason is simple. In the deterministic decay model, the signal
from the regressor is asymptotically negligible because e~% tends monotonically to
zero, so in the limit there is no information in the mean function about 6. On the
other hand, in the stochastic trend case, while it is true that the stochastic order of x;
is Op(\/i), the process is recurrent rather than monotonic and 7 keeps returning to
the vicinity of the origin. In consequence, the regressor continues to carry information
about the parameter 6 as t — oo.

Theorem 4.2 Let Assumption 2.1 hold, and let f be Hy-regular on © with asymp-
totic order k and limit homogeneous function h. Assume

(a) k() is bounded away from zero as X\ — oo, and

(b) for all 8 # 6y and 6 > 0, _ﬁs|<6(h(s,9) — h(s,0p))%ds > 0.

Then CN1 holds. In particular, we have

e

D(6,00) = / ((s,0) — h(s,00))2L(1, s) ds

J =00
with v, = nk(y/n)2.
Condition (a) ensures that there is sufficient variability in the regression function as-
ymptotically to generate a signal stronger than the noise. Condition (b) is simply an

identification condition for the regression with Hop-regular regression functions. Un-
fortunately, this condition fails to hold for some commonly used Hg-regular regression
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functions. These can have a limit homogeneous function h(x), say, that is indepen-
dent of 6, so that the true limit homogeneous function is not identified. However, we
can usually achieve identification by properly reformulating the regression function
in this case. Indeed, we may simply consider a regression with the transformed re-
gression function f.(x,0) = f(x,0) — h(x) to avoid the lack of identification. Clearly,
the regression (6) can then be rewritten as

Yy — h(zy) = fu(y,60) + 1y

so the regression is effectively the same as one with the regression function f,.

Example 4.1 (a) For the linear-in-parameter regression function f(z,6) = fa(x),
Theorem 4.2 is particularly easy to apply. Note that this f is Hg-regular if, in the
representation a(Ax) = k(A)b(x) + r(z, A), b is regular and r(x, \) is of order smaller
than k(\). The asymptotic order and limit homogeneous function of f are given
respectively by x(\) and h(z,0) = 0b(z). Condition (b) of Theorem 4.2 is satisfied
whenever ~“8\<5 |b(s)|ds > 0 for all § > 0. One may now easily see that Theorem 4.2 is

applicable for regression functions such as f(z,6) = 0e*/(1+¢%), flog|x|, and 6|x|*,
among many others. The asymptotic orders of these functions are given respectively
by k(A) = 1, log ), and A*. The corresponding limit homogeneous functions are
h(z,0) = 61{z > 0}, 6, and 8|z|*.

(b) Consider the regression function given by f(z,0) = x(1 + 6z) *1{x > 0} with
O C Ry. This is a reparameterized and restricted version of the Michaelis-Menten
model used in Bates and Watts (1988) to fit the relationship between the velocity
of an enzymatic reaction and the substrate concentration. One may easily see that
it is Ho-regular with asymptotic order x(A) = 1 and limit homogeneous function
h(z,0) = 0~11{x > 0}. Clearly, it satisfies all the conditions of Theorem 4.2.

(c) The result in Theorem 4.2 is not directly applicable to the regression function
f(z,0) = (x + )%, which was considered in Wu (1981). Clearly, the function is Hy-
regular with asymptotic order x(A\) = A\? for which condition (a) holds. However,
this function has limit homogeneous function h(x) = 22 for all values of , which fails
to satisfy condition (b). Nevertheless, as indicated above, we may reformulate the
regression with the regression function f.(x,0) = f(x,0) — h(z) = (v + 0)? — 2? =
202 + 6% to apply Theorem 4.2. Obviously, f. is Ho-regular with asymptotic order
k+(A) = A and limit homogeneous function h,(z,#) = 26z, and satisfies the conditions

of Theorem 4.2.

Example 4.2 The logistic regression function f(x,) = e /(1 4 €%*) has the same
lack of identification problem as the model in Example 4.1(c). The function is Ho-
regular with the asymptotic order k(\) = 1, and therefore satisfies condition (a).
However, the limit homogeneous function is given by h(z) = 1{z > 0} and the
identification condition (b) fails. To analyse such a regression model, we need to
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reformulate the model in terms of the regression function

Oz
e 1
The reformulated regression function f,, however, is no longer Hy-regular. However,
it is I-regular and satisfies the conditions of Theorem 4.1. So our asymptotic theory
is applicable in this case also.

Theorem 4.3 Let Assumption 2.1 hold, and let f be H-reqular on © with asymptotic
order k and limit homogeneous function h. Then CN2 holds if

(a) for any 0 # 0y and p,q > 0, there exist ¢ > 0 and a neighborhood N of 8 such
that as A — oo

inf  inf A 0) — gk, 6
ol inf [pr(X, 0) — i, bo)| — oo
lg—ql<e

(b) for all € © and 6 >0, -ﬁ5|§5 h(s,0)ds > 0.

Example 4.3 Consider the Box-Cox transformation f(z,0) = (|z|° — 1)/6 with
0 € © C R,. It is straightforward to see that f is H-regular with asymptotic order
% and limit homogeneous function h given by k(\,0) = A and h(z,0) = |z]?/8,
respectively. We may easily show that such an f satisfies the conditions of Theorem
4.3. It is obvious that condition (b) holds. To see that condition (a) is satisfied, set
0 < ¢ < min(p, ) and, for any given @ # 6, let N be any neighborhood of # such
that 90 g N.

Theorem 4.4 Let Assumption 2.2 or 2.3 hold, and let f be E-regular on © with
asymptotic power order k and limit exponential function e. Then CN2 holds if

(a) for any @ # 0y and 3,p,q > 0, there exist € > 0 and a neighborhood N of 0 such
that as A — oo
AL inf inf inf | pe(As,0) — ge(As,b0p)| — oo

lp—pl<e |s—5|<e OEN
lg—ql<e

(b) forall 6 € O, (If)oo e(s,0)?ds > 0.

It is straightforward to show that f(x,6) = ¢ with © C R, satisfies the conditions
in Theorem 4.4. Notice that f is E-regular, is its own limit exponential function,
and therefore, e(\s,#) = e%**. To show that condition (a) holds, simply set 0 < ¢ <
min(3, p,§) for any given 5,5,7 > 0 and define N to be any neighborhood of 6 # 6
such that 6y ¢ N, as in Example 4.3. It is trivial to show that condition (b) also
holds.
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Corollary 4.5 Suppose that the assumptions in Theorem 4.1 or Theorem 4.2 with
Kk < 0o hold. Then 6% —, 0%, as n — .

By this Corollary, the error variance estimator 62 is consistent in nonlinear regres-
sions with regression functions that are I-regular or Hg-regular with nonexplosive
asymptotic order. Consistency for nonlinear regressions with more general H-regular
and E-regular regression functions will be shown in the next section under stronger
assumptions.

It is interesting to note that 62 = (1/n) Y.}, y? —, o2 for a nonlinear regression
with an I-regular regression function. This follows immediately from Theorem 3.2.
We may therefore estimate the error variance directly from y;, rather than residuals.
However, the convergence rate of the resulting estimator &2 is slower. For, if we
define 02 = (1/n) Y27, u?, then 62 = 02 + Op(n~'/?) whereas 62 = 2 + op(n=/2).
This is shown in the proof of Corollary 4.5.

It is also possible to establish consistency of the NLS estimator using a triangular
array asymptotic framework. Suppose that the actual size of the sample is fixed at,
say, ng. Then we can consider a regression model, which is given for each n by

' no\L/2
Ynt = f(Tne,00) +ue  with @, = (;) Ty (12)
t = 1,...,n, and analyze the asymptotic behavior of the NLS estimator of 6y as

n — oo. When n = ng, we have x,; = x¢ and yps = ¥, and (12) reduces to the original
nonlinear regression (6). If ng is large, the large n asymptotics for the reformulated
regression model in (12) should therefore provide a reasonable approximation for the
original regression model (6). We denote by 6,, the NLS estimator of 6y, and by 72
the corresponding estimator of o2, obtained from the regression (12). We get the
following asymptotics.

Theorem 4.6  Let Assumption 2.1 hold, and let f be regular on © such that, for all
0 # 6y and 6 >0, f‘8|<6(f(3,9) — f(s,600))%ds < co. Then 0,, —, 0y and 52 —, 02 as

n — oQ.

The advantage of triangular array asymptotics is that we can derive the consistency
of the NLS estimator quite easily and under relatively simple conditions, which are
applicable to all the types of regression function that are considered in this paper.
However, they also have some obvious drawbacks. For instance, models like (12) are
really only approximations to (6) and it is not clear how to interpret the accuracy
of the approximations they provide, in contrast to standard sequential asymptotics
which generate approximations with a degree of precision that is given explicitly in
terms of the sample size and for a model that is unchanging.? Clearly, this approach

2For more discussion on the simplifying characteristics of triangular array asymptotics, the reader
may refer to Andrews and McDermott (1995) and the references therein, where the approach is used
to analyse deterministic trends in nonlinear regression.
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to asymptotic theory for trending nonlinear regression avoids the difficulty of dealing
directly with nonlinear functions of integrated process by substituting approxima-
tions in terms of normalized processes. In doing so, some of the character of the
nonlinear dependence is lost. It will be of interest to conduct simulations with both
approaches to furnish information about the adequacy of this alternative approach
to an asymptotic theory.

5. Limit Distributions

This section of the paper derives the asymptotic distribution of the NLS estimator
6,, defined in (7). As in standard nonlinear regression theory, we require conditions
on the regression function that ensure it is sufficiently smooth as a function of the
unknown parameter 6. Assuming differentiability of the regression function also al-
lows us to establish the consistency of the NLS in models where the results in the
previous section are not applicable. For such models, the results in this section will
give consistency as well as the asymptotic distribution of the NLS estimator.

Define of o 5
/= <89> /= (aez-ae)’ /= <aeiaejaek>

to be all vectors, arranged by the lexicographic ordering of their indices. It is some-
times more convenient to define the second derivatives of f in matrix form as in
F=09%f /0000 . Clearly, we may obtain f from F by stacking its rows into a column
vector. In what follows, we denote respectively by h and é the limit homogeneous

function and limit exponential function of H- and E-regular f. Moreover, the asymp-
totic orders of f, f and f of H- or E-regular functions will be written as &, & and k.

Whenever f f and f are introduced, we assume that they exist.
Now let Q,, and Q,, be the first and second derivatives of @y with respect to 6
defined in the usual way, i.e., Q, = 0Q,/00 and Q,, = 0°Q,,/0000'. We have

= fl@,0) (ye — f(24,6))
=1

= 3 Fon0) a6 = 3 Flor,6) o = i)

t=1

ignoring constant, which is unimportant. As in standard nonlinear regression, the
asymptotic distribution of 8,, in our model can be obtained from the first order Taylor
expansion of (), which is written as

Q ( ) Qn(QO) +Qn( n)( - 90) (13)

where 0, lies in the line segment connecting én and 6y. We have Qn(én) =0if én is
an interior solution to the minimization problem (7).
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Let f be one of the regular functions introduced in Section 3. For an appropriately
chosen normalizing sequence vy, it follows immediately from the sample covariance
asymptotics in Section 3 that v, 1Qy(fg) —4 Q(fg) for some random vector Q(6).
Also, if we let

n

QZ(QO) = Zf(wheo)f(wta 90)1

t=1

then v, 1Q2(80)v;, Y —, Q(6o) for some random matrix Q(fp), due to Lemma A6 and
sample mean asymptotics in Section 3. Therefore, under suitable conditions that
ensure v, Qn(0n)v; Y = v, 1Q% (6) vy Y + 0p(1) and Q(6p) > 0 a.s., we may expect
from (13) that

b —60) =~ (5 Oulb)i) v Q)
_ (.10 N (14)
=~ (@0 ) v Qul0) + 0p(1)
—a —Q(0)7'Q(6o)
as 1 — OQ.

For easy reference, we list a set of sufficient conditions that lead to (14), using
the notation introduced above.

AD1: v, 1Q,(6p) —4 Q(6y) as n — oo.

AD2: v;1Q,(00)v; Y = v Q% (Bo) vy Y + 0p(1) for large n.
AD3: 1, GuBo)v, ' —p ((60) as n— .

AD4: Q(6y) > 0 a.s.

AD5: Qn(én) = 0 with probability approaching to one as n — oo.
AD6: v, (Qn(0n) — Qn(60)) v " —p 0 as n — oco.

Conditions AD1-AD6 are standard in nonlinear regression analysis. Given AD1-
ADG, (14) follows immediately from (13).

It is generally simple to check AD1-AD4 for a given nonlinear regression. For all
types of regular regression functions, AD1-AD3 directly follow from the results in
Section 3, if we properly choose the normalizing sequence v,,. Moreover, given AD2,
AD4 can readily be deduced under an identifying assumption to avoid asymptotic
multicollinearity in f For regressions with I- or Hyp-regular f and f, it is also not
difficult to show that AD5 and AD6 hold if we presume the consistency of én, as
established in Theorems 4.1 and 4.2. Clearly, AD5 is an immediate consequence of
the assumption that €p is an interior point of ®. Moreover, AD6 can also be easily
deduced for this type of regression because, for a normalizing sequence vy, independent
of 0, v,1Q° (0)v; Y converges uniformly to a continuous function Q(0), say, of 6.
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Theorem 5.1 Let Assumption 2.2 hold. Assume
(a) f satisfies conditions in Theorem 4.1,

(b) f and f are I-regular on ©, and

c) ffooo f(s,@o)f(s,Ho)’ds > 0.

Then we have

. oo ) —1/2
(b — 60) —a (L(I,O) /_ F(s,60) f(s,eo)'ds> W)

The conditions in Theorem 5.1 hold for a wide range of integrable regression func-
tions that are used in practical applications, including all nonzero I-regular linear-in-
parameter regression functions. For regressions with I-regular regression functions,
the NLS estimator converges at the rate of /n, and has a mixed Gaussian limiting
distribution. The asymptotic theory is not likely to provide a good approximation
in small samples for regressions with I-regular regression functions, due to the slower
than usual rate of convergence. However, this needs to be investigated in simulations.

As one may well expect from our earlier results, the asymptotic behavior of the
NLS estimator can be quite different for regressions with other types of regression
functions. For regressions with Hy-regular regression functions, the convergence rate
is given by /nk(y/n). It therefore converges faster than the standard /n rate, when
k(y/n) diverges, as is usually the case. The limiting distribution theory, however, is
not Gaussian, except for the special case where o,, = 0. We have the following result
in this case.

Theorem 5.2 Let Assumption 2.1 hold. Assume
) J satisfies conditions in Theorem 4.2,

) f and f are Hy-regular on ©,

) I(~k ® &)~ ki|| < oo, and

) IiS\Sé h(s,8)h(s,0y)ds >0 for all 6 > 0.

hen

(a
(b
(c
(

Vik(y/n) (b — 60) —a ( /0 1 h(V, 00)h(V, %)’)

as n — oQ.

1
/ WV, 00)dU
0

Theorem 5.2 is applicable for all Hp-regular regression functions considered in Exam-
ple 4.1. Tt is easy to see that the conditions in Theorem 5.2 hold for all the linear-in-
parameter regression functions in Example 4.1(a). The zero function can of course
be regarded as Hg-regular with any asymptotic order, since it has zero limit homoge-
neous function. For the regressmn function f(z,0) = x(1+0x) 11{3: > 0} in Example

4.1(b), both f(z,0) = —*(1 + 6x)~%1{x > 0} and f(x 0) = 223(1 + 0z)=31{z > 0}
are Ho-regular with #(\) = #()\) = 1(= k(\)). And h(z,0) = —0~21{z > 0}. One
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may easily check that all the conditions of Theorem 5.2 are met. Finally, the reformu-
lated regression function f(z,0) = 20z +6? in Example 4.1(c) also satisfies conditions
in Theorem 5.2. Both f and f are Ho-regular in this case, respectively with £(\) = A
and h(z,0) = 2z, and () = 1 and h(z,0) = 2.

It is more difficult to establish AD5 and ADG6 for general H- or E-regular functions.
If we assume consistency, AD5 would follow immediately. However, we still cannot
invoke the uniform convergence of Qn(G) to prove ADG, since the convergence rate
is dependent upon 6. Moreover, the conditions of Theorems 4.3 and 4.4, where the
consistency of 6, is established for general H and E-regular functions, are somewhat
restrictive and do not allow for some commonly used regression functions. Here we
do not presume consistency to derive the asymptotic distributions. For our approach,
we need to introduce

ADT: there is a sequence i, such that ,unygl —a.5 0, and such that

sup |1z (@n(6) — Gub0))p || = 0

0cN,

where Ny, = {6 : ||1,(0 — 00)|] < 1}.

As shown in Wooldridge (1994), AD7 implies both AD5 and ADG, given AD1-
AD4. Therefore, we may check AD1-AD4 and AD7, instead of AD1-AD6, to deduce
(14).

~ We now present the asymptotic distribution of ¢,, for regressions with H-regular
f. For notational brevity, we write fg(-) = &(-,6p). Moreover, to properly formulate
a sufficient set of conditions for AD7, define a neighborhood of 6y by

N(e,A) = {0 [|io(N) (6 — o) || <A<}
for € > 0 given. We have:
Theorem 5.3 Let Assumption 2.1 hold. Assume

(a) f is H-reqular on ©,
(b) for any 5§ > 0 given, there exists € > 0 such that as A\ — oo

(Fo ® fio)(A) ! <SUP |f()\8,90)|> — 0 (15)

|s| <5

AT (ko ® Fg) ()1 <Sup sup If(/\879)|> — 0 (16)
[s|<56€N(g,N)
A1 (Bg @ Fo ® ko) (V)71 (sup sup |f(/\s,9)|> — 0 (17)
|s|<50€N(g,X)

(©) fisi<s h(s,80)h(s,00)ds >0 for all § > 0.
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Then

Vinko(vn) (én - 90) —q </01 AV, 00)A(V, 90)’) N /01 AV, 8) dU

as 71 — OQ.

Remarks For the regression function f with H-regular f specified as in (a), the
identification condition is given by (c). The conditions in (a) and (c) are usually easy
to check. The conditions in (b), however, are awkward and cumbersome. We may
replace them with a stronger, yet easier to verify, condition as discussed below.

(a) For many H-regrular functions, there exist ¢ > 0 such that

(o @ fi)(A) (Sup sup If(/\879)|> H —0 (18)

[s|<50EN(g,))

AE

for any 5 > 0. Clearly, (15) and (16) are satisfied if (18) holds. Moreover, we show in
the proof of Theorem 5.3 that thrice differentiability of f and (17) are unnecessary if
(18) holds true. Conditions in (15)—(17) can thus be replaced by (18), which is much
simpler to check.

(b) Define N(6) = {0 :]|0 — 0p|| < 6} for § > 0. If there exists € > 0 such that
A [Ro(A) M — 0 (19)

as A — 0o, then we have for any 6 > 0 N(e,\) C N(6) when A is sufficiently large.
Therefore, it suffices to show that there exist € > 0 satisfying (19) and

)\5

(/%0®/€0)()\)_1 <sup sup ]f(As,Q)])

5| <5 0EN(8)

‘ =0 (20)

for some ¢ > 0, instead of (18). It is indeed quite easy and straightforward to show
that (19) and (20) hold for many H-regular functions that are used in nonlinear
analyses.

Example 5.1 Let © C Ri and write § = (a,3). Consider f(x,a,3) = az®.
It is straightforward to see that f is H-regular with asymptotic order x and limit
homogeneous function h given respectively by

k(A a, ) =aXN and h(z,a,B) = 2P
Moreover, we have

20\ _ N8 0 : _ P
F(A @, ) = aXlog A a)’ and  (z,a, ) = 2P log x

It is obvious that conditions (19) and (20) are satisfied for f. To show this, we simply
let € and ¢ in (19) and (20) be any numbers such that 0 < e, < By for any [p.
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The asymptotic results for regressions with general H-regular regression functions
are essentially identical to those for regressions with Hg-regular regression functions
given in Theorem 5.2. The only difference is that the convergence rate is now given
by fo(y/n), which is dependent upon the true value 6y of 6. Likewise, the distrib-
ution theory for the regressions with E-regular regression functions in Theorem 5.4
below is somewhat similar to those with I-regular regression functions in Theorem
5.1. The limiting distribution involved is mixed Gaussian in both cases. However,
the convergence rate for the NLS estimator in regressions with E-regular regression
functions is path-dependent. It depends not only on the size of the sample, but also
on the actual values of the path by way of their maximum. We may expect that with
large probability (and eventually with probability one) the convergence rate is much
faster than other types of regressions, since x; has a stochastic trend and £q is like
an exponential function.

The asymptotic distribution of 6, in the regression with E-regular f can be ob-
tained in a similar way. We let &(-) = &(-,6p) as earlier, and define a neighborhood
of 6y for E-regular f as

N(5,e, { H <Suslf<g o As))l(é) — )

for given § and € > 0.

Theorem 5.4 Let Assumption 2.3 hold. Assume:
(a) f is E-regular on ©;
(b) for any 5§ > 0 given, there exists € > 0 such that as A\ — oo

71 .
A ( inf (/%0®/'{0)()\s)> sup |f(As,60)]]| — 0, (21)

|s—3|<e s<5+e

\° ( inf (/2;0®/'{0)()\s)> sup  sup |f(Xs,0)]|| — 0, (22)

|s—5|<e s<3+e OEN(5,6,A)

)\1/2+5

1
( inf (/%0®/%0®/%0)(/\s)> sup  sup | f (As,0)||| — 0; (23)
[s—3|<e 8<5+e 0N (5,2,\)

(c) J°_ é(s,60)é(s,00)'ds > 0.

Then
r 0 —1/2
v/nkg (121%){n$t> <0n — 90) —yq <L(1,5max) /_OO é(s,0p)é(s,bp) ds > W(1)
as n — oo.

Remark If the regression function f has E-regular f as assumed in (a), it suffices
to have condition (c) as the identification condition. The conditions in (a) and (c)

26



are easy to verify. Similarly, in the case of H-regular functions, we may replace the
conditions in (b) with a simpler one. Indeed, it suffices to have £,6 > 0 such that

-1
<|silg|f§5 "o (/\S)>

)\71/24’6 =0 (24)

and

—1
( inf (/%0®/%0)()\8)> sup sup |f(As,0)]
|s—3|<e s<5+e OcN(6)

ALFe -0 (25)

for any 5 > 0. It seems that conditions (24) and (25) are satisfied for many E-regular
functions that are used in nonlinear analyses.

Example 5.2 Let © C R, x R, and write # = (a, 3). Consider f(z,a, ) = ae’®,
for which we have

. ePw 0 . ePr
H(waauﬁ): aweﬁw e,Bw and 6(5(3,04,5): aweﬁm

and
1

0 1 _ o
/ é(s,a, B)é(s, a, B3)'ds = ( Qﬁa 40?22 ) >0
J—o0 4382 433

whenever a # 0 and 8 > 0. Moreover, it is easy to see that conditions in (24) and
(25) are satisfied if we choose € and 6 > 0 so that —25(5 —¢) + (8o +0)(5+¢) <0,
which holds whenever 0 < ¢ < §/3 and 0 < 6 < 5p(5 — 3¢)/(5 + ¢) as can be readily
checked.

Corollary 5.5 Suppose that the assumptions in Theorem 5.3 or Theorem 5.4 hold.

Then 62 —, 0% asn — oc.

Corollaries 4.5 and 5.5 establish the consistency of the error variance estimator 62 for
regressions with all types of regular regression functions. The estimator can therefore
be used for consistent estimation of the error variance in a wide class of nonlinear
regressions. In consequence, hypotheses about 8 can be tested using standard pro-
cedures like the Wald, Lagrange multiplier and likelihood ratio tests. The statistical
limit theories for these tests are straightforward given the results in this section. For
regressions with I- and E-regular regression functions, test statistics of the usual form
all have limiting chi-square distibutions, respectively, under the assumptions of The-
orems 5.1 and 5.4. However, for regressions with H-regular regression functions, they
are generally dependent upon a nuisance parameter generated by o,,. These become
chi-square under the assumptions of Theorems 5.2 and 5.3, only when o, = 0.

We conclude this section by considering the asymptotic distribution of the NLS es-
timator 6, defined in Section 4 for the case of simplifying triangular array asymptoics.
As shown below, the convergence rate is \/n, regardless of the type of regression. The
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distribution theory is completely analogous to that of the conventional NLS estimator
0y, from a regression with H-regular regression functions. It is non Gaussian/mixed
Gaussian unless oy, = 0.

Theorem 5.6 Let Assumption 2.1 and the conditions of Theorem 4.6 hold. Assume
that f and f are reqular, and f|5|<6 f(s,00)f(s,00)'ds >0 for all 6 > 0. Then

— .1 . . _1 .1 .
Vi@ o0) = ([ voier) [ o)
as n — oo, where fo(x,0) = f(\/nyz,6).

Tests can be constructed from 6, in the usual way with results analogous to those
discussed above. As indicated above, the limit theory for these tests will be chi square
only when oy, = 0.

6. Asymptotics for Additive Models

In this section, we consider a nonlinear additive regression in which the regression
function has additive components of the form

F(,0) =3 fiw.0) (26)

where the f;’s are the I-, H- or E-regular functions introduced earlier in the paper,
and the 6;’s are the unknown parameters. Such a formulation allows us to consider
a wider class of nonlinear regression models including, in particular, regressions that
are partially nonlinear. Unless explicitly stated otherwise, we will assume that there
are no restriction across the 6;’s, and 6 = (#),...,6,,)". Define 6y = (61, -..,6.,0)"-
It is useful to compare regression (6) with the regression function (26) and the

regressions
Yt = fi(xe,0:) + (27)

for i = 1,...,m. Denote by i, the NLS estimator for 6; based on the regression
(27) for each ¢ = 1,...,m. Clearly, all our previous results apply to these regres-

sions. In particular, for some sequence v;y,, v},
distribution under appropriate regularity conditions for f; for i =1,...,m.

The asymptotics for the additive model (26) can also be derived as in (14) by
showing that AD1-AD4 and AD7 hold for some normalizing sequence v,,. To derive
the asymptotic theory for the additive model along these lines, it is first necessary
to reformulate the conditions of Theorems 5.1 and 5.2 conformably with those in

Theorems 5.3 and 5.4.

(Qm - 92-0) has a well-defined limiting
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Theorem 6.1 Let Assumption 2.2 hold. Assume that f, f cmdf are I-reqular, and
25 f(s,00) f )f(s,00)ds > 0. Then the result of Theorem 5.1 follows.

Theorem 6.2 LetAssumption 2.1 hold. Assume that f, f andf are Hy-regular,
(k)] (kiR k)7L E || < oo, cmdf 151<6 h(s,00)h(s,00) ds > 0 for all § > 0.
Then the result of Theorem 5.2 follows.

Let v;, be the normalizing sequence for the NLS estimator ém from (27), i =
1,...,m, as introduced above. We define a normalizing sequence v, by

v, = diag (V1n, - - -, Vinn,) (28)
for the NLS estimator 6,, in the regression (6) with the regression function (26).

Lemma 6.3 Let f be given by (26). If the set of assumptions in any of Theorems
6.1, 6.2, 5.3 and 5.4 are satisfied for each of f;, i = 1,...,m, then AD1, AD2 and
ADT hold with the normalizing sequence vy, in (28).

Therefore, we only need to establish AD3 and AD4 to deduce (14). That is, it is
sufficient to show that 1, Q% (Ag)v;, ' converges in probability to some Q(fp) and that
Q(@o) > 0 a.s. The former follows directly from our results in Section 3, and the latter
will be fulfilled under appropriate identifying assumptions. Often the limit matrix
Q () becomes block diagonal, in which case AD4 is automatically satisfied by the
assumptions on each component function. Moreover, we have asymptotic equivalence
between ém and ém in such cases. In subsequent discussion on the asymptotics for
the additive model (26), we will simply call the f;’s separable if 0;,, has the same
limiting distribution as O; fori=1,...,m.

Theorem 6.4 Let f be given as in (26) with m = 2. If fi and fy satisfy the
conditions respectively in Theorem 5.3 (or 6.2) and Theorem 6.1, and if Assumption
2.2 holds, then fi and fo are separable.

Theorem 6.5 Let f be given as in (26) with m = 2. If fi and fo satisfy the
conditions respectively in Theorem 5.3 (or 6.2) and Theorem 5.4, and if Assumption
2.3 holds, then fi and fo are separable.

Example 6.1 For the partially linear model in which

f(z, 0, ) = ax + g(x, 3)

with I-regular g satisfying the conditions of Theorem 6.1, the result in Theorem 6.2
is applicable. Therefore, under Assumptions 2.2, we have

V(& — ag) —y4 (/01 V2>_1 /OlVdU,
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e

) ~1/2
(B = o) —a (L(LO) | g<s,ﬁo>g<s,ﬁo>'ds) W),

J =00
which can be easily obtained from the results in Theorems 5.1 and 5.2, respectively
for the regressions on ax and g(x, 3) alone.

Thus far, we have assumed that there are no restrictions on 6;’s. But, models
with restrictions on 6;’s can also be considered within our framework. Here we just
look at one such model which seems to appear most frequently in nonlinear analyses.
Let m = 2 in (26), and write the parameters §; and #» more explicitly as

0 =a and 6y =(d/,3)

Also, let 0 = (¢/, 8') and 0y = (o, ))’. The most important case seems to be the
model where f; is Hp-regular and f; is I-regular. Some examples will be given below.
Define

f;(xaﬁ) :fQ(waaoaﬁ)
and f. = f1 + f5. Then, we have

Theorem 6.6 Let Assumption 2.2 hold. Assume

(a) f1 satisfies the conditions in Theorem 6.2,

(b) fo and f5 satisfy, respectively, (a) and (b) of Theorem 6.1, and

(¢) A2k (X)) — oo.

Then regression on f is asymptotically equivalent to that on f., for which fi and f3
are separable.

Example 6.2 For the logistic regression function f(z,a, 3) = ae* /(1 + €5%) with
two parameters o and 3, we may write

f(l‘, avﬁ) = fl(maa) —l—fg(l‘, O‘76)

where

fi(z,a) = al{x >0}
aeP®

«
fa(x, o, 8) = ml{x <0} - ml{m > 0}

to apply Theorem 6.6. It is straightforward to check that the conditions of Theorem
6.6 are satisfied for such an f. We therefore have

-1

V(G — ag) = (‘/:1{1/20}) ‘/0.11{1/20}@'

A a2(n2 — —1/2
== (i) wo

as 1 — OQ.
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Other types of regressions with additive regression functions as in (26) can be
analyzed in a similar way. Here we have just presented results for models which seem
most frequently to appear in practical applications. It is pretty straightforward to
show that the usual error variance estimator 62 in the additive models is consistent,
following the proof of Corollary 5.5. Also, the limit theory for hypothesis testing
in additive models follows as before. Indeed, Lemma 6.3 establishes the asymptotic
equivalence of the nonlinear regression (6) with the additive regression function (26)
and the linear regression with the regressors (f1(x¢,010), - - -, fm (¢, 0mo)) and regres-
sion coefficients (61, ..., 0 ). The statistical limit theories for the estimators and test
statistics in such linear regressions follow directly from our results in Section 3.

7. Conclusion

This paper develops some new technology that makes possible the analysis of nonlin-
ear regressions with unit root nonstationary time series. The techniques rely on the
spatial properties of Brownian motion and these are used to assist in representing
the limiting forms of sample moments and sample covariance functions of integrated
time series. Under fairly general conditions and for an extensive family of nonlinear
regression functions, the paper proves the consistency of nonlinear regressions, finds
rates of convergence and obtains forms for the limit distributions. The convergence

rates can be both slower (n%) and faster (powers of /n) than that of traditional

nonlinear regression, depending on whether the signal is attenuated or strengthened
by the presence of integrated regressors. When the regression function involves ex-
ponentials, it is shown that the convergence rates are path dependent. In most cases
and for most regression functions, the limit distributions of the nonlinear regression
estimators are mixed normal and are always so in the cases we consider when the
equation errors are martingale differences. In such cases, nonlinear inference pro-
cedures apply in the usual manner, so that although the estimators may have non
Gaussian limit distributions, inference is unaffected.

Our purpose in this paper has been to initiate nonlinear econometric analysis for
stochastically nonstationary time series. As we have seen, one of the distinguishing
characteristics of this new field is that the spatial features of a time series can play a
significant role in the asymptotics. In some cases, even the rate of convergence of a
nonlinear estimator can be influenced by the sample path of the regressors, making
a significant departure from traditional nonlinear asymptotic theory. The models we
have studied cover the case of parametric nonlinear cointegration and should prove
useful in empirical studies of nonlinear cointegrating links between economic time se-
ries. A combination of the ideas presented here and those in our other paper, Phillips
and Park (1998), will form the basis of a nonparametric analysis of cointegration and
the authors plan to report on this further extension at a later date.
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8. Appendix A: Technical Results for I(1) Functionals

8.1 Useful Lemmas
We give several lemmas that will be used repeatedly in the proofs of the main theo-

rems and corollaries. The proofs of these lemmas are given in Section 8.2 below.

Lemma A1 Let Ty and Ts be transformations on R. If T1 and Ty are reqular, then
so are Th £ T5 and T1T5.

Lemma A2 Let Assumption 2.1 hold. If T is regular, then

as n — oQ.

Lemma A3 (a) If F(-,m) is a regular family on I1 and my € II, then there is a
neighborhood No of mg such that sup, ¢y F(-,7) and infrcy F(-,7) are regular for all
N C Ng.

(b) If F' is regular on I and II is compact, then sup,cy |F(-, )| is locally bounded.

Lemma A4 Let Assumption 2.1 hold. Then as n — oo
(a) Ly (% = O4s.(1) for T € Ty .

by s T ( To(1) _oas()forTleTLB, T, € T3.
(C) ﬁ Zt 1 (
@) F S (%

N———
N——

8

yJ

£

(1) for T € TPg.
)Tg(xt)ut =o0p(1) for T € TLOB, T € T]g.

g

Lemma A5 (a) Let (Z,2z,®) and (Z;,zi,®;), i = 1,2, be defined as in Definition
3.4, and let W : R x ® — R™ be such that sup,eq W(-,w) € T05. If Z is of order
smaller than zon ®, then W ® Z is of order smaller than I, ® z. Moreover, if Z;
18 of order smaller than z; on ®©; fori = 1,2, then Z1 ® Zy is of order smaller than
21 ® 29 on O X Oy,

(b) Suppose that (Z,z,®) and (Z;,z;,®;), i = 1,2, be defined as in Definition 3.4
and that Z is of order smaller than z on ®. Also, let Assumption 2.1 hold, and
write Zpi(w) = Z(xy//n,/n,w) and z,(w) = z(y/n,w) for short. Then we have
n Lz (W) I Zu(w) —as 0 and nlz, (W) 100 Zn(w)uy —p O uniformly in
w € . Moreover, for each w € ® we have n~ 22, (w)""S1 Zu(w)uy — 0.

32



Lemma A6 Let F; : Rx1l; - R fori = 1,2, and let Il = II; x IlI3. Define
F:RxII—Rby F(-,m) = F1(-,m1) ® Fa(-,m2), where m = (71, 72).
(a) If F; is reqular on I1; for i = 1,2, then so is F' on II.
(b) If F; is I-reqular on compact I1; for i = 1,2, then so is F' on II.
(c) If F; is H-regular on compact I1; with asymptotic order k(-,m) = k1 (-, 71) @Ka(-, T2)
and limit homogeneous function H; for i = 1,2, then so is F' on Il with asymp-
totic order k(-,m) = K1(-, M) ® Ka(-,m2) and limit homogeneous function H(-,7) =
H1(~,7T1) ® H2(~,7T2).

(d) If Fyis E-regular on compact I1;with asymptotic order k; and limit exponential
function E; fori= 1,2, then so is F' on Il with asymptotic order k(-,m) = K1(-,71) ®
k2 (-, m2) and limit exponential function E(-,m) = E1(-,71) @ Ea(-,m2).

Lemma A7 (a) Let Assumption 2.1 hold. If F' is reqular on a compact set 11, then
for large n n=1 >0 F(¢//n,m) ur = op(1) uniformly in m € I1.

(b) Let Assumption 2.2 hold. If F is I-reqular on a compact set 11, then for large n
nY23 | F(x, ) up = 0p(1) uniformly in w € T1.

(c) Let Assumption 2.1 hold. If F is H-reqular on a compact set 11, then for large n
nLk(y/n,m) S F(ay, ™) uy = op(1) uniformly in m € 1L

(d) Let Assumption 2.3 hold. If F is E-reqular on a compact set I, then for large n
n 2 (max zy, ) L (2, ) wp = 0p(1) uniformly in w € T1.

Lemma A8 (a) If F' is regular on a compact set I, then .[01 FE(V(r),-)dr is con-
tinuous a.s. on II.
(b) If F is I-regular on a compact set 11, [ F(s,-)ds is continuous on II.

8.2 Proofs

Proof of Lemma A1 Tt is obvious that T7+T5 and T1T5 satisfy regularity condition
(a), if T} and Ty do. To show that they also satisfy regularity condition (b), let
K C R be compact, and for each e > 0, let T;., T;. and &;- > 0 be given accordingly
by regularity condition (b) for T;, ¢ = 1,2. For each of T'=T1 + T and T} — 15, we
set

I, = Ils + 1257 Ile - TQE

=€

Ts - Tls +T2€7 Tle - I25

and §; = min(6yc, d2.). It is obvious that T. and T are continuous, T (z) < T(y) <
T.(z) for all |x —y| < 6. on K, and [,.(T. —T.)(x)dx — 0, as e — 0, as required
for the regularity of T =T; + Ts.

For T = 1115, it suffices to look at the case where 17,75 > 0. Given the above
result, we write T; = T;‘ — T, where TZ-"' and T are the positive and negative parts
of T;, 1 = 1,2, respectively, and then consider each product term separately. To show
that regularity condition (b) holds for T, let

Ig = IlgIQa a‘nd TE = TlETQE
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and 6. = min(éis,égg) for each ¢ > 0. Clearly, T, and T. are continuous, and
T.(x) <T(y) <Te(z) for all |x—y| < é: on K. Moreover, since T;, and Tz, 7 = 1,2,
are bounded on K, ,/k(Te —T.)(x)dxr — 0, as ¢ — 0. This completes the proof. W

Proof of Lemma A2 The first part is due to Park and Phillips (1997). To prove
the second part, first let s, = max(Smax, —Smin) + 1. Since s, < oo a.s., we have
P{sm > ¢} — 0 as ¢ — oco. Therefore, we may take ¢ > 0 large so that P{s,, > c}
is arbitrarily small. Fix ¢ > 0 large, and define K = [—c¢,¢]. We then denote by T,
and T the functions given for each & > 0 by regularity condition (b) on the compact
set K. In view of regularity condition (a), we may find . and T. such that they are
continuous on R, and T — T, is bounded.
Let T. = T. or T.. Since T} is continuous, T.(V;,) —a.s. T(V). Therefore, by
Kurtz and Protter (1991),
1 1
/ T.(V,) dUy —q / T.(V)dU (29)
Jo Jo

as n — 0o. It therefore suffices to show that as e — 0

/O TV U, /0 v v,

—p 0, (30)
uniformly for all large n including n = oo, in which case by convention V,, and U,

reduce to V and U respectively.
Define

Ape = ‘/0‘1 (Te(Va) = (V) 1{|Va| < ¢},
Bpe = ./OJ (T- (V) = T.(V))* 1{[Vi| > ¢}
Then we have
E</01(T(Vn)—T€(Vn))dUn>2 < 0’E (/01 (Tg(Vn)—Is(Vn)f)

= 0°E (Apn. + By.).

The result in (30) will therefore follow if we show that EA,. and EB,. can be made
arbitrarily small for all large n by choosing ¢ > 0 sufficiently small.

Let D.(z) = (T-(z) — T.(x))?1{]z| < ¢}. Since D, is regular, we have by the
result in the first part of the lemma that

1 1
Am:/ D.(V) Ha,s,/ D.(V) = A..
JO JO
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Moreover,

= S) — S 2 S S
A = /K (To(s) — T.(5))* L(1,5) d

IN

IT. — .| (fgIgL(l,s)) | @) -L.) ds

as ¢ — 0. It now follows that EA,. — EA.; asn — oo, and EA. — 0 as ¢ — 0, since
A, and A, are all bounded. Consequently, EA,. can be made small for all large n
by choosing € > 0 appropriately.
Finally, notice that
By < HT&- —IEHQ H{sm > c}

for all large n including n = oo, and therefore,
= 2
EBp: < ||T: — I.||" Pr{sm > ¢},

which, as we noted earlier, can be made arbitrarily small by taking c large. We now
have (30), which along with (29), completes the proof. |

Proof of Lemma A3 For part (a), let mg € II and a compact set K C R be given.
Since F(-,m) is regular, there exist for each ¢ > 0 continuous IS,TS and 6. > 0
satisfying

I%(x) < Fly,m0) < T. ()

for all |z —y| < 6 on K, and IK(TS —T9(z) dx — 0 as ¢ — 0. However, due to the
equicontinuity of F'(x,-), there is a neighborhood Ny of 7y such that
Iw) — < F(y,m) <To(a) +e

for all m € Ny and all |z —y| < 6. on K.
We now let

T.(x) =T%x) —¢ and T.(z)= Tg(x) +e.

—€

It is easy to see that T, and T. are continuous, and for all N C Np,

T.(z) < sup F(y,7), inf F(y,7) <T:(x)
TEN TEN

for all |z —y| < é. on K, and finally, [, (T — T.)(z)dz — 0 as e — 0 since K is
bounded.

To prove part (b), use the result in part (a) to deduce that for every my € II there
exists a neighborhood Ny such that sup¢y, F'(-,7) and infren, F(-,7) are regular,
and therefore locally bounded. The local boundedness of sup, ¢y |F(+, 7)| now follows
directly from the compactness of II. |
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Proof of Lemma A4 Let K = [spin — 1, Smax + 1]. Part (a) is trivial, because
1 ~ T
L)
n N
for large n. Part (c) is also immediate since
1 — ’ 1 & 2
L 2 L 2 2
E|l—=) T|\—=)uw| =0cE| - T<—> < o°E|T?|x,
(Far()) == (i5r(H))

which is finite, due to that T € 725.
For the proofs of parts (b) and (d), recall that for all T € T/

<|T|lx < oo as.

n

Z T(xt) —a.s. 0,

n
t=1

1

as n — oo. This is shown in Park and Phillips (1997). To show part (b), we note

that
1 ~ T
— E T|— | T
n t=1 ' <\/ﬁ> Q(xt)

since T1 € Tr.g and Ty € TLOB. Finally, we observe for the proof of part (d) that

ZT1< o ) Ty(z,)?

since T1 € Trp and T € TLOB. Moreover, we note that

ZT1< Tt ) Ty (,)?

and, since T € 7g, E||T?||x < oo. It therefore follows by dominated convergence

that
E <% tz:;Tl <%) Tg(xt)ut>2 = o?E < ZTl( Tt ) Ty(zy) ) —0,

which completes the proof. |

1 n
S ||T1||K z Z |T2($t)| —a.s. 0
t=1

1 n
< HT12HKﬁ ZTQ(xt)Q —q.5. 0

< TE [l |75

Proof of Lemma A5 Part (a) follows directly from Definition 3.4. Note that both
TO and T g are closed under multiplication. To prove the first two results in part
(b) let

T(z) =

sup Alw)| and - S(z) =

wed

sup B(sc,m' ,
wed
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and write ap(w) = a(y/n,w) and by(w) = b(y/n,w). We have
_Zn -1 ZZ S ||Zn( ( Z
or [l2n(w) ba(e)] (% >or( ) >> ,

and then the first result follows immediately from Lemma A4. To deduce the second

result, note that
x
< fleu(@) ( ZT(TZ) rm)
x

1 o« ;
n T\ — 9
or ||zn(w) (nz (\/—> xt)’“ﬂ)
and subsequently observe that

i () i < <%2T<m—n>>/2 (%iw?)w:%(m,

(o = ({3 o) () o

due to Lemma A4, since T2 € T g and S? ¢ TO The third result in part (b) is an
immediate consequence of Lemma A4. |

Proof of Lemma A6 For the proof of part (a), assume that F; and F» are regular.
It follows immediately from Lemma A2 that regularity condition (a) holds for F,
since it is the product of two regular functions F; and F5. To show that F satisfies
regularity condition (b), we fix xg and o = (7}, 73) arbitrarily, and let ¢ > 0 be given.
Due to the regularity of F}, there exists § > 0 such that ||Fj(z,7;) — Fy(z,79)|| < e
for all |x — xg| < 6 and ||m; — m|| < 6. We therefore have

1F(z,7) = F(w,m)ll < [[Fi(w,m) — Fi(z, m)| | Fa(z, m)|
+ B, m) | Fa(w, m2) — Fa(w, m3)]|
< e max(||Fy(z, m)||, [ Fa(, 73)[| + )
for all |x —xo| < 6 and ||m — m|| < é. This establishes regularity condition (b) for F'.
To prove part (b), let F} and F; be I- regular To show that I-regularity condition

(a) is satisfied for F', we choose arbitrary 7 and 7. Since the F; are I-regular, there
exist neighborhoods N? of 79 and bounded and integrable T; such that

1Fy(, ) = Fi(w, m))|| < ||mi — m | T ()
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for all m; € N?. Therefore, if we let mg = (7}, 73), then it follows for all m € Ny =
NY x NY that

|F(z,7) = F(z,m)|| < |[Fi(e,m1) — Fi(e,m0)]S2(2) + Si(x)||Fa(, m2) — Fa(, m3)]|
< |lm = 7}l T () Sa (@) + [lm2 — 73| S (2) Ta(x)
< |l —mol[T (),

where we set S;(x) = sup,, oy, ||[Fi(x, m)|| and T' = max(T1, 73, S1,S2). Note that .S;

are bounded and integrable, since II; are assumed to be compact. Therefore, T is

bounded and integrable. Finally, we let

|Fs(,m) = Fy(y, m)|| < eilx =y,
and a = max(||F1||, ||[Fz||) and b = max(c1,cz). Then it follows immediately that

1F(x,m) = Fy,m)|

IN

| Fi(z,m) ® Fy(x,m) — Fi(y, 1) @ Fa(z,m)||
+ || F1(y, 1) @ Fa(x,m2) — F1(y,m1) @ Fa(y, m2)||
a(||[Fi(z,m1) — Fi(y, m)|| + || Fa(x, m2) — Fa(y, m2)]])

<
< ab |$ - y|k7

which proves that I-regularity condition (b) also holds for F.
For part (c), let
F(A\x,m;) = ki(A\,m)Hi(z, m;) + Ri(z, A\, i),
for i = 1,2, and define
KA, T) = k1(A,71) @ ka(A,m2) and H(z,7) = Hi(x,m1) @ Ha(z,m2).

As shown in part (a), H is regular, and the H-regularity condition (a) is satisfied.
Moreover, if we write

F(\z,n) = k(\,m)H(x,7) + R(z, \,7),
then the residual function R becomes
R(‘r7 )‘7 7T) = Rl(xa )‘7 7T1) ® RQ(x7 Aa 7T2)

+ /{1()\,7'(1)1:[1(56,71'1) ® RQ(iL‘, )\,71'2)
+ Ko(A,m) Hy(x, m2) @ Ry(2, A\, ).

It therefore follows immediately from Lemma A5(a) that R(x, A, ) is of order smaller
than k(\, ) on II, and so H-regularity condition (b) is also met. This completes the
proof for part (c).

Finally, for part (d), we let

Fi(Axuﬂi) = HZ(ASﬂTZ)E’L(A(‘r - S)ﬂﬂ-i) + Ri(iU—S, )‘7877Ti)7
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for e = 1,2. If we let
K(,m) = K1(,m) @ Ko(,m2) and  E(-,7) = Ei(-,m) @ Ea(-,m2),
then it follows that
F(x,m) = k(As, 1) E(\(x — s),7) + R(x — s, \, 8,7),
with

R(x—s,\,s,m) = Ri(z—8,\,8,m) ® Ro(x—5, )\, 8,m3)
+ k1(As,m)E1 (M — 5),71) @ Ra(x—5,\, 8,72)
+ KQ()\S"NQ)EQ ()\(l‘ — S),ng) & Rl(x—s,)\, 8,7'('1).
We may now easily deduce from Lemma Ab5(a) that R_(x—s,\,s,m) is of order

smaller than x(As,7)/A, since E;_, which is defined from Ej; in a similar way as E_,
is I-regular for ¢ = 1,2, and hence bounded. |

Proof of Lemma A7 In what follows, we assume w.l.o.g. that F' is real-valued by
taking each component separately. For part (a), let g € II be chosen arbitrarily. We

show that

()

= —=>T | Uy

n Vn
for some neighborhood Ny of mg, from which the stated result follows immediately
because of the compactness of II. From Theorem 3.1

sup
TE Ny

= op(1), (31)

n

Ln Zp(%,@ w = 0y(1), (32)

t=1

so it suffices to show that

1 " T T
s = R nlf el
o2 () = ()
can be made arbirarily small a.s. uniformly in m € Ny, which we now set out to do.
Using Cauchy—Schwarz we have

() -+

(R rGm)) (29

However, it follows from Lemma A6(a) and Theorem 3.1 that

%g <F<%7r) - F<%,WO)>2 . /01 (F(V(r),m) — F(V(r),m0))2 dr,
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uniformly in 7w € II. Let Ng be the §-neighborhood of my. Then, for any € R

sup ‘F(.I‘,’]T) _F(x77T0)’ —0
TENs§

as 6 — 0, due to the continuity of F'(z,-). Since sup, ¢y |F(-,7)]| is locally integrable
as shown in Lemma A3(b), we may invoke dominated convergence to get

1 00
/ (F(V(r),7) — F(V(r),m0))? dr = / (F(s,7) — F(s,m0))2 L(1, 5) ds — .. 0
Jo

J =00

uniformly on Ng, as 6 — 0. It therefore follows from (33) that there exists a neigh-
borhood Ny of mg such that

2 () -+ ()

— Fl—,m) —F|—,70) | ) ut
2 () (5

for any £ > 0 given. We may now easily deduce (31) from the results in (32) and
(34). The proof for part (a) is therefore complete.

We now prove part (b). As in the proof of part (a), we fix an arbitrary my € II.
Due to the compactness of II, it suffices to show that there exists a neighborhood Ny

of 7y for which
1 n
NG tEZI F(xy,m)ut

Since it follows from Theorem 3.2 that

sup
TENy

< € as. (34)

= 0,(1). (35)

sup
TENy

4%/5 S Flar, mo) w = Op(1), (36)
=1

it suffices to show that

n

Z (¢, m) = Fx,m0)) e

=1

= 0p(1) (37)

sup
TENy

to deduce (35).

However, we have by I-regularity condition (a) that

Z (e, ) — F(2e, mo)|Jue] < || — o] (UZ|T g |+Z|T y |wt> ;o (38)

=1 =1
where w; = |uy| — E(|u||Fi—1). Note that E(|u||Fi—1)? < 02 by Jensen’s inequality.
Since T is bounded and integrable, we have

n

7 > T ()| = 0p(1),
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and
1 & ’ 1 &
E <% ; |T(wt)|wt> < ’E (E ;T(xt)2> — 0.

It is therefore clear from (38) that we may choose Ny such that (37) holds, which
completes the proof.
For the proof of part (c), note that

ZF xy, o) up = Op(1),
t:l

due to Theorem 3.3. Moreover, by Cauchy-Schwarz,

n

Z xtv (xtvﬂ-o))

t=1

1 n 1/2 1 n 1/2

( 2 Z xta (xhﬂ-O))Q) (5 Zu%> 9
t=1

and we have from Lemma A6(c) and Theorem 3.3 that

-1

QZ (20, 7) — Fla1,m0))? —as / (H(V(r),7) — HV(r),m0))* dr

0

uniformly in 7 € II. We may now use the same argument as that in the proof of part
(a) to get the stated result.
To prove part (d), we observe that

1 " 1 "
> Fla,m)u = > " E(w,m) ut + 0p(1),
t=1 t=1
N <1r£1{a<xn Xy, 7r> N <1rgga<xn Xy, 7'(')

uniformly in 7 € II, which is due to Lemma A5(b). The rest of the proof is essentially
identical to that of part (b), and is omitted. [

Proof of Lemma A8 For the proof of part (a), it suffices to show that

/oo F(s,)L(1, 5)ds (39)

is continuous a.s., due to the occupation time formula. The continuity of (39), how-
ever, is an immediate consequence of dominated convergence, and follows immedi-
ately from the a.s. integrability of sup,cp |F'(-,7)|L(1,-). Note that sup, g |F(-,7)|
is locally bounded, as shown in Lemma A3(b), and hence locally integrable, and
L(1,-) has compact support a.s. We may also easily deduce part (b) from dominated
convergence, due to the continuity of F(z,-) for all x € R, and the integrability of
supyert [P, 7). .
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9. Appendix B: Proofs of the Main Results

Proof of Lemma 2.1 Let (U, V,) —a (U,V), as given by condition (a) of As-
sumption 2.1, and denote by (€2, F, Pr) the probability space where (U, V) is defined.
For each n, we construct a sequence of stopping times (7,,4)}", and random vari-
ables (V)i on (Q,F,Pr), from which the desired (Uy,V,7) is then defined. In the
subsequent construction, we let

= ((UOr<™) (Vi) s Fuu = o ((Ualna), V(i)

= a((U(r),T’S %) ,(Vm‘)z;é) y Gnt = U((Un(ni))gzm (Vn(m))f;é)

where n; = i/n for 0 < ¢ < n. Also, the symbolism ‘-|F” is used to signify ‘distribution
conditional on the o-field F .

Let n be given and fixed. First, we choose any random variable Vo on (2, F, P),
which has the same distribution as V,,(0), i.e., Vo =4 Vn(0). Second, let 7,1 be a
stopping time defined on (2, F,P), for which U(7,1/n)|Fy =4 Un(1/n)|Fno. Such a
stopping time exists, as shown in Hall and Heyde (1980, Theorem A1). We then define
a random variable on (2, F,P), denoted by V,,1, such that V,,1|Go; =4 Vi (1/1)|Gn1,
and so on. It is obvious that we may proceed to find (7,,;)7q and (Vi,)7 on (2, F, P)
successively so that

U(%)‘f;,t,l —y Un <%>‘fn,t_1 and V| G2, =a Vi (%)

in a zig-zag fashion. If we let (7,,4)7_ and (V)7 be constructed in this way, and
define

gnt

U;(T) = U<Tn,'[;’”n]> and VT(LJ (’I“) = Vn[nr]a

it follows immediately that (Up,Vs) =4 (U5, V,S). Such processes (U5, V,S) can, of
course, be found for all n.

It is shown by Park and Phillips (1997) and Phillips and Ploberger (1996) that we
may choose the stopping times 7,,; so that they satisfy condition (9). In particular,
it follows from the Holder continuity of the sample path of U that

o T} |M?°
U5~ U@ < e| = —r|

n

a.s., for some constant ¢ and any € > 0. Now we may easily deduce from (9) that

sup |Uy(r) =U(r)|=o (n(_1+5)/2+6) a.s.
rel0,1]

for 2/¢ < 6 < 1 and any € > 0. In particular, US —g4s U uniformly on [0, 1].
Moreover, since (U7, V,2) —4 (U,V), we may redefine V2, if necessary, so that the

distribution of (Uy,V,?) is unchanged and V7 —g5 V uniformly on [0,1]. This

is possible due to the representation theorem of a weakly convergent sequence of
probability measures by an almost sure convergent sequence —e.g. see Pollard (1984,
pp. 71-72). |
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Proof of Lemma 2.2 See corollary 1.6, p. 215, of Revuz and Yor (1994). |

Proof of Theorem 3.1 For sample mean asymptotics, we write
i Z F( il ) / F(V,

/ F(V,(r),m)dr —>a,5,/ F(V(r),m)dr, (40)
0 0

uniformly in 7 € II. Fix an arbitrary mp € II. Due to Lemma A3(a), there exists
a neighborhood Ny of my such that sup,cy F'(-,m) and infrcn F(-, ) are regular for
any neighborhood N C Ny of mg. Therefore, it follows from Lemma A2 that

and show that

1 1
/ sup F(V,,(r),m)dr —q.. / sup F(V(r),m)dr, (41)
0 meN 0 meN
.1 -1
inf F(V, dr —g fF dr, 42
[ int P = [ int PG (42)

as n — o0.
Let Ns C Np be the §-neighborhood of 7. Then we have

sup F(x,m) — mf F(m ) — 0,

TENs
as § — 0, due to the continuity of F(z,-). Moreover, as shown in Lemma A3(b),
supyerr |[F(+,m)| is locally bounded. It therefore follows from the occupation time
formula and dominated convergence that

| /0 1 (Sup F(V(r),m) ~ inf F(V(r),w)) dr

TEN

e el

= / (sup F(s,m) — inf H(s,w)) L(1,s)ds —q.. 0, (43)
J—oco \ TENs TENs

as 6 — 0. We may now easily deduce from (41)—(43) that there exists a neighborhood

of mp where (40) holds uniformly in 7. Since 7y was chosen arbitrary and II is compact,

(40) holds uniformly on II, as was to be shown. The sample covariance asymptotics

are given in Lemma A2. |

Proof of Theorem 3.2 Fix my € II. For any neighborhood N of mg, we have by
I-regularity condition (b)

7

ﬂ%él]f;[F(a?,ﬂ') _#Iel]f;[F(yaﬂ-)

sup F(QT,’]T) — Sup F(y,’ﬂ')
TEN TeEN

< sup | F(z,7) — F(y, )|
TeEN

< clz—ylk.
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It follows that

n

%;:EEF(@,W) —p </_Z§1€1]}\)[F(s,7r) ds) L(1,0), (44)

f Z inf F(z,,m) — < /Z inf F(s, ) ds> L(1,0), (45)

due to Theorem 5.1 of Park and Phillips (1997).
Let Ns be the 6-neighborhood of my. By I-regularity condition (a), we have

sup F(z,m)— inf F(z,m)— 0,
TENg TENs

as 6 — 0, and, in view of I-regularity condition (a) and dominated convergence,

/ sup F(s,m)ds — / inf F(s,m)ds— 0, (46)

—oo TEN; oo TENs

as 6 — 0. We may now easily deduce from (44)—(46) that there exists a neighborhood
of my such that

% gp(xt, ) = (/Z Fs, ) ds> L(1,0),

uniformly in 7. Since my was chosen arbitrarily and II is compact, the proof for
sample mean asymptotics is complete.

We now prove the result on sample covariance asymptotics. For notational sim-
plicity, we assume that I is real-valued. The proof for a vector F follows by consid-
ering an arbitrary linear combination of the components of F. Define

_ \/ﬁkz_iF(\/ﬁV<%) ) () - u(2e2))

+/nF (\/ﬁvn (%) ,7r> (v - U(M)) ) (47)

n

for 7, k—1/n <1 < Tpr/n, where 7,1, kK =1,...,n, are the stopping times introduced
in Lemma 1.2. One may easily see that M, is a continuous martingale such that

4%/5 ZF(%,W) uy = M, (%) , (48)

and that
= 04.5.(1), (49)

by Lemma 1.2.
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The quadratic variation process [M,,] of M, is given by
ol t—1 ? o T,
(M), = ﬁZF(ﬁ%(—)m) (7 - et
pot n n n
2
+ ﬁF(ﬁVn <u>,7r> (7’ - M)
n

_ \/E/OTF(\/EVn(s),W)st(l+0a.s.(1))7

due to (49), and therefore,

[My]r — < /OO F(s,w)2d5> L(r,0), (50)

J =00

uniformly in r € [0,1], from the result obtained in the first part of this theorem.
Moreover, if we denote by [M,,, V] the covariation process of M,, and V, then

(M, V], = é/ﬁ]:z_iF(\/ﬁVn <%> ,7;> (E _ Tn,t,l) Tuo

+/nF (\/ﬁvn (%) ,7r> (7’ - T”;’f;l) Tu
= ou /i /O "F (VAVi(s), 7) ds (1+ 0 (1))

uniformly in r € [0, 1], due to (49). However, for all r € [0, 1],

{‘/ﬁ/OTF(\/ﬁVn(s),ﬁ) ds| < %\/ﬁ (\/ﬁ/ol ‘F(\/ﬁVn(s),ﬂ)}ds> —p 0,

as n — oo. It follows that

(M, V]pory —p 0, (51)

where py,(r) = inf{s € [0,1] : [M,]s > r} is a sequence of time changes.

The asymptotic distribution of the continuous martingale M,, in (47) is completely
determined by (50) and (51), as shown in Revuz and Yor (1994, Theorem 2.3, page
496). Now define

Wi (1) = My (pn(r)) -
The process W, is called the DDS (or Dambis, Dubins-Schwarz) Brownian motion
of the continuous martingale M,, [see, for example, Revuz and Yor (1994), Theorem
1.6, page 173]. It now follows that (V,W,,) converges jointly in distribution to two
independent Brownian motions (V, W). Therefore,

M, (%”) = Myu(1) + 0,(1)
—q W (L(l,O) / F(s,w)2d5>
which, in view of (48), completes the proof for the second part. |
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Proof of Theorem 3.3 Due to Lemma A5(b),

v Lt
—K \/ﬁ”]‘() IZR<—7\/ﬁv 7T> —a.s. 0,
N

uniformly in 7 € II, and

%m(\/ﬁ,ﬂ)_l XH:R(%, NGO 7r> ug = 0,

t=1
for each 7 € II. We therefore have
1 -1 - RS Lt
—r(v/n, ) > F(ag,m) = ~ > H(—=,7) 4 0as.(1),
t=1 t=1

uniformly in 7 € II, and
1 n
%ﬁ(\/ﬁﬂr)’l > F(a,mu Z ( > ug + op(1),

t=1

for each m € II. The stated results follow directly from the application of Theorem
3.1 to the limit homogeneous function H. |

Proof of Theorem 3.4 Let x} be as in Assumption 2.3, and define s,, = maxj<¢<p, %
‘We have

1 n
NG fg&antﬂT) ZF(xt,w)

n
E(xf,7) + vnk(y/nsp,,© ln R( nsn,ﬁ>
=1

A

E(xf,m) + 04.5.(1),

Sl= Sl-
\E ||M:

o~
Il
—

uniformly in 7 € II. This is because s, —q.s. Smax > 0 and

n
Vnk(y/nsy, T E ( n sn,7r> —as 0,

=1

uniformly in 7 € II, by Lemma A5(b). It therefore suffices to show

% tzn;E(x;*,w) . (/O E(s, ) ds> L(1, S, (52)

—o0

uniformly in 7 € II, for the proof of sample mean asymptotics.
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To deduce (52), we first define V() = V,,(r) — s, and write

N *—n.l nV>*(r), m)dr
%;ﬂ%m—féﬂfW%M

1
=ﬁAmmmmw

However, by Theorem 3.2,
1 00
\/ﬁ/ E_(JaVE(r), @) dr —, (/ B (s,7) ds> £*(1,0), (53)
0 —00
uniformly in 7 € TI, where L* is the local time of the process V* given by V*(r) =

V(r) — Smax. As noted by Park and Phillips (1997), we have the same result for V;
and V* as for V,, and V. Notice that

L*(1,0) = L(1, Smax)
.00 0
/ E_(s,m)ds = / E(s,m)ds,

to deduce (52) from (53).

For sample covariance asymptotics, we write

1 1
\/[4}71/{ (fg&};%,ﬁ) ZF(wt,W) Uy
1 & @}
= ZE o, ) ug + Vne(ynsy, T 71 nZR( nsn,w>ut

= \/_ZEmt, ) up + 0g.5.(1),

upon noticing that

Vnk(v/nsy, T Z < n sn,w> u —p 0,

due to Lemma A5(b). The rest of the proof is identical to the second part of the proof
of Theorem 3.2. Notice that V;* and V* behave under Assumption 2.3 in exactly the
same way as V,, and V' do under Assumption 2.2. |

Proof of Theorem 4.1 It follows readily from Lemma A7(b) that

1
\/ﬁD 9 (90 Z xt, wt,eo)) +Op(1)7

uniformly in # € ©. The stated result now follows immediately from Lemma A6(b)
and Theorem 3.2. Notice that L(1,0) > 0 a.s., and, therefore, D(-,6p) has a unique
minimum at fy a.s. when and only when the given identification condition holds.

The continuity of D(-,6p) follows from Lemma A8(b). [
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Proof of Theorem 4.2 Due to Lemma A7(c), we have

1 n

——= ) (f(@1,0) — f(a,600)) ue = 0p(1),
uniformly in € ©. Furthermore, since k is bounded away from zero by condition
(a), we have

e Del ) = > (flas) = flaw ) + op(1),
uniformly in € € ©. The stated result follows directly from Lemma A6(c) and Theo-
rem 3.3. Since L(1,0) > 0 and L(1,-) is continuous a.s., there exists a neighborhood
of zero on which L(1,-) > 0 a.s. Therefore, D(-,0y) has unique minimum 6y a.s. when
and only when the identification condition (b) holds. The continuity of D(-,6p) is
due to Lemma A8(a). [

Proof of Theorem 4.3 Let
1 n

m(yv/n,0? = ——— flag, 0)2,
e D Dt

m(f)* = / h(s,0)*L(1, s) ds.
We have m(y/n,0) —q4.5 m(#) uniformly in 6 € ©, by Lemma A6(c) and Theorem
3.3. It follows from Lemma A8(a) that m is continuous a.s. Also, due to condition
(b), m > 0 a.s.

Let § > 0 be given, and define ©g = {[|§ —6p|| > §} C ©. Fix an arbitrary 6 € Oy,
and let N be the neighborhood of @ given by the condition (a). Also, set p = m(6)
and ¢ = m(6p). For large n, we have

Sup}m(\/ﬁae) _ﬁ} <g,

0eN
since m(y/n,0) —q4s m(#) uniformly in § € © and m is continuous. Moreover,
|m(y/n,0p) —q| < e for sufficiently large n. Notice that p,g > 0 since m > 0.
Therefore,

inf inf | pr(A, 0) — gr(A, 60) | < | k(v O)m(v/n,0) — k(\/n,0)m(v/n,00) | (54)

lp—p|<efEN
lg—ql<e

for large n.
Define

(f(e,0) — flae,00))°,

N
=
na
>
<
I
S|
(]

o+
I

1

(f(wtae) - f(wtaeo)) Ug.

z
>
>
S
I
S|
(]

o~
Il

1
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Since Y 3, uZ/n = 02 + 0p(1), we have by the Cauchy-Schwarz inequality
|Ba(6,60)] < An(0,60)" (0° + 0,(1)) ,
and, therefore,
(A, Y1Bnl) (8,60) < An(8,600) /% (02 + 0p(1)), (55)

uniformly in 6 € ©. However, using (54) and the inequality

n R \NY2 e U2\ 2
Sz ((S) - () )
t=1 t=1 t=1
which holds for any real-valued sequences (a;) and (b;), we may deduce that

An(8,80) > (k(v/n, 0)m(y/n,0) — k(\/,00)m(v/n,60))* —as. 00, (56)

uniformly in 8 € N.
Now it follows from (55) and (56) that

Dn(eve()) = An(e,eo) (1 -2 (A;”Bn‘) (9700))
= A,(0,00) (14 0p(1)) —p 00,
uniformly in # € N. Since Oq is compact and @ was chosen arbitrarily, we may easily

deduce that
-1 .
n 0len®fo Dy, (8,6p) —p 00,

from which the stated result follows immediately. |

Proof of Theorem 4.4 Let

n

m(\/ﬁ"g)2 = NG \/_Sn, z; zy, 0

m0)? = ( /"0 e(s,e)%zs) L(1, S,

J =00

where s, is defined in the proof of Theorem 3.4. In view of Lemma A6(d) and

Theorem 3.4, we have
m (\/ﬁa ‘9) _>p m(e)a

uniformly in § € ©. It follows from Lemma A8(b) that m is continuous, and since
L(1, Spax) > 0 a.s., m > 0 a.s. for all # € © when and only when condition (b) holds.
We let A,, and N be defined as in the proof of Theorem 4.3. Then we have

An(8,00) > 1~V (k(Vnsn, 0) m(v/n, 0) = k(\/nsn, 60)m(v/n,00))” —a.s. o0,

uniformly in § € N, by condition (a). Note that s, —g45 Smax > 0 a.s. The rest of
the proof is essentially identical to the proof of Theorem 4.3 and is omitted. |
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Proof of Corollary 4.5 Let

1 n
2 _ 1 2
O = g uj . (57)

t=1

It follows from Assumption 2.1(b) that 02 —, o2. Assume first that f satisfies
the assumptions in Theorem 4.1. Then, as shown in the proof of Theorem 4.1,
n12D,(8,800) —, D(,6p) uniformly in 6 € ©, with D(6,6p) given in Theorem 4.1.
We have, in particular, that D(-, 6) is continuous a.s., and therefore D(-,0y) = 04.5.(1)
near 0y. It follows from the consistency of 0,, that n—1/ 2Dn(én,90) = 0p(1), which
implies 62 = (f,%—l—op(n’l/ 2), and hence, the stated result follows. For f satisfying the
assumptions in Theorem 4.2 with x < oo, we note that n=tk;2D,,(6,60) —, D(6,60,)
uniformly in 6 € O, where D(-,6p) is an a.s. continuous function given in Theorem
4.2. Therefore, in the same way as above, we have 62 = 02 + 0,(k2). The stated
result follows immediately, since k2 = O,(1). |

Proof of Theorem 4.6 Redefine

n
:Z Ynt — xnta ))27

t=1
and Dy, (0,00) = Qn(0) — Qn(6p). Also, let
DO.00) = [ (fo(s,8) = fuls B0))* L1, 5)ds,
where fo(z,0) = f(v/nyx,6). By successive application of Lemma AT7(a), Lemma

A6(a), Theorem 3.1 and the occupation formula, we obtain

1 n
Z wm‘a (wm‘a 90))2 + Op(l) —p D(ea 90)7

t=1

n(0,600) =

zli—‘

uniformly in 8 € ©. Moreover, as in the proof of Theorem 4.2, we may deduce that
D(-,8p) has unique minimum 6y when and only when the given identifying condition
is satisfied. We have therefore shown that CN1 holds, which is sufficient to establish
the consistency of f,,. The consistency of 7% follows immediately from the uniform
convergence of n= 1Dy, (+,6p) to D(-,6p), which is continuous a.s. due to Lemma A8(a).

Proof of Theorem 5.1 Given the I-regularity of f in condition (b), AD1-AD3
follow directly from Lemma A6(b) and Theorem 3.2 with v, = ¥n. Since we have
in particular

Q00) = £1,0) [ Fs.00)(s,60)ds,
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we may easily deduce AD4 from condition (c). Moreover, AD5 holds trivially, since
én —p bOp, due to condition (a) and Theorem 4.1, and we assume that 6y is an
interior point of ©. It therefore remains to show AD6. For ADG6, we prove that
Q. (0) —p Qo(0) uniformly on a neighborhood of . In view of the consistency of 6,
this establishes AD6.

We now write

n n n

Qn(0)=> f(xt,0)f(t,0) +  Far,0) (f(wr,0)— f (w1, 00)) =Y Fwr, O)ug. (58)

t=1 t=1 t=1

By Lemma A6(b) and Theorem 3.2, we have
Zf 200) (a1, 6) = LLO) [ (s, f(s,6)ds, (59)
uniformly in 6 € ©. Also, it follows from Lemma A7(b) that
1 ..
= Z f(mta 6) U —>p 07 (60)
=

uniformly in @ € ©. Finally, since | f(-,0)— f(-,00)]| is I-regular on © and f is bounded,
we have from Theorem 3.2

Z xt7 $t7‘9)_f(wt790 ‘

[Eil fo 21,0) = f (w2, 60)

= | 200 [ 15t 0= s 00l s,
uniformly in 8 € ©. Furthermore, the limit function is continuous in 6 by Lemma
A8(b), and we can make it arbitrarily small in a neighborhood of 6. This, together
with (59) and (60), completes the proof. [

Proof of Theorem 5.2 We have AD1-AD3 directly from Lemma A6(c) and Theo-
rem 3.3 with v, = \/nfk(y/n), due to the H-regularity of i in condition (b). Moreover,

(e.o]

1
(0) = / WV (r), 60)h(V (1), B0 dr = / (s, 60)hs, 60Y L(1,5)ds,  (61)
0 —o0
and AD4 follows immediately from condition (d). As in the proof of Theorem 5.1,
AD?5 holds trivially because of the consistency of 6y, implied by condition (a). To
finish the proof, it therefore suffices to show ADG.
Write ky, = k(y/n),ky, = k(y/n) and &, = K(y/n) for notational simplicity. It
follows from Lemma A6(c) and Theorem 3.3 that

—12 Flae,0) (20, 0) v s /O WV (), 0)h(V (), 6) dr, (62)
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and from Lemma A7(c) that

(Vn @ vy) tﬁ; fla,0) up = (fn ® o)Lty (%_1 tﬁ; fla,0) ut> —, 0, (63)
uniformly in 0 € (:). Therefore, for AD6, we only need t; show
(0 @ 1) Zf(w 00) (F 1, 60) — F (0, 60) (64)
= ((fin @ fin) hiniin) %Z (it Fl@s00) ) (o (f (@, 0) = (1, 00)) = 0p(1).

It is easily seen from (58) that (62)-(64) imply ADG.
To prove (64), apply Theorem 3.3 to |f(-,0) — f(-,0)| and use the local bound-
edness of h established in Lemma A3(b) to deduce that

=3 (i Fws0)) (5 (F1,0) — s 00)) H
t=1

HhHK Nk, Z: ’f ¢, 0 mt760)’

s [ [ 1V 0).0) = V0

uniformly in § € ©, where K = [Syin — 1, Smax + 1] X ©. To deduce (64), simply note
that the limit function is continuous in 6, due to Lemma A8(a). [

Proof of Theorem 5.3 We show that AD1-AD4 and AD7 hold to establish (14).
Write &y, = k(y/n) to simplify notation. It follows directly from condition (a) and
Theorem 3.3 that AD1 holds. Also, AD2 is immediate, since we have from (15)

(/'{n®/%n)*1 (sup |f( ns,0o)| )H Z|ut| —p

|s|<5

n

(vn @ vn)~ Z (¢,60) u

Under AD2, we may easily get AD3 by applying Lemma A6(b) and Theorem 3.3. In
particular, we have Q(6p) given by (61), and therefore, AD4 follows straightforwardly
from condition (c).

To show AD7, fix 6 such that 0 < § < ¢/3, and define y, = n'/?7 %%, and
vy, = nt/2k, so that pnvy, - — 0 as required. Let N,, be defined as in AD7. We first
write

52



where

D3, (6)

D (0)

and define

fori=1,...,

Wiyn

@) <

—~
fa
~
A

—~

fa)
N
IN

n

= 3 o) (F(a0.0) = for )

= S ()~ Flwt)) (Foe) — o)
t=1
- iﬁ(xt,e) (f(z,0) — f(a,00)),
t=1
= — z”: (F(wt,Q) — F(%,‘%)) U,
@2,(0) = |1 DinO)1i7"

3 80| i ) i

I

il
I

(fn ® ,“n)_lf(xt’é)Hz )

.
(]
I

3

pi e, 60)|| [0 @ ) ™ F a6

o~
Il

1
S o )
t=1

Z H(un ® fin @ i) L f (xt,é)H e,
t=1

where 6 lies in the line segment connecting 6 and 6.
Let § = max(Smax, —Smin) + 1. Then we have for large n

for all ¢

2
Win

=1,...,

(0) <

3

El

46

sup | f(z,0)| < sup sup |f(v/ns,0)],

0EN,, |s|<50€ N,

n. It now follows from (66)—(69) that

s|<50EN,

(Fin ® "Qn)_l <Sup Sup |f(\/ﬁs,9)|>

|s|<50€N,

2
(kn@kn)_l <sup sup |f(\/ﬁs,9)|> )
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36
2 n . = -1
w3, (0) < — ||(kn ® fp, sup sup |f(v/ns,0)| Ky, f(xt, 6p) H
5 (0) NG ( ) <S|<59€Nn’f L f (e, 6o
A . 2
+o |[(fen @ fo) | sup sup |f(v/ns,0)] (72)
2n 15/<5 0€ N,
2 1o 030 |
Wiy, < — (A, ® Ky, @ Kp, sup sup (s, U 73
1n(0) Tn ( ) |5|<896Nn!f Z! il (73)
from which we may easily deduce that @?,(0) = 045.(1), i = 1,...,4, uniformly in
6 € Ny, due to (16) and (17). Now AD7 follows immediately from (70) — (73). This
completes the proof. |

Proof of Theorem 5.4 The proof is entirely analogous to that of Theorem 5.3.
We show AD1-AD4 and AD7 to establish (14). It follows directly from Theorem 3.4
that AD1 holds. For AD2, note that

n

(vn @)~ Z (x¢,6p) u

< Vn

(kn@kn) (SUP |f fs ‘90 )H

<5
1
— Z ‘ut’ —as. 0,
n t=1

which follows from (21). We then have from Lemma A6(c) and Theorem 3.4 that
AD3 holds with

-0

3(60) :L(l,smax)/ &(s,00)é (s, 00 ds.

J =0
Therefore, in particular, AD4 holds under condition (c).

We now show AD7. Let § = spax, and let s, be defined as in the proof of
Theorem 3.4. We have s, —45 5 as n — oo. Fix ¢ such that 0 < § < ¢/3, and
write for notational brevity &, = ko(y/nsy). Define p, = /4% and v, = n'/4%,
Obviously, pnv,, 1 —4.s. 0. Moreover, if we let N,, be defined as in AD7, then

Nn C N(§757 \/ﬁ)a

for all large n. ) )
We decompose Q,(0) — Qn(6p) as in (65). We have from (66)—(69) that for all
0 € N,

36
h(6) < = mnmn)—l(sqp sup |f'<¢ﬁs,e>|)' LS i e, 00)|70)
n s<5+e 0N,
2
w2 (0) < n* <kn®kn>—1<sup sup \f'(ﬁs,e)\) , (75)
s<5+€ 0N,
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36

(i) (s s vs. o) )| -

n .1 p
wh(60) < = S sup i (a1, 00) |
46 ) 2
5w k) (s sup 1 o) )| (76)

s<3+e 0N,

@3,(0) < Al

(Fin, ® Fop, ® Fip) ™! <sup sup | f (As,0)] )H Z|ut| (77)
s<s+ebHeN,

from which it follows that @3, (0),@3,(0) = o,(1) and w@3,(0),@%,(0) = 04.s.(1),

uniformly in 0 € N, due to (22) and (23). We may now easily deduce AD7 from

(74) — (77), and the proof is complete. [

Proof of Corollary 5.5 Let 02 be given as (57). Due to Assumption 2.1(b), it
suffices to show that 62 = 02 + 0,(1). To show this, we define

NE

A = 3 (Fanba) = fan b))

t=1

NE

By = 3" (w1, 0)— a1, 00) ) e,

t=1

so that Dn(én,«%) = A, — 2B,
First, let the assumptions in Theorem 5.3 be satisfied. Let v, = n

R = fo(y/n), as defined in the proof of Theorem 5.3. Then we have

1/2p  where

A< o 232 it | = 0p00),
t=1
Bal = Iy a Hm o _
< ! (0 — 60)|| || —— (g, 0p) ]| = 0p(1),
f 0 H n ; ¢ ¢ P

by Theorem 3.4 and Lemma A7. It therefore follows that n /2D, (6,,6y) = op(1),
from which we have 62 = 02 + Op(n_l/ %), as required.

If the assumptions in Theorem 5.4 hold, we let v, = n
as in the proof of Theorem 5.4. Then we have

V4%, where fy, = ko(\/n5n),

A< =00 5= 30 [ Franon)]|” = 0,00
\/— > \/’E ;f( taen) t p(1)7

similarly as above, by Theorem 3.5 and Lemma A7. We may now easily deduce that
n~Y4D,,(0,,600) = 0p(1), and therefore, 62 = (7721—}—0]9(71’3/4), which implies the stated
result. |
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Proof of Theorem 5.6 For the redefined @, (6) in the proof of Theorem 4.6, AD1
— AD3 follow immediately from Lemma A6(a) and Theorem 3.1 with v, = y/n and

Q) = / fo(V(r),00) fo(V(r),60) dr = /OO fo(s,00) fo(s, 00)'L(1, 5) ds.

Obviously, AD4 and AD5 hold. To prove AD6, we note that

n

S w00 s [ S0V C)0 V)0
t=1
%Zﬂxm,e)ut —p 0,

t=1

uniformly in § € O, due to Lemma A6(a), Theorem 3.1 and Lemma AT7(a). It
therefore remains to show that

uniformly in @ near 6y, where fo(x,8) = f(v/ng,0) and K = [smin — 1, Smax + 1] X ©.
However, this follows directly from Theorem 3.1, Lemma A3(b) and Lemma A8(a).H

n

Z xnt; xntae )_f(wntaeo))H

< |4, / o(V(),6) = fo(V(1), 60)] dr = 00 (1),

Proof of Theorem 6.1 The stated result follows from (14) if we establish AD1-
AD4 and AD7. Here we show AD7. The rest of the proof is entirely analogous to
that of Theorem 5.1. We let v, = n'/* and L, = n/4=0 for 0 < § < 1/12, and let N,
be given as in AD7. To deduce AD7, write Q,,(8) — Qn(6p) as in (65) and note that

it < B2 7] 5t o
BRIV v ?

461

@5 (0) < = ZHf 7 d)| =0
S0) < 22 Hf'H LS a0+ opf1) 0
Vit lhyn
w2 (0) < 7 ‘ izn: F (@2,8) e[ —p 0,
Vn||vn =
for all § € N,,. Again, 0 lies in the line segment connecting 6 and 6. |
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Proof of Theorem 6.2 As in the proof of Theorem 6.1, we need only show AD7.
The rest of the proof is essentially identical to that of Theorem 5.2. Write &, =
k(y/n), and let v, = n1/2g, and p, = nt/2-%%, for 0 < § < 1/6. Also, let Ny, be
defined as in AD7. If we let K = [Spin — 1, Smax + 1] X ©, then we have from (66) —
(69) that

g
=
3
—~

>
—

AN

con a5 s e v

- \/_
w2 (0) < ”%6 (5 ® &)k HEHKHG,S,(U,

w? (0) < ”_%H(k@,z;)*lku HhH LN i a6 )H+0 (1)
3n = \/ﬁ Knt:1 n t, V0 a.s.
w3, (0) < n (k@i k) VE|| A 1 . |ut| + 04.5.(1),

all coverge a.s. to zero, uniformly on a neighborhood of . AD7 now follows directly

from (65). [

Proof of Lemma 6.3 It is obvious that AD1 holds. Also, we may easily deduce
AD2, since

n
Vn®Vn 1Zf xt;QO

i=1 \t=1

< Z (Z H Vin ®Vzn fz mt; i0 ut”)

as n — 00. To establish AD7, we introduce some additional notation. Let &; be given
by Theorem 5.3 or 5.4 if f; satisfies the assumptions there, and otherwise let ¢; be
positive real numbers satisfying 0 < ¢; < 1/2, for ¢ = 1,...,m. Subsequently, we
define € = min(ey,...,&m) and § to be a number such that 0 < ¢ < min(1/12,¢/3).
Also, let

/’LTL = diag(ﬂlna .. numn)a

with py, = n~u,, for i = 1,...,m, so that unl/;l —a.s. 0. Finally, we let N;, = {6; :
(|1, (65 — Bi0) || < 1/m}, for i =1,...,m. Since |1, (0 — 60)[| < D214 ||, (05 — Oio) |,
we have 6 € N,, whenever 6; € N;, foralli=1,...,m.

First note that

[ )| < 3wt it )
i=1

[ 00 L, 0)]| < 3 [ ) o). (79)
i=1

o7



Moreover, we have from the earlier results

vl it 60)|| = 0,00),
nf sup (Vin ®Vin)_1ﬁ($t79i)H = 0p(1),
0,ENin =1
and it follows that for all 7 =1 m

7777

fin @ pign) ™ F5 (a0,05)

: (” aanaf) (3]
=t . 1/2
- (St (z\

and

et

Hjn @ fLin) fJ ¢, 0 H )

1/2
(Vjn © Vi) ™ fi(a1,6)) H2> — 0,80)

Lin @ fin) "L fi(xs, 0 H =n (Vin @ Vi) "L filt, 05 H —as 0,  (81)

2l

uniformly in 6; € Nin.
If we define @, (0) — Qr(6p) as in (65), then we have from (78)—(81) that

@i, (0) < )

uglf«ct,eo)\) (1 @ )~ F(a1,0)|

t=1
< Z ( i (24, 650) H’ Pin @ fjn)~ fj ¢, 0 H) (82)
ij=1 \t=1
SBul0) < 310 1f(xt79)H2 (53)
t=1
<oty (Z) minwn)-lﬁ(mt’@)\f) =0, (84)
i=1 \it=1

@3,(0) < >

t=1
1 n
+§Z
m
< ) <
i,5=1

prt s 00) ||| e ) F e )

(1 @ i)™ Fla,0)|| || (00 @ ) ™ F (0, )

ool

M]n®,u]n f] mt H)

o8



+27M" QZ ( sup ZH Hin @ Hin) fz(l"t’ i)

0; €Nin 11

2
) —p 07 (85)

for all § € N,,. As in other proofs, § and ; lie on the line segments connecting # and
0o, and 0; and 60,9, respectively. Moreover,

m

w4n E

—p 0, (86)

iummm (i, 0= Fiwr,Ou) )

for all 0; € Ny, i =1,...,m, as shown earlier. We may now deduce from (82)—(86)
that AD7 holds. |

Proof of Theorem 6.4 For separability, it suffices to show that AD1-AD4 and
AD?7 hold with block diagonal Q(fy). Lemma 6.3, however, establishes AD1, AD2
and AD7, and we need only show that v, 1QO (Oo)v;, Y converges in probability to a
block-diagonal matrix Q(fp). Let fiy, = /@1(\/_ 910) fio(-) = fi(-,0i0) for i = 1,2 to
simplify notation. Also, write hl( 019) = 7110(') for short. Then we have

Vin Zflo ) foo () Vo =m0 3/425 Fro(@e) fao (1)

t=1 t=1

10( > Fao(ar)

HM\W;\,MH+op<1>:op<1>,

from which the block diagonality of Q(6) follows immediately. |

and

% tz”; H"@féﬁo(mt)ﬁo(wt)"’ =

o)

Proof of Theorem 6.5 As explained in the proof of Theorem 6.4, it suffices to
show that Q(6p) is block-diagonal. Let k1, = f1(y/n,610) and Koy, = fa(\/NSn, 020)
for notational brevity, and use the other notation defined in the proof of Theorem

6.4. We have
vig > fro(we) fao(w) vy, = 73N ", fro(an) fao @) g,
t=1 t=1
and that

- —17

%Zuﬁﬁflo(mt)ﬁo(ﬂ?t) Fion + op(1)
t=1

hlo( > Fao(a) s,

=1
. 1 & .
o, 3 st i
K \/ﬁ ; 2 p p
from which we may easily deduce the block diagonality of Q(6y). |
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Proof of Theorem 6.6 We will show that

v, ! ;f(mt,ﬁo)ut =" ;f*(xt,eo) u + 0p(1), (87)

(e @)™ (@, 00)ur = (e @)™ fulae, B0) ue +op(1),  (88)
t=1 t=1
szlz:f(xﬁeo)f(xt?eo)/ V;II = szlZf*(xheo)f*(xt?eo)lyrjll+Op(]-)7 (89)
t=1 t=1
and subsequently establish AD7. Given AD7, it follows from (87)—(89) that the

regression on f is asymptotically identical to that on f,, for which the asymptotic

theory is given by Theorem 6.4. The stated result, therefore, follows immediately.
Write k1, = f1(y/n) as before, and let ¢, = |[n~ 4% . By (c), ¢ — 0 as

n — co. Also, we define f; and E}, for i = 1,2, in the same way as f and F. Further,

let . . .
; f2a r- FQaa FQaﬁ
f2 = ( . and F2 = .. .. X
f2p Fose  Fapg
Then it follows that

P fl + fza o I3 -__FFQ(m EQaﬁ
f= ( fon ) and F = < Fosa Fogs ) ) (90)
and ) ..
. _( A o 2 _ (B0
f-= < fas ) 5 ( 0 Fipg ) 1)

Let f* = vec F, and ﬁ = vec F}.
To show (87)—(89), we note that

NS P R -
f f*_< O 7F F*_ FQﬁa 0 9

= fufi= < hifso+ faofi + faafba  fratos >
" f2pf2a 0 ’
which follow directly from (90) — (91). Now we easily deduce (87), since

and

n

v, ;(f—f*)(ﬂﬁt;(‘)o) ut|| < cp —p 0.

1
= faa(w1,00) us
=

It also follows that

(vn @)™ S (=) 60w < || @)™ faln, ) u
t=1 t=1
C 02 - ”
< 1+\4/n7_j_ " %n;ﬁ(wt,@o)ut = 0p(1),
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which proves (88). Note that ||(vy ® vp) Y| < n~/2(14cp+c2). Moreover, we have

D SLICNDTERD B T > oi AEASI Bt

IN

Vi nga (¢, 00) foa s, 00) vV CQ%Z HfQoz(l‘tﬂgO)an(l't"gO),) )
=1

all of which are op(1), and from which (89) follows easily.

Now we show that AD7 holds for some p,. Let 6 be any number such that
0 <6 < 1/12, and let p, = n %, as before. Also, define N,, as given in ADT.
Clearly, j,v; ! — 0, as required. Furthermore, we have

Uln Zan wt,90 fQ,B(xheO) V2n

IN

cn% Z Hfza(wt, 00) fop (21, 00)’
=1

)u,;l f(x,@)H < n—1/2+6H;qnl fl(x,a)H+n—1/4+5H fg(x,a,ﬁ)) . (92)
| © ) 0)|| < 0742 (ka0 k)i | |
T VB (1 41 @) fale, a, 8) ) (93)

for all @ € N,,. If we write Qy,(8) —Q,(fo) as in (65), then it follows immediately from
(92) and (93) that w@?,(0),@3,(0), @3,(0) —p 0 as n — oo, uniformly in 6 € N,,.
Now

)

w3, (0) <

n
(tn @ pin ® pn) 2> F (21,0) wy
t=1

with 8 between 6 and 6. However,

36
\/_ (i1 @ Fiy @ 1)~ /@1H H /-éf,}fl (¢, ) ug

%;Jté (ﬂ?t,a,ﬁ)Ut

n
(ﬂn®#n®ﬂn IZ]C x,0 ut
t=1

B(14cy+ct+cd)

In

Notice that
| (kn @ 1 ® pn) M| < 07438 (1t + 2462,

Since we have by Lemma A7

Z“lnfl Tt, O Zfz (T, 0, B) u

uniformly in a and £3, it follows that @3, (6) —, 0 uniformly on N,,. The condition
ADT therefore holds, as was to be shown. |
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