Nonlinear regularizations of TV based PDEs for image procesing
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ABSTRACT. We consider both second order and fourth order TV-basedsR@Emage
processing in one space dimension. A general class of mamliregularizations of the TV
functional result in well-posed uniformly parabolic eqoast in two dimensions. However
the fourth order analogue (Osher et. 8lultiscale Methods and Simulatioh(3) 2003)
based on a total variation minimization in &7 ! norm, has very different properties. In
particular, nonlinear regularizations should have spstiacture in order to guarantee that
the regularized PDE does not produce finite time singubsriti
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Nonlinear PDEs are now commonly used in image processirnigdoes ranging from
edge detection, denoising, and image inpainting, to textéiecomposition. Second order
PDEs forimage denoising and boundary or edge sharpeniadpdak to the seminal works
of Rudin-Osher-Fatemill], and Perona-Malik I3]. All of these methods have some
common features; they are based on a nonlinear version bitteequation

(0.1) u = - ((9(|Buf)Bu)

in which the ‘thresholding functiorg is small in regions of sharp gradients. A number of
mathematical issues arise with these equations and treeifias example, Perona-Malik,
suggest using a smoogithat decays fast enough for large so that significant diffusion
only takes place in regions of small change in the imageairay from edge boundaries.
A typical choice might be

(0.2) a(s) = K2/ (K +).

However, this and similar choices result in a PDE that isdiheill-posed in regions of
high gradients and the ensuing dynamics results in a cleaistat “staircase” instability.

A particular class of denoising algorithms are the TV (tetfiation) methods intro-
duced by Rudin, Osher and Faterbd]. The technique minimizes the total variation norm
of the image. The TV functional is defined as

(0.3) TV(u) = /Q IOy,

The TV functional does not penalize discontinuities nd thus allows one to recover
the edges of the original image. The restoration problenbeanritten as

(0.4) rrJin/Q(|Du|+%(uf £)2).

To solve the minimization problem, one typically writes dotlie Euler-Lagrange equation
and performs a gradient descent. For the above problenmgasis solving the nonlinear
PDE

u
(0.5) uth-(|DU|)+>\(f u).

In the past few years, a number of authors have proposedgmadourth order PDEs
for the same functions (i.e. edge detection, image dermisic.) with the hope that these
methods might perform better than their second order anakgindeed there are good
reasons to consider fourth order diffusions. First, founttter linear diffusion damps os-
cillations at high frequencies (i.e. noise) much fastentsecond order diffusion. Second,
there is the possibility of having schemes that includeot$fef curvature (i.e. the sec-
ond derivatives of the image) in the dynamics, which opena dpher set of functional
behaviors. On the other hand, the theory of fourth orderineal PDEs is much less well-
developed than their second order analogues. Also, sudtiegsa often do not possess a
maximum principle or comparison principle and thus allowtfee possibility of artificial
singularities or undesirable behavior in their impleméaota

This paper contrasts the well-known second order TV methdtts the fourth or-
der PDE derived by Osher, Solé and Ve$#g ffor texture-noise decomposition using TV
minimization in theH % norm:

(0.6) = ~A[0- ()] -Aw= ).
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1. Texture-Cartoon decomposition and fourth order PDEs

An important problem in image processing is to separateitestfrom larger scale
features in images. L[] Yves Meyer suggested replacing the ROF model by

(1.1) u=argmin (/|Du| +A|If - u|*) .

Here the * norm corresponds to the sp&dhe dual of BV. This should enable us to get
a model which does not smear textures. Instead, at the s¢calis a cartoon version of
andf — u= v consists of texture plus noise.

This is a beautiful idea, but apparently difficult to implem&ecause the norm is
fairly complicated. Pickingy = (g1,92) so that

Vv = (g1)x+(g)y=0-g (intwo dimensions)

V|, := infsu 2+ g2.
V] N (X,yl)o\/gl 95

Thus, the variational problem (1.1) does not have a simplertiagrange PDE which
could be used to find the minimum.
In [16] an approximation to Meyer’s model was obtained

(U.01,92) = argmin [[0u] + [ [f — (u+ 0,01 +0yg2)|?

1

r(se/aar)”

As |, p — oo, this model approaches Meyer's. This variational probléwegvery good
texture/cartoon separation. It is a model of the fdres u+v+w, uis cartoony=0-g
is texture andv becomes small gsincreases.

An f = u+ v approximation to Meyer's model was obtained 1] as follows: One
writes

we define

f=u+v=u+0O-g
then uses the Hodge decomposition theorem to decompose
g=0Up+w
where
O-w=0.
This means thag = OA~(f — u) (see [L2] for more details). In order to obtain a local
Euler-Lagrange equation to minimize the model, the follgyiunctional was chosen

A
(1.2) u:argmin/|Du|+§/|DA*1(f7u)|2.
The resulting Euler-Lagrange equation is
Ou

-0 +A Y (f—u)=0.

|Oul
It was shown in 17] that the resulting minimizer of (1.2) is the solution of ejon (0.6)
ast — o. This model appears to give the best denoising results dhtiee models, while
preserving edges. It also apparently separates texturedastoon, but not as well as the
model in [L6] does.
In this paper we discuss regularizations of the singulatinearity in (0.6) which is
an important problem for the numerical implementation @fséh methods. We show that
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special care must be taken in the choice of regularizingtfoncThis same issue does not
arise for second order equations due to a maximum principléhe case of fourth order
nonlinear diffusion equations it is the structure of thelim@arity that determines whether
a weak maximum principle can be derived; hence effectingltoéce of regularization.

2. Well-posedness of second order TV regularizations

Itis common practice in numerical implementations of theosel order equation (0.5)
to regularize the jump singularity wher&i vanishes. For example, Vogel and Omaid|[
Marquina and Oshef[)], and Chan et alg, 6] all consider the following regularization of
the PDE:

(2.1) P p——

(@ + |Pu?) 2
whered is a smoothing parameter. This has the advantage of being=awrth classical
smooth solutions. This particular choice of regularizatidso arises in data analysis; it is
the “Huber function,” or “Huber norm,” which interpolatestveen smooth (least-squares)
measures and robuist error measured.

In fact it does not matter so much how one chooses the regatem provided that

it is monotone and smooth. Below we review the derivationhglse equations from a
variational formulation.

Y+A(f—u)

2.1. Variational form for the regularization. Consider the variational problem
: A
(2.2) u* = argmin F(u)z/|Du|dx+§||f—u||§,

in which we minimize total variation without deviating todldly from the measured data
f. Differentiating the right hand side, we obtain the cormegfing Euler-Lagrange equa-
tion. In one dimension we get

(2.3) DF(u):—<|:j—X|) “A(f-u)=0.
X1/ x
In two or more dimensions we have
(2.4) DF(u)D(E—E'))\(fu)O
with the corresponding gradient descent PDE
Cu
(2.5) utDF(u)D-(m)Jr)\(fu).

Notice that we now have a highly non-regular equation: indingension (2.3) is nothing
more tharDF (u) = —@(ux) — A(f — u) whereq) is the Dirac delta “function”. To regain
some regularity we modify the variational problem as follow

A
(2.6) u* :argmirF(u)z/\/ Ou- Du+ &dx+ §||ffu||§

whered is a small parameter (ardd= 0 corresponds to the unregularized version in equa-
tion 2.2). Differentiating, we obtain

(2.7) U = D~(\/Du?7muiu+52)+)\(fu)
(2.8) = 0 Hg(Ou) +A(f —u)
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whereHg(v) = \/ﬁ. This is equation (2.1) in arbitrary dimension. The choie o

regularizing functional is somewhat arbitrary. As we dssin the next section, almost
any ‘nice’ choice of regularization leads to a PDE that §i@sa maximum principle and
thus has globally smooth solutions. This trait is specialsecond order PDEs. When
we consider the fourth order analogues of these problemsyillveee that the choice of
regularization affects the dynamics of the gradient detscen

Finally note that for the above to be useful, it should apping¢e image gray levels
are often discontinuous) to discontinuaufr which uy andJu are Radon measures. A
detailed discussion of the space of functions of boundetan, BV, can be found in
Evans and Gariepy7]. For the related Mumford-Shah functional see Ambrosiosdeu
and Pallaraf]. We also mention the notes by ChamboHlg\vhich are available online.

2.2. Maximum principle. Following the classical theory of nonlinear second order
parabolic PDEs, we see that equation (2.7) admits globabmeplutions provided that
the gradient of the solutioriju, can be shown to stay bounded for all time. This fact is
a result of the maximum principle for second order equatidrige following lemma can
be proved for (2.7) in one space dimension with a varietyaridard boundary conditions
used in imaging, including Neumann and periodic.

LeEmMA 1. (A priori bound for the slope) Consider a smooth solution2¥{ in one
space dimension, then the gradient is a priori bounded i iy max ((fy|, |Uox|)-

In practice of course the observed détenay be quite jumpy, possibly possessing a
singular gradient. The point of this exercise is to show jhatp discontinuities can not
possibly form spontaneously due to the minimizing flow, thaly have to come from the
matching to the observed data.

Proof. Letw = uy denote the slope. Then the equationos

(2.9) We = HE (W)W2 + Hj (W)Wax + A F — W).

If Hg is smooth and monotone im then the equation satisfies a maximum principle.
Standard arguments then complete the proof.

3. The 1DH 1 equation with smoothing, some examples

Behavior of the fourth order PDE in one dimension is veryvaie for two dimen-
sional images. This is because a lot of the structure ingoddges and information sepa-
rated by edges, which are basically one-dimensional ahjédbreover, we can obtain a
lot of insight about the dynamics in 1D by combining ideasrfroumerics, asymptotics,
and rigorous analysis that may not be so tractable in 2D fgiviags like energy estimates
and the Sobolev lemma).

In one space dimension we have the PDE

Ux

3. _ %
(3.1) W [|ux|

]XXX_)\(U_ f)

As for the classical ROF model, we can solve this numeridaflyising a regulariza-
tion of the signum function. Below we discuss some specisgsand the consequence of
using different choices for the smoothing function.
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3.1. Example: Arctanregularization. Consider replacin% in(3.1) With%arctamux/é)
whered is the smoothing parameter. Then the PDE becomes

(3.2) U= f%[arctar(ux/B)]xxxf Au—f).

We now introduce a new variable= arctarf{uy/d) and rewrite the PDE as
(3.3) o(tanw); = f%Wxxxxf A(dtanw — fy)
which we can rewrite (to remove the cgsingularity) as

(3.4) 3(w)y = —%coéwwxxxx— A(dsinwcosw — cog wy)

This is a variant of a PDE that arises in a modified lubricatgnation (MLE) for thin
films [2],

(3.5) U = —U"Uyxxx

and as the equation for the smoothness estimator in Low @ue/image Simplifiersd].
Results for (3.5) in one dimension are that smooth positata dives a smooth positive
solution for all time ifn > 5/3. Numerical and asymptotic results suggest that3/2 is
the critical exponent, above which finite time singulasgt@® not occur and below which
they do occur. These results also imply similar resultsdorth order degenerate diffusion
equations with the same structure, i.e. a degenerate mamiiy in whichu" is replaced by
f(u), here it is codu. Thus the degeneracy here corresponds to thercase in (3.5) for
which we have a theorem that singularities can not occur.

We have the following theorem, which can be proved followtimg arguments in3],
which is essentially the same equation as (3.4) (note theraw terms are the ones from
the fidelity, which are mild):

THEOREM. Equation (3.4) with smooth initial data and forcing funetid has a
unigue smooth solution for all time.

Remark: Transforming back to the original PDE we see thatithplies well-posedness
with a priori bounds oy, i.e. the slope. This is actually relevant for solutionshwitugh
data, i.e. the bound on the slope is a bound related to thalidéta and the forcing. The
resulting dynamics insure that the solution of the PDE carbeoome singular from the
dynamics of the gradient descent, as in the general casédasecond order equations
discussed in the previous section.

3.2. Example: square root smoothing.We show that a different smoothing can have
a different result with respect to well-posedness. Comsitstead of the arctan above the

substitution(uzﬁ‘w, following the conventional approach in image processkjlow-

ing the same argument as in the previous example, we havaiati@yforw = W!‘w:
wd wd

(3.6) 6(m)t = *Wxxxx*)\(m —fx)

Note that this produces a degeneracy inwhequation at-1 that has a A2 power,
i.e. it is analogous to (3.5) with = 3/2. For this problem we do not have a theorem
that guarantees well-posedness, however careful emipitisdies of forced singularities
in equation (3.5)2] show that they happen in infinite time, not finite time, whithggests
that this regularization could have practical use.
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From these last two examples we see that the behavior of gutarezed PDE, with
respect to the possibility of finite time singularities (if), is related to the rate at which
the regularizing function approaches a constant in thedéd.fi.e. we substituté (uy/d)
for ux/|ux| and the issue is how fast doéspproacht1 asuyx — . In the arctan case we
have a quadratic nonlinearity in tieequation (from taking a derivative of the inverse). In
the square root case the decay is likéuk|*/? which gives us a & power degeneracy in
thew equation.

3.3. Example: tanh smoothing.Consider instead of the arctan above the substitu-
tion tankuy/d) = w. Following the same argument as in the previous example,ave h
an equation

(3.7) d(tanh 1 w); = —Wyxx— A(Stanh 1w — fy)
which gives
(3.8) S(W)t = — (1 — W) Wyxx— A(3(1 — WP) tanh tw — fy)

Note that here the degeneracymat +1 is linear, which suggests that this regularization
has finite time singularities, perhaps making it a bad chfiicea numerical method.

4. General smoothing functions and well-posedness in 1D

In this section we consider a general class of smoothingifmgfor the fourth order
equation and show that for a subset of such functions we caragtee well-posedness of
the resulting regularized PDE. We conjecture that thersm@othing functions within the
general class that do not produce globally smooth solutidigs is in sharp contrast to
the second order case for which the maximum principle gueesnwvell-posedness of all
smooth monotone regularizations.

Consider the regularized equation

(4-1) U = — (H (UX))xxxv

which we interpret as a nonlinear regularization of (3.1 $&tA = 0 to simplify the
analysis and to focus on the nonlinearity in the gradienteles The results here extend
directly to the case with nonzeho

Define
1
(4.2) y.f/o R
and
@3) =3 [ e

we see that foo > %, H is a regularization of the Heaviside functian= % is the typical
choice of regularization for TV = 1 gives an arctan regularization. In this section we
prove the following theorem

THEOREM. Consider smooth initial dataguand (4.1) on a periodic interval. Then
for all 1/2 < a < 5/4, there exists a unique smooth solution of (4.1) for all time @.
Moreover, the solution is bounded away from the singulaugsait1 by a fixed constant
independent of t.
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In this paper we prove the key part of the theorem, namely thecasi bound. Lo-
cal existence and continuation in time can be proved follgwhe arguments ir3] for a
related image processing equation. We are unable to prafesbound for albt > 1/2
due to the nonlinear structure of the equation; values dfaffescribed above correspond
precisely ton > 5/3 in the analogous result for (3.5). Moreover we conjecthes for
sufficiently largea the regularized equation (4.1) admits solutions with fitiitee singu-
larities even if the forcing functiori is smooth. Note that here we have det 1 for
simplicity of notation, although the analysis holds withet values ob.

We will be interested in the behavior 6f~1(w) for w near+1, which corresponds
to largey in H(y). Using A ~ B to mean that there exists consta@{sandC, such that
A< C;BandB < CyA, we have

(4.4) 1-H(y) ~ ﬁ
for positiveco >y >> 1 and
(4.5) —1—H(y) ~ —yT];l
for —o <y << —1. It follows that
2w ~
|1 wf|=2

forwnear+1. Fora =1,

H(y) = % arctary,

H Y(w) = tan(gw),

and

tan(tw/2) ~ m

for wnear+1.

4.1. The change of variablesConsider the equation; = — (H (Uyx)),,,. Defining
w = H(ux) and differentiating once with respectxpthe equation becomes

(4.6) (Hil(w))t - 7Wxxxx.
Using the property of general invertible functiofhs
—1 I _ 1
()= 7y
we rewrite (4.6) as
(47) Vvt - _H/ (H71 (W)) Wxxxx.
Fora =1,
1
/ -1 _ —
H (H(w)) = TR w2 cog (Tw/2),

so the corresponding equation is

W = — COS(TW/2) Wi
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4.2. Relationship with the modified lubrication equation(3.5). Since

H(H (W) = S

(14 (H-1(w)?)

for wnear 1 (4.4) gives us
H (H1 (W) ~ (1—w)2t
and a similar result fow near—1. Thus near any singularity, (4.6) behaves like (3.5) for
no 20
S 20-1
Since Bertozzi proved that solutions to (3.5) can be coetirfor all time whem > 2,
we expect a similar result for (4.6), when< a < 2 (Note that in (4.8)n — » aso

decreases té). We remind the reader that= £ does not give a regularized step function
H, since the integral in (4.2) is infinite in that case.

(4.8)

4.3. A priori bounds. In all that follows, we assume periodic boundary conditions
on|[0,1]. Taking theL2-inner product of (4.7) ity gives

d
@9) gt [ wscl13= = [ (™2 (w) (W < 0
Integrating over time then gives
T
(4.10) L (72 00) (i <) (o) [

Sincew is assumed to be ip-1,1], we havew € H?. The Sobolev Embedding Theorem
givesw € C12.

4.4. Entropy. We now find an integral that remains bounded for this equatian
would necessarily blow up ifr — +1. Consider

W= /wH*l(w) >0,

%/WH*l(w) = /vth*l(w)Jr/w(H*l(w))t

/H*l(w)H’ (H™ (W) Wioxxx— /WWxxxx

IN

cln-HwH' (12 w) L H1<w>)% (f H’<Hl<w>><wxxxx>2)%

We note that

/ y
H =—,
so we have a bound
(4.11) ’Hl(w) (H (H*l(w)))% <1
LOO

as long ast > 3. Also sinceH 1 (w) is bounded for smal,

/Hfl(w) gC(1+/WH1(W)) :
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and we therefore have

(4.12) %W(t) <CW(t)+C <1+/H’(H1(w))(wxxxx)2>.

Gronwall’'s inequality gives

@13 wn) = funt< (0+a+ [ W4 ) 7

and the a priori estimate (4.10) implies th¢T ) is bounded.

4.5. Uniform bound onw. A priori estimates givew € C%, S0 given a maximum
valuen(t) of watxp(t) for a particular time, there is some constaltsatisfying

NIlw

(4.14) W) > n(t) K [x— xo(t)

Assuming existence af on [0, T), pickt € [0,T). Then

@)
Y

/WH’l(W)dx
C1

/%dx
(1—w)z=-1

Ct ! dx

(1fr]+K|xfxo|%)2"%1

Y

Y

1 1
= Cl(l_n)m/ —dx

3\ 2a—1
14 5 kvl )

N

51-n)3 1
Cz(l—fl)%fﬁl/o2 — <y

(1—|—y%)2°‘_7I

Y

So
2 1
(1_ n)éim S C37
which gives a bount withn <M < 1 as long as

2 1
3 2a-1

<0,
or

5
4.15 a<-—.
(4.15) 3
Similar steps bound away from 1 for the casa = %. We can therefore follow the ar-
guments in 8] to prove existence of solutions to (4.7) globally in time f#< a< %.
Essentially the same arguments bounaway from—1 for the same range of.
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5. Conclusions

Total variation based algorithms have led to an interestiags of nonlinear PDEs
in image processing. The second order equations have beeseifor over ten years
with much success. Their numerical implementation ofteuires a regularization of the
nonlinearity in the TV functional. Although there is a commway to do this, the choice of
regularization is not so important due to the maximum pplecfor second order parabolic
equations. That is, essentially all reasonable choicesgflarizations lead to PDEs that
are globally well-posed for smooth initial data.

More recently there has been an interestin higher ordettiemsan image processing.
Here we consider a method introduced IiZ][motivated by the work of Meyerl[1]. The
equation (0.6) is a fourth order analogue of the now clak&&F method (L4]). In this
paper we focus on the one dimensional version of (0.6), shgpthiat one can notin general
regularize the TV functional in (0.6) and be guaranteed oél-posed problem. The issue
is that the maximum principle does not hold for fourth ordguations. However, using
ideas from the thin films literature, in particulé?][ we show that there is a subclass of
nonlinear regularizations for which the PDE is well-posEkle point is that the structure of
the differential operator does not lead to a maximum prilecis in the second order case,
however the structure of the nonlinearity results in a weakimum principle (bounding
the solution away from the singular values) for carefullpsdn nonlinearities.

Although our results focus on the problem in one dimensioa,bglieve that this
idea has relevance to higher dimensions. Recently, twoeohththors 3] have used this
idea to prove global well-posedness of a related image psirtg problem known as Low
Curvature Image Simplifiers, originally introduced by Tumland Turk [L5]. While well-
posedness was proved in one space dimension, the idea likhiddsign of the scheme
works for two dimensions as well. Other related fourth ordeaging equations are be-
lieved to produce singularitie8]and we believe this issue is critical in understanding how
to design and implement higher order methods in imaging.
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