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Abstract

This paper presents a fundamental solution method for nonlinear fractional
regularized long-wave (RLW) models. Since analytical methods cannot be applied
easily to solve such models, numerical or semianalytical methods have been
extensively considered in the literature. In this paper, we suggest a solution method
that is coupled with a kind of integral transformation, namely Elzaki transform (ET),
and apply it to two different nonlinear regularized long wave equations. They play an
important role to describe the propagation of unilateral weakly nonlinear and weakly
distributer liquid waves. Therefore, these equations have been noticed by scientists
who study waves their movements. Particularly, they have been used to model a large
class of physical and engineering phenomena. In this context, this paper takes into
consideration an up-to-date method and fractional operators, and aims to obtain
satisfactory approximate solutions to nonlinear problems. We present this
achievement, firstly, by defining the Elzaki transforms of Atangana–Baleanu fractional
derivative (ABFD) and Caputo fractional derivative (CFD) and then applying them to
the RLW equations. Finally, numerical outcomes giving us better approximations after
only a few iterations can be easily obtained.

Keywords: Atangana–Baleanu fractional derivative; Caputo fractional derivative;
Approximate-analytical solution; Nonlinear regularized long wave model; Elzaki
transform

1 Introduction

In recent decades, many studies have been performed on modeling with noninteger or-

der calculus. These illustrative studies and developments in applied sciences have found

out that fractional calculus has a great importance in mathematical modeling due to the

memory effect. Hence, fractional calculus theory and its informative applications are at-

tracting attention all over the world every day. New fractional operators that have dif-

ferent features have been defined and used extensively to model real-life problems. The

emergence of the new operators in the literature can be considered as a result of the re-

production of new problems that model different types of real-life events. For this reason,
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approaching real-life problems in terms of their fractional order versions has facilitated

modeling and solving them with a proper method. Therefore, this approach has been ap-

plied to a very wide area of science, for example, to physical and chemical problems [1–5],

in engineering sciences [6–10], to financial instruments [11–14], in geosciences [15], to

epidemic models [16–24], in the analysis of biological models [25, 26], etc. However, in

recent years some novel fractional derivative operators without singular kernel have been

investigated by using the exponential function [27], Mittag-Leffler function [28, 29], gen-

eralized Mittag-Leffler [30, 31] function, and normalized sinc function [32]. Especially

these fractional operators have been preferred by the researchers who want to model and

solve a real-life problem. Since these operators include a non-singular kernel, a problem

coupled with them can be resolved easily and accurately. Furthermore, in terms of the

integral transforms of these operators, numerical computations can be easily performed.

Many researchers have studied these fractional operators, see, e.g., [33–60]. In the liter-

ature, there are some integral transform methods that can be applied to the solution of

fractional differential equations. In this context, Elzaki transform (ET) is one of the inte-

gral transforms [61]. Some important solution methods related to the real-life problems

and their numerical simulations obtained via the new integral transformation have been

investigated by several researchers [62–66].

In this paper, two different fractional homogeneous nonlinear RLW equations are con-

sidered. In the literature there are several special versions of the RLW. Some scientists

obtained that the RLW equations are better models than the classical Korteweg–de Vries

(KdV) equation [67].We apply the Elzaki transform coupled with the classical Caputo and

ABCoperators to two special RLWequations. Thenwe obtain their approximate solutions

and analyze the numerical simulations of the solutions. The nonlinear RLW equations are

given by [68, 69]

∗
0D

q
t φ(x, t) – φxxt(x, t) +

(

φ2(x, t)

2

)

x

= 0 (1)

with the initial condition

φ(x, 0) = x (2)

and

∗
0D

q
t φ(x, t) + φx(x, t) – φxx(x, t) + φ2(x, t)φx(x, t) +

1

6

[

e(–2x+4t)φxt(x, t)
]

x
= 0 (3)

with the initial condition

φ(x, 0) = exp(–x), (4)

where (x, t) ∈ R× [0,T], 0 < q ≤ 1, and ∗
0D

q
t represents the classical Caputo or Atangana–

Baleanu operator of order q.

The reason for dealing with fractional-order systems is the memory and hereditary

properties which are complex behavioral patterns of physical systems giving us a more

realistic way to model nonlinear regularized long-wave models. In the fractional-order

models, the memory property allows for the integration of more information from the
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past which predicts and translates into the models more accurately. Also, the hereditary

property describes the genetic profile along with age and status of the immune system. Be-

cause of such properties, fractional-order calculus have foundwide applications inmodel-

ing dynamics processes in many well-known fields. On the other hand, the physical struc-

tures and illustrative applications of such problems have been extensively considered in

the literature. The nonlinear RLW equation plays an important role in the study of non-

linear dispersive waves on account of its description to a wide range of important physical

phenomena such as shallow water waves and ion-acoustic plasma. Especially fractional

versions of these models have been studied by many researchers [6, 70]. For more details

on the physical importance of the RLW equation, see Stoker and Waves [71].

The rest of the paper is organized as follows: In Sect. 2, some preliminary results re-

quired for the formulation of the problem are provided. Sect. 3 provides the description

of themethod via a new integral transformation.Main results, numerical simulations, and

graphical representations are presented in Sect. 4. Finally, Sect. 5 concludes all the major

findings of the present research study.

2 Preliminaries

In this section, we present some fundamental concepts of fractional derivatives with and

without a singular kernel, their Elzaki transform, and fractional integrals.

Definition 1 The Caputo fractional derivative (CFD) is given as [72]:

C
0D

q
t

(

u(t)
)

=

⎧

⎨

⎩

1
Γ (m–q)

∫ t

0
u(m)(η)

(t–η)q+1–m
dη, m – 1 < q <m,

dm

dtm
u(t), q =m.

(5)

Definition 2 The Atangana–Baleanu fractional derivative in the Caputo mean (ABC) is

given as [28]:

ABC
m D

q
t

(

u(t)
)

=
N(q)

1 – q

∫ t

m

u′(η)Eq

[

–
q(t – η)q

1 – q

]

dη, (6)

where u ∈ H1(α,β), β > α, q ∈ [0, 1]. In Eq. (6), N(q) represents a normalization function

that equals to 1 when q = 0 and q = 1.

Definition 3 The fractional integral of the ABC operator (Atangana–Baleanu fractional

integral) is presented by [28]

AB
m I

q
t

(

u(t)
)

=
1 – q

N(q)
u(t) +

q

Γ (q)N(q)

∫ t

m

u(η)(t – η)q–1 dη. (7)

Definition 4 The Elzaki transform defined for the exponential function is given in the set

A [61, 73] as

A =
{

u(t) : ∃Z,p1,p2 > 0,
∣

∣u(t)
∣

∣ < Ze
|t|
pi , if t ∈ (–1)i × [0,∞)

}

. (8)

For a selected function in the set, Z is a finite number, but p1, p2 can be finite or infinite.
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Definition 5 The Elzaki transform of a given function u(t) is defined as [73]

E
{

u(t)
}

(ω) = Ũ(ω) = ω

∫ ∞

0

e–
t
ω u(t)dt, (9)

where t ≥ 0, p1 ≤ ω ≤ p2.

Theorem 1 (Convolution theorem for the Elzaki transformation, [74]) The following

equality holds:

E{u ∗ v} =
1

ω
E{u}E{v}, (10)

where E{·} is the Elzaki transform.

Definition 6 The Elzaki transform of the CFD operator C
0D

q
t (u(t)) is given by [75]

E
{

C
0D

q
t

(

u(t)
)}

(ω) = ω–qŨ(ω) –

m–1
∑

k=0

ω2–q+ku(k)(0), (11)

wherem – 1 < q <m.

Theorem 2 The Elzaki transform of the ABC fractional derivative ABC
0 D

q
t (u(t)) is given by

E
{

ABC
0 D

q
t

(

u(t)
)}

(ω) =
N(q)ω

qωq + 1 – q

(

Ũ(ω)

ω
–ωu(0)

)

, (12)

where E{u(t)}(ω) = Ũ(ω).

Proof By Definition 2, we have the following:

E
{

ABC
0 D

q
t

(

u(t)
)}

(ω) = E

{

N(q)

1 – q

∫ t

0

u′(η)Eq

[

–
q(t – η)q

1 – q

]

dη

}

(ω). (13)

Then, considering the definition of Elzaki transform and its convolution, we have

E
{

ABC
0 D

q
t

(

u(t)
)}

(ω) = E

{

N(q)

1 – q

∫ t

0

u′(η)Eq

[

–
q(t – η)q

1 – q

]

dη

}

=
N(q)

1 – q

1

ω
E
{

u′(t)
}

E

{

Eq

[

–
qtq

1 – q

]}

=
N(q)

1 – q

[

Ũ(ω)

ω
–ωu(0)

][∫ ∞

0

e–
t
ω Eq

[

–
qtq

1 – q

]

dt

]

=
N(q)ω

qωq + 1 – q

[

Ũ(ω)

ω
–ωu(0)

]

. (14)

�

Lemma 1 ([69]) The solution of the specially-defined homogeneous generalized RLWprob-

lem (1) with the initial condition (2) is given by φ(x, t) = x
1+t

.

Lemma 2 ([68]) The solution of the specially-defined homogeneous generalized RLWprob-

lem (3) with the initial condition (4) is given by φ(x, t) = exp(–x + 2t).



Yavuz and Abdeljawad Advances in Difference Equations        ( 2020)  2020:367 Page 5 of 18

3 Description of themethod via a new integral transformation

In this part of the study, we will present the fundamental methodology which has been

used in this study. To investigate this methodology, we take into account the following

general form of a fractional nonlinear PDE:

∗
0D

q
t φ(x, t) + L

〈

φ(x, t)
〉

+N
〈

φ(x, t)
〉

= θ (x, t),

(x, t) ∈ [0, 1]× [0,T], κ – 1 < q ≤ κ ,
(15)

with initial condition

∂zφ

∂tz
(x, 0) = μz(x), z = 0, 1, . . . ,κ – 1, (16)

and the boundary conditions

φ(0, t) = γ0(t), φ(1, t) = γ1(t), t ≥ 0, (17)

where μz, θ , γ0, and γ1 are known functions. In Eq. (15), we represent the linear part of

the equation with L〈·〉, the nonlinear part with N〈·〉, and ∗
0D

q
t denotes the ABC or Caputo

fractional derivatives. We characterize the recursive steps for solving the suggested prob-

lems (1)–(2) and (3)–(4). Using the Elzaki transform of the CFD in Eq. (11) and ABC in

Eq. (12), we consider E{φ(x, t)}(ω) = ξ̃ (x,ω) for Eq. (15). Then we can obtain the trans-

formed functions for the Caputo fractional derivative

ξ̃ (x,ω) = ωq
(

θ̃ (x,ω) – E
{

L
〈

φ(x, t)
〉

+N
〈

φ(x, t)
〉})

+ω2φ(x, 0). (18)

In addition, we get the transformed functions for the ABC derivative as

ξ̃ (x,ω) =

(

qωq + 1 – q

N(q)

)

[

θ̃ (x,ω) – E
{

L
〈

φ(x, t)
〉

+N
〈

φ(x, t)
〉}]

+ω2φ(x, 0), (19)

where E{θ (x, t)} = θ̃ (x,ω). Also considering the Elzaki transforms of the boundary condi-

tions, we get

E
{

γ0(t)
}

= ξ̃ (0,ω), E
{

γ1(t)
}

= ξ̃ (1,ω), ω ≥ 0. (20)

Then, applying the perturbation method, we achieve the solution of Eqs. (15)–(17) as

ξ̃ (x,ω) =

∞
∑

ε=0

χ ε ξ̃ε(x,ω), ε = 0, 1, 2, . . . . (21)

The nonlinear part in Eq. (15) can be computed from

N
〈

φ(x, t)
〉

=

∞
∑

ε=0

χ εΦε(x, t), (22)

and the components Φε(x, t) are given in [42] as

Φε(φ0,φ1, . . . ,φε) =
1

ε!

∂ε

∂̟ ε

[

N

( ∞
∑

i=0

̟ iφi

)]

λ=0

, ε = 0, 1, 2, . . . . (23)
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Substituting Eqs. (21) and (22) into Eq. (18), we get the solution components for the Ca-

puto operator:

∞
∑

ε=0

χ ε ξ̃ε(x,ω) = – χωq

(

E

{

L

〈 ∞
∑

ε=0

χ εφε(x, t)

〉

+

∞
∑

ε=0

χ εΦε(x, t)

})

+ωq
(

θ̃ (x,ω)
)

+ω2φ(x, 0), (24)

and substituting Eqs. (21) and (22) into Eq. (19), we get the recursive relation which gives

the solution for the Atangana–Baleanu operator:

∞
∑

ε=0

χ ε ξ̃ε(x,ω)

= –χ

(

qωq + 1 – q

N(q)

)

[

E

{

L

〈 ∞
∑

ε=0

χ εφε(x, t)

〉

+

∞
∑

ε=0

χ εΦε(x, t)

}]

+

(

qωq + 1 – q

N(q)

)

θ̃ (x,ω) +ω2φ(x, 0). (25)

Then, by solving Eqs. (24) and (25) with respect to χ , we identify the following Caputo

homotopies:

χ0 : ξ̃0(x,ω) = ωq
(

θ̃ (x,ω)
)

+ω2φ(x, 0),

χ1 : ξ̃1(x,ω) = –ωq
E
{

L
〈

φ0(x, t)
〉

+Φ0(x, t)
}

,

χ2 : ξ̃2(x,ω) = –ωq
E
{

L
〈

φ1(x, t)
〉

+Φ1(x, t)
}

,

...

χn+1 : ξ̃n+1(x,ω) = –ωq
E
{

L
〈

φn(x, t)
〉

+Φn(x, t)
}

.

(26)

Moreover, we define the following ABC homotopies:

χ0 : ξ̃0(x,ω) = ω2φ(x, 0) +

(

qωq + 1 – q

N(q)

)

θ̃ (x,ω),

χ1 : ξ̃1(x,ω) = –

(

qωq + 1 – q

N(q)

)

E
{

L
〈

φ0(x, t)
〉

+Φ0(x, t)
}

,

χ2 : ξ̃2(x,ω) = –

(

qωq + 1 – q

N(q)

)

E
{

L
〈

φ1(x, t)
〉

+Φ1(x, t)
}

,

...

χn+1 : ξ̃n+1(x,ω) = –

(

qωq + 1 – q

N(q)

)

E
{

L
〈

φn(x, t)
〉

+Φn(x, t)
}

,

(27)

whenχ → 1, we obtain that Eqs. (26) and (27) show the approximate solution for problems

(24) and (25), thus the solution is given by

�n(x,ω) =

n
∑

σ=0

ξ̃σ (x,ω). (28)
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Applying the inverse ET to Eq. (28), we obtain the approximate solution of Eq. (15),

φ(x, t)∼= φn(x, t) = E
–1

{

�n(x,ω)
}

. (29)

4 Main results and numerical simulations

In this section, we examine the Elzaki transform by considering the problems given in

Eqs. (1)–(4). First, we solve problem (1) with the initial condition (2) by using the Elzaki

transform method coupled with the Caputo derivative operator. We get by applying the

Elzaki transform

ξ̃ (x,ω) = ωq
E

{

φxxt(x, t) –

(

φ2(x, t)

2

)

x

}

+ω2φ(x, 0). (30)

At this step, we apply the Elzaki perturbation transform method to Eq. (30) and get

∞
∑

ε=0

χ ε ξ̃ε(x,ω) = χωq
E

{( ∞
∑

ε=0

χ ε ξ̃ε(x,ω)

)

xxt

}

– χωq
E

{ ∞
∑

ε=0

χ εΦε(x, t)

}

+ω2φ(x, 0). (31)

Now if we apply the inverse Elzaki transform to Eq. (31), we have

∞
∑

ε=0

χ εφε(x, t) = χE–1

{

ωq
E

{

L

〈 ∞
∑

ε=0

χ εφε(x, t)

〉}}

– ρE–1

{

ωq
E

{ ∞
∑

ε=0

χ εΦε(x, t)

}}

+ E
–1

{

ω2φ(x, 0)
}

. (32)

In Eq. (32), the Φε(·) values are functions that show the nonlinear terms given in Eq. (23)

and they are examined by this way:

Φ0(φ) = φ0(φ0)x,

Φ1(φ) = φ0(φ1)x + φ1(φ0)x,

Φ2(φ) = φ0(φ2)x + φ1(φ1)x + φ2(φ0)x,

...

(33)

Then, we have the solution steps for the Caputo operator by considering the correspond-

ing powers of χ :

χ0 : φ0(x, t) = E
–1

{

ω2x
}

= x,

χ1 : φ1(x, t) = –E–1
{

ωq
E
{

Φ0(x, t)
}}

= –
xtq

Γ (q + 1)
,

χ2 : φ2(x, t) = –E–1
{

ωq
E
{

Φ1(x, t)
}}

=
2xt2q

Γ (2q + 1)
,

χ3 : φ3(x, t) = –E–1
{

ωq
E
{

Φ2(x, t)
}}

= –
6xt3q

Γ (3q + 1)
,

(34)
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...

χn+1 : φn+1(x, t) = –E–1
{

ωq
E
{

Φn(x, t)
}}

= (–1)n+1
(n + 1)!xt(n+1)q

Γ ((n + 1)q + 1)
.

Therefore, the approximate solution of the problem is given by

φ(x, t) = x

(

1 –
tq

Γ (q + 1)
+

2t2q

Γ (2q + 1)
–

6t3q

Γ (3q + 1)
+ · · ·

+ (–1)n+1
(n + 1)!t(n+1)q

Γ ((n + 1)q + 1)

)

, (35)

giving the integer-order (q = 1) solution of the problem, φ(x, t) = x
1+t

.

On the other hand, we consider the problem by using the Elzaki transform coupled with

the Atangana–Baleanu operator. First of all, we apply the Elzaki transform to the problem:

ξ̃ (x,ω) =

(

qωq + 1 – q

N(q)

)

E

{

φxxt(x, t) –

(

φ2(x, t)

2

)

x

}

+ω2φ(x, 0). (36)

We apply the Elzaki perturbation transform method to Eq. (36) and get

∞
∑

ε=0

χ ε ξ̃ε(x,ω) = χ

(

qωq + 1 – q

N(q)

)

E

{( ∞
∑

ε=0

χ ε ξ̃ε(x,ω)

)

xxt

}

– χ

(

qωq + 1 – q

N(q)

)

E

{ ∞
∑

ε=0

χ εΦε(x, t)

}

+ω2φ(x, 0). (37)

Now if we take the inverse ET of Eq. (37) and have

∞
∑

ε=0

χ εφε(x, t) = χE–1

{

(

qωq + 1 – q

N(q)

)

E

{

L

〈 ∞
∑

ε=0

χ εφε(x, t)

〉}}

– χE–1

{

(

qωq + 1 – q

N(q)

)

E

{ ∞
∑

ε=0

χ εΦε(x, t)

}}

+ E
–1

{

ω2φ(x, 0)
}

. (38)

In Eq. (38), the Φε(·) terms are nonlinear polynomials that have been mentioned in

Eq. (23). Following the same steps to obtain nonlinear polynomials, we get the following:

χ0 : φ0(x, t) = E
–1

{

ω2x
}

= x,

χ1 : φ1(x, t) = –E–1

{(

qωq + 1 – q

N(q)

)

E
{

Φ0(x, t)
}

}

= –
x

N(q)

(

qtq

Γ (q + 1)
+ 1 – q

)

χ2 : φ2(x, t) = –E–1

{(

qωq + 1 – q

N(q)

)

E
{

Φ1(x, t)
}

}

=
2x

(N(q))2

(

(qtq)2

Γ (2q + 1)
+
2q(1 – q)tq

Γ (q + 1)
+ (1 – q)2

)

,
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χ3 : φ3(x, t) = –E–1

{(

qωq + 1 – q

N(q)

)

E
{

Φ2(x, t)
}

}

= –
x

(N(q))3
t3qq3(4Γ 2(q + 1) + Γ (2q + 1))

Γ 2(q + 1)Γ (3q + 1)

–
x

(N(q))3

(

t2qq2(1 – q)(14Γ 2(q + 1) + Γ (2q + 1))

Γ 2(q + 1)Γ (2q + 1)

+
10q(1 – q)2tq

Γ (q + 1)
+ 5(1 – q)2

)

...

Therefore, the approximate solution depending on the ABC operator is the following:

φ(x, t) =

n
∑

σ=0

φσ (x, t)

= x

(

1 –
1

N(q)

(

qtq

Γ (q + 1)
+ 1 – q

)

+
2

(N(q))2

(

(qtq)2

Γ (2q + 1)
+
2q(1 – q)tq

Γ (q + 1)

+ (1 – q)2
))

–
x

(N(q))3

(

t3qq3(4Γ 2(q + 1) + Γ (2q + 1))

Γ 2(q + 1)Γ (3q + 1)
+
10q(1 – q)2tq

Γ (q + 1)

+ 5(1 – q)2
)

–
x

(N(q))3

(

t2qq2(1 – q)(14Γ 2(q + 1) + Γ (2q + 1))

Γ 2(q + 1)Γ (2q + 1)

)

+ · · · ,

giving the integer-order (q = 1) solution of the problem, φ(x, t) = x
1+t

.

The following Figs. 1 and 2 show the behavior of the solutions for different values of

fractional order for Caputo and Atangana–Baleanu operator, respectively. For both Ca-

puto and AB operators, the wave damping has been observed over time. In addition, it is

Figure 1 Simulation of φ(x, t) for Caputo fractional operator when x = 0.1
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Figure 2 Simulation of φ(x, t) for Atangana–Baleanu fractional operator when x = 0.1

observed that for the AB operator the wave damping is slower than for the Caputo oper-

ator.

Secondly, we obtain the solution of the problem in Eqs. (3)–(4) by using the Elzaki trans-

formmethod coupled with the Caputo and ABC derivative operators.We apply at first the

Elzaki transform of the Caputo derivative to Eqs. (3)–(4):

ξ̃ (x,ω) = ωq
E

{

φxx(x, t) – φx(x, t) –
1

6

[

e(–2x+4t)φxt(x, t)
]

x
– φ2(x, t)φx(x, t)

}

+ω2φ(x, 0). (39)

At this step, we apply the Elzaki perturbation transform method to Eq. (39) and get

∞
∑

ε=0

χ ε ξ̃ε(x,ω) = χωq
E

{( ∞
∑

ε=0

χ ε ξ̃ε(x,ω)

)

xx

–

( ∞
∑

ε=0

χ ε ξ̃ε(x,ω)

)

x

}

– χωq
E

{ ∞
∑

ε=0

χ εΦε(x, t)

}

+ω2φ(x, 0). (40)

Applying the inverse Elzaki transform to Eq. (40), we have

∞
∑

ε=0

χ εφε(x, t) = χE–1

{

ωq
E

{

L

〈 ∞
∑

ε=0

χ εφε(x, t)

〉}}

– χE–1

{

ωq
E

{ ∞
∑

ε=0

χ εΦε(x, t)

}}

+ E
–1

{

ω2φ(x, 0)
}

. (41)
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In Eq. (41), the Φε(·) values are functions that show the nonlinear terms given in Eq. (23)

and they are examined by the following way for the problem (3):

Φ0(φ) = φ2
0 (φ0)x,

Φ1(φ) = φ2
0 (φ1)x + 2φ0φ1(φ0)x,

Φ2(φ) = φ2
0 (φ2)x + 2φ0φ1(φ1)x +

(

φ2
1 + 2φ0φ2

)

(φ0)x,

...

(42)

Weobtain the recursive relation for theCaputo operator by considering the corresponding

powers of χ :

χ0 : φ0(x, t) = E
–1

{

ω2e–x
}

= e–x,

χ1 : φ1(x, t) = E
–1

{

ωq
E
{

L
〈

φ0(x, t)
〉}}

– E
–1

{

ωq
E
{

Φ0(x, t)
}}

= E
–1

{

ωq
E
{

2e–x
}}

– E
–1

{

ωq
E
{

–e–3x
}}

=
(

2e–x + e–3x
) tq

Γ (q + 1)
,

χ2 : φ2(x, t) = E
–1

{

ωq
E
{

L
〈

φ1(x, t)
〉}}

– E
–1

{

ωq
E
{

Φ1(x, t)
}}

= E
–1

{

ωq
E

{

(

4e–x + 18e–3x + 5e–5x
) tq

Γ (q + 1)

}}

– E
–1

{

ωq
E

{(

e–3x+4t +
5

2
e–5x+4t

)

qtq–11

Γ (q + 1)

}}

=
(

4e–x + 18e–3x + 5e–5x
) t2q

Γ (2q + 1)
–

(

e–3x +
5

2
e–5x

)

×
21–2qe2t

√
π (– 1

t
)
1
2–qJ– 1

2+q
(–2t)

Γ (q)
,

...

(43)

Thus, the approximate solution of the problem is given by

φ(x, t) = e–x +
(

2e–x + e–3x
) tq

Γ (q + 1)
+

(

4e–x + 18e–3x + 5e–5x
) t2q

Γ (2q + 1)

–

(

e–3x +
5

2
e–5x

)21–2qe2t
√

π (– 1
t
)
1
2–qJ– 1

2+q
(–2t)

Γ (q)
+ · · · , (44)

where Jα(x) is the Bessel function of the first kind and Eq. (44) gives the integer-order

(q = 1) solution of the problem φ(x, t) = exp(–x + 2t).

In Fig. 3, it can be observed that only a few components of the series obtained by

Elzaki transform method are needed to get close to the exact solution. It has been ob-

served in Fig. 4 that, as the value of the fractional parameter decreases, the wavelength

increases.
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Figure 3 Comparison of the exact solution and the approximate solution given in Eq. (44)

Figure 4 Behavior of the solution with respect to the different values of q

On the other hand, we consider the problem by using the Elzaki transform coupled with

the Atangana–Baleanu operator. First of all, we apply the Elzaki transform to the prob-

lem:

ξ̃ (x,ω) =

(

qωq + 1 – q

N(q)

)

E
{

φxx(x, t) – φx(x, t)
}

× E

{

–
1

6

[

e(–2x+4t)φxt(x, t)
]

x

}

× E
{

–φ2(x, t)φx(x, t)
}

+ω2φ(x, 0). (45)
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Then, we apply the Elzaki perturbation transform method to Eq. (45) and get

∞
∑

ε=0

χ ε ξ̃ε(x,ω) = χ

(

qωq + 1 – q

N(q)

)

×
(

E

{[( ∞
∑

ε=0

χ ε ξ̃ε(x,ω)

)

xx

–

( ∞
∑

ε=0

χ ε ξ̃ε(x,ω)

)

x

]

x

}

– E

{[

–
e(–2x+4t)

6

( ∞
∑

ε=0

χ ε ξ̃ε(x,ω)

)]

x

})

– χ

(

qωq + 1 – q

N(q)

)

E

{ ∞
∑

ε=0

χ εΦε(x, t)

}

+ω2φ(x, 0). (46)

If we take the inverse Elzaki transform of the last equation, we have

∞
∑

ε=0

χ εφε(x, t) = χE–1

{

(

qωq + 1 – q

N(q)

)

E

{

L

〈 ∞
∑

ε=0

χ εφε(x, t)

〉}}

– χE–1

{

(

qωq + 1 – q

N(q)

)

E

{ ∞
∑

ε=0

χ εΦε(x, t)

}}

+ E
–1

{

ω2φ(x, 0)
}

. (47)

In Eq. (47), the Φε(·) terms are the nonlinear polynomials that have been mentioned in

Eq. (23). Following the same steps to obtain nonlinear polynomials, we get

χ0 : φ0(x, t) = E
–1

{

ω2e–x
}

= e–x,

χ1 : φ1(x, t) = E
–1

{(

qωq + 1 – q

N(q)

)

E

{

(φ0)xx – (φ0)x –
1

6

[

e(–2x+4t)(φ0)xt
]

x

}}

– E
–1

{(

qωq + 1 – q

N(q)

)

E
{

Φ0(x, t)
}

}

=
e–3x + 2e–x

N(q)

(

tq

Γ (q)
+ 1 – q

)

,

χ2 : φ2(x, t) = E
–1

{(

qωq + 1 – q

N(q)

)

E

{

(φ1)xx – (φ1)x –
1

6

[

e(–2x+4t)(φ1)xt
]

x

}}

– E
–1

{(

qωq + 1 – q

N(q)

)

E
{

Φ1(x, t)
}

}

,

=
4e–x + 5e–5x + 18e–3x

N2(q)

(

q2t2q

Γ (2q + 1)
+
(1 – q)2qtq

Γ (q + 1)
+ (1 – q)2

)

–
(15e–5x + 6e–3x)

6Γ (q – 11)N2(q)
×

(

Γ (q)(1 – q)e4ttq–11

+ q

(

21–2qe2t
√

π

(

–
1

t

)
1
2–q

J– 1
2+q

(–2t)

))

,

...
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Therefore, the approximate solution depending on the ABC operator is the follow-

ing:

φ(x, t) = e–x +
e–3x + 2e–x

N(q)

(

tq

Γ (q)
+ 1 – q

)

+
4e–x + 5e–5x + 18e–3x

N2(q)

×
(

q2t2q

Γ (2q + 1)
+
(1 – q)2qtq

Γ (q + 1)
+ (1 – q)2

)

–
(15e–5x + 6e–3x)

6Γ (q – 11)N2(q)

×
(

Γ (q)(1 – q)e4ttq–11 + q

(

21–2qe2t
√

π

(

–
1

t

)
1
2–q

J– 1
2+q

(–2t)

))

+ · · · , (48)

giving the integer-order (q = 1) solution of the problem, φ(x, t) = exp(2t – x).

In Fig. 5, we have given the comparion of the exact solution and the approximate solu-

tion given in Eq. (48) and in Fig. 6, it can be seen the solutions to the problem which is

given by Eq. (3) with respect to the different values of fractional parameter in the sense

of Atangana–Baleanu operator. By taking account of the findings of the paper, we can

observe that only a few components of the series obtained by the perturbation method

coupled with the Elzaki transform provide almost the exact solution. Moreover, this study

differs from the others on the nonlinear RLW equation in that it has pointed out the differ-

ence in the behaviors of two fractional derivative operators and it has employed the Elzaki

transform of the AB operator. On the other hand, the scheme that has been defined in the

second section identifies the components of the series solution. It is possible to calculate

more components in the scheme to increase the approximation accuracy. Numerical re-

sults show how a high degree of accuracy, and in most cases the n-term approximation

φ(x, t) is accurate already for pretty small values of n. In this context, we have used only

the first three components φ(x, t) = φ0(x, t) +φ1(x, t) +φ2(x, t) to approximate the exact so-

lution and to generate the surfaces shown in all figures in this paper. It can be regarded as

a major advantage of the solution method to obtain the solutions even with fewer terms.

Another advantage of the method is in simplifying the calculations by avoiding the diffi-

culties and massive computational work compared with traditional numerical methods,

because the homotopy Elzaki transform method (HETM) appears to be very promising

Figure 5 Comparison of the exact solution and the approximate solution given in Eq. (48)
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Figure 6 Behavior of the solution with respect to the different values of fractional parameter
(q = 1.0, 0.9, 0.7 – bottom to top)

for solving nonlinear partial differential equations without linearization, perturbation, or

discretization.

5 Conclusion

The present work computes the approximate solutions of some special regularized long-

wave equations of fractional order by utilizing a new integral transform technique, namely

Elzaki transformation. Firstly, we have defined the Elzaki transformation of theAtangana–

Baleanu fractional operator and have applied it to the suggested problems. The reliabil-

ity and effectiveness of the employed scheme lie in the fact that it has a strong ability to

provide a suitable convergence region for the solution. The high accuracy of results and

simple solution procedure establish the dominance of this computational scheme over

other existing numerical techniques. In addition, we have demonstrated the differences

between the Caputo and Atangana–Baleanu fractional operator in finding the approxi-

mate solutions of the mentioned illustrative problems. The numerical outcomes reveal

that the fractional derivative operators used in this study are very useful for modeling

real-life problems and they have great advantages when considering their Elzaki trans-

form to interpret some illustrative physical problems. Especially, the Atangana–Baleanu

fractional operator has some additional advantages due to its nonsingular and nonlocal

construction. It is pointed out by some researchers that Mittag-Leffler function is more

effective inmodeling the physical and engineering problems than the power function, and,

since the AB operator has a nonlocal kernel, it provides better explanation of the memory

within structure and media with distinct scales. As a different point, it can be stated that

the utilized scheme for approximate solution is highly efficient and useful to handle many

nonlinear equations describing real systems.



Yavuz and Abdeljawad Advances in Difference Equations        ( 2020)  2020:367 Page 16 of 18

Acknowledgements

Mehmet Yavuz was supported by TUBITAK (The Scientific and Technological Research Council of Turkey). The author
Thabet Abdeljawad would like to thank Prince Sultan University for funding this work through research group Nonlinear
Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

Funding

Not applicable.

Availability of data andmaterials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this article. All authors read and approved the final manuscript.

Author details
1Department of Mathematics and Computer Sciences, Faculty of Science, Necmettin Erbakan University, 42090, Konya,
Turkey. 2Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter,
TR10, Cornwall, UK. 3Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh
11586, Saudi Arabia. 4Department of Medical Research, China Medical University, Taichung 40402, Taiwan. 5Department
of Computer Science and Information Engineering, Asia University, Taichung, Taiwan.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 1 June 2020 Accepted: 9 July 2020

References

1. Hristov, J.: Approximate solutions to fractional subdiffusion equations. Eur. Phys. J. Spec. Top. 193, 229–243 (2011)
2. Hristov, J.: Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of

Caputo–Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions. Therm. Sci. 21, 827–839
(2017)

3. Yavuz, M., Ozdemir, N.: New numerical techniques for solving fractional partial differential equations in conformable
sense. In: Conference on Non-integer Order Calculus and Its Applications, pp. 49–62. Springer, Cham (2017)

4. Baleanu, D., Agheli, B., Al Qurashi, M.M.: Fractional advection differential equation within Caputo and Caputo–Fabrizio
derivatives. Adv. Mech. Eng. 8(12), 1–8 (2016). https://doi.org/10.1177/1687814016683305
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