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Abstract

We investigate the nonlinear, relativistic dynamics that result when intense
(10'®W /cm® and above) and ultrashort (one plasma period or shorter) laser pulse
travels through a cold underdense plasma. Using a Lagrangian analysis of the
plasma reponse, it can be demonstrated that the nonlinear wake, the collective
dissipation, the nonlinear Compton losses, and the harmonic generation, are all
determined by a finite set of integrated scalar quantities. This result holds for
one-dimensional, short pulses of arbitrary amplitude, shape, and polarization, so
that these very short intense laser pulses in a plasma can be viewed essentially as
a quasiparticle characterized by a small set of global parameters.
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1 Introduction

That electrons or photons might be accelerated by high phase velocity nonlinear plasma
waves [1] focusses attention to the possibility that such waves might be generated by means
of intense ultrashort laser pulses in a cold plasma. Techniques of pulse compression [2] now

make possible the exploration of the laser-plasma interaction at fluxes above 108W /cm®,
* Thus, there is a need to develop new theoretical tools to understand the intense relativistic
pulse-plasma interaction regime.

The nonlinearity parameter of an electromagnetic transvese wave with vector potential
a is 7 = ea/mc where c is the velocity of light, —e the electron chage, and m the electron
mass [3]. When n ~ 1 (~ 10"®W/cm? for visible light), the quiver velocity becomes
relativistic. When the fields are so strong that the nonlinearity parameter n > 1, the
dipolar approximation is no lorger valid, the Lorentz equations becomes nonlinear because
of the occurrence of a space-dependent term in the driving wave phase, and the relativistic
momentum is a nonlinear function of the velocity. Yet another source of nonlinearity,
appearing in the Eulerian representation but avoided in a Lagrangian analysis, arises
from the convective derivative of the velocity.

This paper addresses the problem of the nonlinear relativistic interaction of a given
one-dimensional, very short, electromagnetic pulse of arbitrary amplitude, polarization -
and shape, with a cold underdense plasmas. The plasma is considered cold, in that both
the electron quiver velocity in the pulse, and the electron longitudinal velocity in the wake,

‘are larger than the electron thermal velocity.

Although there are no general methods to deal with such a nonlinear, initial value prob-
lem, a Lagrangian analysis of the electrons plasma response is powerful mathematically,
and affords a clear physical pictures of the nonlinear processes. Here we shall consider the
effects of a given pulse on the plasma; theeffects of the plasma on the pulse occur on a
time scale longer than the times scales involved in the dynamics of the plasma responses.
The slow evolution of the shape of the pulse will be considered in a forthcoming paper.

The consideration of an ultrashort pulse actually simplifies considerably the mathe-
matical analysis. This is fortunate, since, in the relativistic regime, the dipolar expansion
which assumes 7 < 1 can not be used. Moreover, the usual formalism »f parametric cou-
pling of nonlinear laser-plasma interaction s can not be put at work efficiently, because, in
he regime we consider, the plasma experiences a ballistic, very short, passing perturbation
rather than an harmonic one.

Consider an ultrashort pulse with a broad spectra whose mean frequency, @, is above
the plasma frequency, w,, and whose width, éw, is larger than w,. The plasma is assumed
to be underdense for the main spectral components of the pulse (¥ £ éw > w,). Thus,
there.are two small parameters, w,/@ < 1, and w,/éw < 1, and, since éw < @, the second
inequality ensures the first one.

The inequality w,/éw < 1 means that the pulse duration is shorter than the time for
the electrons to set up a collective response. In other words, the electron motion inside



the pulse is dominated by the single particle response to the transverse wave packet, and
the collective longitudinal response can be treated as a perturbation in front of the driving
pulse forces. On the other hand, behind the pulse the plasma reorgnizes itself through a
purely longitudinal collective response to the initial perturbation induced by the pulse,
and this result in an electrostatic wake.

A Lagrangian analysis, efficient in analysing the weakly relativistic regime of the beat
wave problem, [4] is also suited particularly to the present parameter regime of a given
arbitrary short pulse on a cold plasma. This problem of intense relativistic pulse-plasma
interaction has been recently addressed with a quasistatic approximation of the Eulerian
representation [5], which assumes an ordering of the same type. However, using present
Lagrangian method, rather than the quasistatic approximation of the Eulerian represen-
tatation, it can be shown that the plasma responses (wake, harmonic, Compton diffusion)
can be calculated in terms of a small set of global quantities; moreover, this can be accom-
plished for arbitrary amplitude, shape and polarization, of the pulse. From this analysis,
the pulse appears as a quasiparticle characterized by a few scalars parameters, which we
calculate. The Lagrangian analysis provided here can also deal with discreteness effects,
such as nonlinear Compton losses which do not appear in the fluid representation.

Suppose a wave packet propagates in the z direction, with vector potential a(t — z/c).
Suppose further that a(t—z/c < 0) = a(t—z/c > T) = 0. The pulse is then characterized
by two time scales: its mean frequency @ and its total phase duration T', where Téw ~ 1.
Our study is restricted to a pulse traveling at the velocity of light, which is a good
approximation for waves in an underdense plasma, and an even better approximation for
very intense waves [6]. In that case, the duration seen by a rest observer is, in fact, T'v/2.

It turns out that, for short pulses, many important phenomena do not depend on the
details of the pulse shape; rather, certain global parameters play a key role. For example,
consider the total energy content per unit surface, u. This quantity can be expressed in
term of the square of the electric field (4 = & - &) as follows:

T
u= U = 60/0 ('zQ(u)du. (1)

As will be demonstrated in the forthcoming sections, a set of integrated quantities, or
what we call “global parameters,” of which U is a member, turns out to characterize the
plasma dynamical responses.

The paper is organized as follows: In Sec. 2 and Sec. 3 we review the exact relativistic
orbit of an electron in an arbitrary electromagnetic pulse, and the Lagrangian theory of
relativistic nonlinear plasma waves. In Sec. 4 we study the relativistic interaction of a
short, intense pulse with an underdense plasma. The electron response inside the pulse is
calculated through an expansion that exploits the exact calculation, discussed in Sec. 2,
of electron motion in vacuum fields. The net effect of the pulse on the plasma depend. on’
two quantities that describe the electron as it leaves the pulse, the exit position /, and

the exit velocity V. These quantities, like U above, can be expressed as weighted integrals
over the pulse.



In Sec. 5, and Sec. 6, on the basis of H and V, the wake structure, and collective
energy losses, are calculated. Then in Sec. 7 and Sec. 8, nonlinear Compton losses and
harmonic generation are studied, and these effects are shown to be determined by two
new global parameters. A Lagrangian picture of photon acceleration is brieﬂy analyzed
in Sec. 9. In Sec. 10, the various density regimes for nonlinear dissipation are e\<p101ed
In Sec. 11, our results and conclusions are summarized.

To simplify the presentation, in the following, rather than the I.S. of un1t> we shall
use m = ¢ = e = 1. Thus, the nonlinearity parameter 5 is in fact ¢, and the permittivity
of free space ¢ is the inverse of the clasical electron radius 1/4xr..

2 Exact relativistic motion in a laser pulse

The relativistic motion of an electron in an electromagnetic pulse, of arbitrary polarization

- and shape is integrable [7]. In this section, we will briefly review this important result

which is the underpinning of the Lagrangian analysis. Integrability is a consequence of the

existence of a space-time symrmetry associated with the phase of the wave: since the system

is invariant with respect to translation along the phase direction in space-time, Noether’s

theorem assures the existence of an additional invariant associated with this symmetr)
The motion of the electron in the wave is described by the the Lorentz equation, \
dp dy \‘

—_— : —_— 2
o d+vx(nxa), y7 a-v, (2)

where the wave travels in the direction of the unitary vector n, the electron momentum is

“denoted by p and the velocity by v. The dot stands for differentiation with respect to the
phase argument, (¢ — z), and ~ is the relativistic energy. Multiplying the first equation by
n, using a-n = 0, and subtracting the second equation, we find that the quantity vy —n-p
is a constant of the motion. In a cold plasma (T, <« 511KeV), this constant is clearly
7(—00) —n - p(—c0) = 1. Thus, we have

Yy—n-p=1, T=1t-z2, (3)

where 7 is the particle proper time, and the equation at right is simply a proper time
integration (with a suitable choice of the integration constant) of the equation at left, i.e.,

v = dt/dr, n-p = dz/dr. The solution of Eq. 2 can then be expressed in term of this
proper time as follows:

z(1) = %/OT a®(u)du, yr)=1+ -;-az(r), (4)

where we have used the conservation of the canonical transverse momentum, n x p =
n x a. This implicit result, if not given explicitly, is, however, ezact to all orders in a.
Alternatively, we can express this implicit solution in the form,

—T+2/ u)du (;
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from where we can deduce the following physical interpretation: as the pulse passes the
electron, no final exchange of energy or momentum between the pulse and the parti-
cle takes place, and the only effect of the wave packet on the electron after the packet

‘passes the electron is a relativistic ponderomotive displacement of the electron, 6z =
T a?(u)du/2, which occurs precisely in the direction of the wave propagation.

In a plasma, this displacement will induce electric forces resulting from perturbation of
the charge density. The plasma will try to restore local charge neutrality. The competition
between this plasma collective response and the pulse-induced ponderomotive displace-
ment dominates the physics of nonlinear short pulse-plasma interaction inside the pulse.
Clearly, however, from this picture we can anticipate certain excellent approximations,
namely, that the main result of the pulse is a displacement, and subsequent dynamics can
‘be considered without regard to the pulse.

3 Exact relativistic motion in intense plasma waves

We consider a cold plasma perturbed in the z-direction. Each electron is described by its
unperturbed position 2, and by its Lagrangian displacement h(t, z), so that the running
Eulerian position is given by z = 29 + h [8]. Assuming that the initial perturbation
and the subsequent dynamics does not invert the initial 2o ordering of the electrons (no
overtaking), we can apply Gauss's theorem to find the relativistic motion along the = axis:

dh
— = =W’ —-— = 2h
at - T @ dt’ (©)
Integrating the equation at right with respect to time, we find that v 4+ w2h?/2 = 1 +
w2h}s/2 is an invariant, where Ay is the maximum elongation of the con31dered oscillation.

Th)s allows us to introduce the proper time 7, and to express the dynamics in the proper
time representation:

d?h why, Wy 4 -
}TQHHU [1+ 2 h'——‘Q“h =0 (l)
Thus, the proper time representation of the dynamics leads to a nonlinear oscillator equa-
tion, whose solution can be put analytically in terms of Jacobian elliptic functions:

_K®) |, ok

” p < Jxw )cnz(wu,k)du, (8)

h(r) = hysn(wr, k), t(r) =

where w and k are, in fact, functions of the amplitude, given by

4
h] g2 = Sl (9)

2
— 1 .
w Wy, [ + w N 4w2

The initial condition is A(t = 0) = hpr, and A is the complete elliptic integral of the first
kind. It is to be noted that the integral of cn? in Eq. 8 can be expressed in terms of the
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elliptic integral of the second kind E, i.e., k2 [* cn?[v, k]dv = E[am(u), k] — (1 — k*)u. As
for the solution in the pulse, but without the plasma, described in the previous section,
- the solution here is fully relativistic, and ezact to all order in hp, but implicit.
The nonlinear oscillator described by Eq. 7 can also be approached through perturba-
tive methods; the well known result of such an analysis is relevant to the weakly relativistic
regime and is given by:

h = hps cos(wt), w=w, [1 - 3w§h§,,/16] . (10)

We shall now address the problem of the competition between the motion described in
Secs. 2 and 3, the regime in which the electron is inside a relativistic wave packet that
propagates in a cold underdense plasma. The result of this competition will be captured
by the parameters H and V, the exit position and exit velocity from the pulse. Then,
behind the pulse, the motion is described by Eqs. 8, with the initial conditions being H
and V.

4 Pulse-plasma interaction

To address the problem of the motion of a plasma electron first inside a pulse, and then
behind it, let us refer to the space-time diagrams in Figs. 1 and 2. The forward and
backward fronts of the pulse travel along two light characteristics, and the length of the
pulse is T. When an electron enters the pulse, it is deflected according to the equations of
motion as given by Eq. 2. Fig. 1 coresponds to the case of circular polarization and Fig. 2
corresponds to the case of linear polarization of the wave. This deflection causes a density
perturbation inside the pulse, which leads to a longitudinal electric field. This collective
electrostatic field tends to pull the particle back to its unperturbed position. Accordingly,
we have , "

g;f;-:n-[ax(nxé)]—w§7h=%~—w§7h. (11)
The initial condition is & = 0. If the pulse is short enough, the second term on the right
hand side will remain smaller than the first term, so that we can expand about the exact
result of Sec. 2, namely, we can expand h = hg + hy + k3 + .... The other dynamical
quantities of the problem can be expanded similarly, ¥ = vg +7; + 72 + ... ar-d so on. The
first order correction, h;, due to the presence of plasma, will be either of order wh/w?,
wp /6w?, or wh/wbw. As discussed in the ordering of Sec. 1, these are, by assumption,
small parameters; similarly, the h; term scales as wj, etc. The system of equations to be
solved is:

g—f = a2(t - h)/2 - wlhy, (12)
d~ : : :
- = a(t=h)/2-wihp, (13)



dh

L (14
dT p? ‘ ( )
dt

> =7 (15)

The zeroth order response is the one found in Sec. 2. The invariant, v — po = 1, allows
to calculate the proper time, 7 = to — ho, and the zeroth order energy and position

ho = %/OT a(u)du, =1+ —;-aZ(T). (16)
The first plasma correction is governed by the system of gquations
% = (s = ha)@(to — ho)/2 - WRho, (17)
o (b1 = ha)ao — ho)/2 — wZhopo (19)
%}}_1‘ = p1, (19)
2= (20)

To solve this system of equations, we subtract the first equation from the second one to
derive an expression for v; — p;. Then, we can solve for the quantity t; — hy, using

N"n—-p= wZ/O ho(s)ds, t,—hy = wz./o du/o ho(s)ds. (21)

With these expressions for the first order quantities, Eq. (17) can be solved explicitly.
After integrating twice by parts, we get

pL = 24; [a'z /OT du/ou dv /Ou dsa®(s) -- a® /OT du/ou dan(v) - 2/0T du/ou clvaz(v)] . (22)

After further algebra, the total effect of the pulse on an electron can be expressed as a net
displacement H and as a small exit velocity V. The displacement, H = ho(T) + hy(T),
is illustrated schematically in Figs. 1 and 2. Note thut the exit velocity, V = po(T) +
p1(T)/ (%(T) + m(T)) = p1(T), is a pure plasma effect. These exit quantities can be
written as

1T, L7 ’ ¢ 2 2
=2 [ 2 ndy - L , (9
H 9/0 a?(u)du pr/O db/O du/o dv a®(v)[1 + a¥(s)], 3)

B : o1 +T u
V= —-—2—w3_/(; du/o dv a®(v). (24)

From this solution, we can define precisely the range of validity of the Lagrangian ex-
pansion. When an electron exits the pulse, its displacement, due to the plasma collective
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effect, must be smaller than the displacement due to the ponderomotive force described

in Sec. 2, i.e., ho(T) > hy(T). In the weakly relativistic regime, a ~ 1, this condition is

equivalent to w? < éw?. In the strongly relativistic regime, a > 1, regime this condition
is equivalent to w?a® < 6w?.

A complemeitary case, where the effect of a pulse on a plasma can be calculated
analytically, is when the time ordering condition is relaxed, but the interaction is non-
relativistic, (¢ <« 1). Admittedly, for the purpose of wake and harmonic generation, this
nonrelativistic case is less important, but we present it here, for academic reasons, for the
sake of completeness. Consider an electromagnetic pulse described by its vector potential
a(t,z) < 1. We do not assume the pulse length or the wave period to be smaller than
the plasma wave pcriod, nor do we assume the group velocity to be the light velocity. In
this linear, nonrelativistic case, a is the small parameter. The Lagrangian coordinates of
an electron inside the pulse are described by

Ph o falt, ) x (n x aa(t z))] —wlh = —a(tz) By (g
di? 0z P

This equation is valid provided that the velocity of the electron remains smaller than the
velocity of light. This occurs if a <« 1, otherwise proper time corrections are needed.
We can then use a dipolar approximation for the first term on the right hand side of
Eq. 16, a(t, z) = a(t, 20), and Ja(t, 2)/0z = Da(t, z0)/z. Thus, the equation to be solved
becomes linear, and can be integrated directly. Let T be the pulse length. The sole effect
of the pulse on the plasma, as in the previous case, is to disturb the electron position and
velocity by an amount H and V given by
T a?(u 1 /T 2(;

H= i—p A sin[wp(u ~ T)]a é()z’—o)-du, V= —-5/0 cos[wp(u - T)]Qg—%ﬂcl'zt. (26)
Whereas from either a practical, or a fundamental, point of view, this nonrelativistic
result may be less interesting than the relativistic one, this sclution does arouse some
interest. Note that, if wp,T" > 1, the scalings, with respect to wy, and «, of the incremental
displacement and velocity, H and V, are different from the fully relativistic nonlinear case.
This*indicates that to reach perturbatively, from the nonrelativistic case, the relativistic

case may require a large number of terms in the expansions that rely upon the smallness
of w, or a.

5 Nonlinear wake

Using the results of the previous sections, the structure of the nonlinear wake behind the
pulse can be calculated easily. First, let us investigate the weakly relativistic response

described by Eq. (10). The weakly relativistic Lagrangian displacement behind the pulse
can be written as '

h(t,zo) = H cosfw(t — zp)] + %sin[w(t -z, t> 2, (:

o
-1
~



where zg is the initial unperturbed position of the electron. The nonlinear frequency is

given by

| V’

w(H,V) = wy(1 - 3wlh};/16), hi; = H*+ —. (28)
wp

It can be verified that Eq. (27) fulfills both the dynamical equation of Sec. 3 and the initial

condition just behind the pulse calculated in Sec. 4. The Eulerian density perturbation

can be expressed on the basis of the unperturbed density n(z) and k, namely

n(z,t) = /dzo n(z0)6{z — 20 — h(t, 20)] = /sz/ —;—En(zy;;)e"‘k["'“"h(""°)], | | (29)

where §é is the Dirac function. The exponential of the oscillating Lagrangian position in
Eq. (27) can be expanded in terms of Bessel functions of the first kind, J,. For t > z, we
obtain, behind the pulse, :

n_-/ 20/ l\lv'n.-,-+-oon‘ioo2 n(zo) (kV/.u) (I\,H) -1k(z-zo)e:(m+n w(t—z0) (30)
o 2T m=—00 n=—00

Note that after at least one plasma period, h(zo,1t) is unaffected by the electrons just leav-
ing the pulse. Thus, the zo integral can be extended from —oo to +c0. It then becomes
apparent that Eq.(30) simplifies, because the integral over zo can be performed, giving
the the Fourier transform of the unperturbed density profile n(z,). Thus, Eq.(30) can be
put into a particularly convenient form to study the effect of inhomeneous density distri-
butions, such as might arise, for example, in tapering the plasma in wake field accelerator
schemes. Here, we shall restrict our attention to the case of uniform unperturbed density,
so that the wake can be put in the form of a sum of harmonic waves, namely
n— = ZZ%" men(mV)Ju[mw(H, V) H]emHV)(t-2), (31)
0
The use of the weakly relativistic approximation for the electron oscillation, Eq. (10),
means that Eq.(31) is valid where the sum over m is dominated by the small m.
Consider now the case of highly relativistic electrons descibed by Eq. (8). Here, it
appears that the wake structure can be expressed as an implicit function of (¢ — z).

Rather than using the harmonic representation of the Dirac distribution in Eq. (29), we
first make use of the representation

ah} (32)

n(z,t) = /dzo n(20)6[z — zo — h(t, 29)] = ng [1 + £

2o

In order to simplify we retain only zero order plasma effects inside the pulse, namely, we
use H = hg and V = 0. The Lagrangian compression can then be calculated with the help

of the chain rule for differentiation applied to Eq. (8). After some algebra, one obtain

m_ 2w H cn(wr, k)dn(wr, k)]
ng 2+ wlH?cen?(wr, k) '

(33)
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where 7 is an implicit function of ¢t — z given by

AN 2H2‘ T
t—2z=1T-— %L—) — Hsn(wr, k) + w”2 K cn?(wu, k)du. (34)

Overtaking between neigboring electrons occurs when the velocity of an oscillating electron
reaches the phase velocity of the wave [9]. The overtaking in the Lagrangian picture leads
to wavebreaking in the Eulerian picture, which results in the production of fast electrons.
Because we have assumed that the group velocity of the pulse is equal to the velocity of
light, overtaking clearly is impossible. Thus, the phenomenon of wavebreaking can not be
addressed within the framework of the present model. In fact, in the strongly nonlinear
regime, a 3> 1, a precise and meaningful definition of the group velocity is still lacking.
We have shown in Sec. 3 that v 4+ w2h?/2 is an invariant, so that, behind the pulse,
there is a the maximum electric field Fps, and a maximum relativistic energy va; of an
electron during its nonlinear oscillation in the plasma wave. These quantities are given by

Ey =20(vy —1) = wiH? +w,2,V2. ‘ (35)

Note that, here, Far is the peak electric field behind the pulse and should not be confused,
in the literature, with the maximum electric field of an infinite nonlinear plasma wave [9},
arising from the wavebreaking limit. Although, as mentioned above, the wavebreaking
limit is not considered in the present model, it so happens that even if the group velocity
of the pulse were smaller than ¢, Eq. (35) remains valid. This happens because the
maximum values of these quantities are reached here just behind the pulse, where we
solved only an initial value problem, prior to the completion of a plasma oscillation. On
the other hand, the difficulties that arise in overtaking occur only upon the completion of
one plasma oscillation, and there arise particular difficulties in studying the steady state .
of non-linear plasma waves.

6 Nonlinear collective energy losses

If one views the pulse as a ballistic perturbation sweeping a one-dimensional array of
non-linear oscillators, one can imagine a continuous transfer of energy from this ballistic
perturbation to the array of oscillators. The energy balance of such a system can be per-
formed straightforwardly. Compare the plasma energy before and after the pulse passing;
the difference is the work of the pulse on the plasma,

dU wp o, wl

— =_—EH*_ Py? 36
dt 2 2 : ‘ (36)
The nonlinear character of this dissipation is obvious from the fact that it is properticnal
to the square of the electron density. A linear, resonant dissipative process would incur

this loss of energy through a decrease in the amplitude of the wave at constant frequency.

10



However, since the processes involved here in this energy exchange are nonresonant, the
wave action is conserved, and that the interaction result in a slowing down of the pulse,
i.e., a decrease in the mean frequency @.

7 Nonlinear Compton scattering

Competing with the losses calculate in Sec. 6, due to a coherert transfer of energy to
longitudinal waves, is an incoherent transfer of energy to transverse waves. The latter
transfer can dominate at low density. When an electron enters the pulse, it is acceler-
ated in the transverse direction, in the process radiating part of the energy in the pulse.
This spontaneous process is, in fact, nonlinear Compton scattering. The single particle
dissipation is given by [10]

d 2r, (dp d dvy d -
Ev_=__r_7[_2.._2__1._1]_ (37)
T 3

Neglecting both the plasma response, and the radiation reaction force, inside the pulse
we can exploit the fact that ¢ — z is the proper time 7. The total energy loss S, resulting
from one electron transit through the pulse, can then be put in the form

2r. [T
S=5

a*(u) 1 + a*(u)/2] du. (38)
The bracketed term in the integral above accounts for the nonlinear, relativistic modifica-
tions of the usual Thomson cross section. To obtain the pulse energy loss due to Compton
scattering, we sum the contributions from all electrons entering the pulse. The additional
loss term, which would complete the coherent losses in Eq. (33), is then given by

dU .
- = —w?§. (39)

As might be imagined, these incoherent losses iend, at very low density, to dominate
dissipation due to collective effects.

8 Application to relativistic harmonic generation

A short intense pulse produces transverse harmonic fields because of the nonlinear re-
sponse of the plasma [5]. This occurs in addition to the effects considered above: nonlinear
Compton scattering and the generation of a longitudinal wake. In harmonic generation,
the polarization of the wave plays an important role. In a linearly polarized pulse, the
quantity a? is characterized by two time scales, 2w, and dw; on the other hand, a cir-
cularly polarized pulse, in effect, characterizes a* with only one time scale, namely, the

11



pulse width, éw. This difference between the circular and linear polarization is depicted
schematically in Figs. 1 and 2. Linear polarization, because a® contains the time scale 2a,
gives rise to harmonic generation at 3@.

The transverse current, due to the electrons response inside the pulse, is given by

Oh

-1
j= —eow:/dzoé(z —2p—h)= = —-eowf,% [1 + ——] . (40)

a
v 020

The ponderomotive perturbation of the density inside the pulse, (1 + 0h/0z), can be
calculated using the results of Sec. 4. Expanding in the density, the leading terms for the
proper time of an electron initially at z, are given by

wz t—z9=h u v
=1 — 20— h— =P 2 41
T=t—2—h 5 /0 du/o dv/o dsa®(s). (41)

Now use the identity Oh/0z = (dh/d7)(87/0z) = pdT [0z, to find, after some algebra,
the density perturbation

on]! w? T v, 1
{1 + Bzo} = [1 - -5-./‘; du/o dva (v)] . (42)

Note that using Eq. (42), the current defined in Eq. (40) appears to be a sum of the usual
linear reactive contribution and an active nonlinear contribution. In the case of linear
polarization, the nonlinear contribution contains the third harmonic of the original pulse.
Let a; be the harmonic vector potential radiated by this nonlinear part of the current,
where a; obeys the inhomogeneous wave equation,

92 H? B w; t—z u 2
[5? - -@W] a; = —a-é—/; du/0 dva®(v), | (43)

which can be solved using the Green’s function for the one-dimensional wave operator.
The Green’s function is 0 everywhere except in the backward light cone denoted, in Tig. 3,
by Cy and C_. In this causal light cone, the Green’s function takes the value 1/2. Thus,
to solve Eq. (43), the integral over the Green’s function is resticted to the intersection of
this light cone with the support of j;, shown as the shaded area in Fig. 3. Assume now
that the interface between the vacuum and the plasma is located at z = 0, make a change

of variables from (z,t) to (2 — ¢,z + t), whose Jacobian is 2, and find for the first order
plasma induced harmonic pulse

wi

ar(t,z) = —-—2-p(z+t)/Ot_za(w)dw/Owdu/oudvf(v) (44)

This result can be simplified if we write z + ¢ = 2t — (¢t — 2), and then note that the
first order harmonic response appears as the sum of a growing propagating term and a
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constant propagating one, i.e., function of (¢t — z) only. After few plasma periods, the
~ constant response is dominated by the growing term. The associated unstable electic field
—0d(a;/dt) can then bw written as

aal 4 t—z Y 2 .
S = witalt -z)/o du/o dva?(v). CS)

To describe the power conversion due to this unstable term, we introduce the integrated
quantities R, where

R = /;T dla®(l) [/0[ dw /ow dvaz(v)r. (46)

The energy, in the harmonic pulse grows as wit® R, representing a power loss, competing
‘with the terms in Eq. (36), which may be written as

% = —2wjtR. (47)
The integral [ captures the information relevant to the harmonic generation effect. Ev-
identally, the harmonic power conversion scales as wg, or with the fourth power of the
plasma density. ‘

Note that, by varying the degree of polarization of the original pulse, the mean fre-
quency of the harmonic unstable pulse can be tuned between @ and 3.

9 Application to relativistic photon acceleration

In an optimally efficient scheme for relativistic photon acceleration, a leading pulse, de-
picted as “P1” in Fig. 4, delivers energy to the plasma wake, and this energy is entirely
reabsorbed by a lagging or accelerated pulse, depicted as “P2.” Complete pulse reabsorp-
tion, leaving no energy in the plasma, implies

H, = H,, i =V, (48)

where H; and V; are the position and velocity shifts following pulse i. Since the energy
exchange process does not involve resonant processes, it follows that the pulse action is an
adiabatic invariant. Hence, in absorbing the wake energy, the lagging pulse experiences a
mean frequency upshift [11], rather than a growth in amplitude.

The salient parameters of such a photon accelerator are the mean frequency upshift
of the accelerated pulse and the delay between the two pulses. A precise calculation of
the mean frequency upshift requires a study of the adiabatic transfer of energy from an
ocillating electron to a pulse, which is beyond the scope of the present study. We can,
however, calculate directly the optimally efficient time delay in an underdense plasma.

In the nonrelativistic regime this delay, is simply n + 1/2 times the plasma period,
where n is an integer. On the other hand, in the relativistic regime, which is particularly
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important because of the possibility of large density gradients, proper time corrections are
needed to calculate this delay.

Consider an underdense plasma, so that the exit velocities V; can be neglected (V; =
0, H; = H). The condition for an efficient transfer of energy then becomes h(D) = —H,
where D is the electron proper time delay between the two pulses. Using now Eq. (8), the
condition can be put in the form

wD =2nK(k), w’=w(l+wlH*/4), K =wiH /4’ (49)
This condition on the proper time of the electron becomes a condition on the time delay
between the two pulses ¢(H,n), such that
wgﬂz nK(k)
2 Jo

which gives the condition for the time delay that allows a photon accelerator, operating
in an underdense plasma but in the relativistic wake regime, to be maximally efficient.

wt(H,n) = 2nK (k) + cn?(u, k)du, (50)

10 Density regimes for dissipation

The previous Sections shows that, to lowest order in w,, there are three main channels for |
non linear energy dissipation, and, for very short pulses (V = 0), the total dissipation is
dU Wy 2 g 8
\ -E-t— = ——?H - UJPS - QthR (51)
From Eq. (51), we discern several different density regimes of dissipation. To investigate
the boundaries between these regimes, consider, for a > 1, the scaling of the parameters,
H, S, and R:
H ~ a®6w™, S ~ a*bw @, R ~ a®6w™s, (52)
We expect, then, that incoherent spontaneous losses will dominate coherent longitudinal
dissipation for densities is low enough that

> (2 (2)

where r, is the classical electron radius. Harmonic generation may dominate wake genera-
tion at higher density and higher laser intensity, but here there is an important dependence
upon the duration of the process or the length of the plasma. After a time, ¢, the losses
due to harmonic generation dominate if

o (2 () 2

At the present state of the art of short, intense laser pulse technology, losses incurred

through wake generation always dominate, and losses due to harmonic generation are
negligible.
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11 Summary and discussion

We have shown in the previous sections that many of the effects of an intense, short laser
pulse on a cold, underdense plasma can be calculated by solving the equation of motion of
each plasma electron, and then summing the effects of all these motions. The result, valid
to all order in the intensity, a, gives the collective transverse and longitudinal induced
fields. The nonlinear energy losses are mainly due to the longitudinal induced wake,
which scales as wj. The losses due to the transverse induced response, which happens
at high frequency only in the case of non circular polarization, scales as w$. In the
weakly relativistic regime, these losses are negligible compared to the longitudinal losses.
Incoherent nonlinear Compton scattering becomes important only at very low density.

We have been mainly concerned by the effect ¢ a given pulse on the plasma; what we
have not considered in detail is the self-consistent problein that considers also the effect
of the plasma on the pulse. We show, however, that these effects occur on a longer time
scale than do the effects considered above, and so may be neglected.

Two time scales are associated with the modification of the pulse due to the plasma:
one, a nonlinear time scale associated with the energy losses; and, two, a linear time
scale associated with the dispersive dynamiics of the pulse envelope. The time scale ¢
associated with the linear dispersive evolution of the pulse shape arises because of the
depence of the group velocity on the frequency, éwt;0v,/0w ~ c¢/éw. Using the usual
dispersion relation for a cold plasma, we find, wpty ~ (@/6w)?(@/w,). This time scale is
larger than the time scales associated with the processes studied above. To evaluate the
nonlinear time scale, ¢y, associated with the longitudinal energy losses, we use the global
energy balance, and we find wyty ~ (@/w,)?(éw/w,). This time scale is also longer than
those associated with the processes studied in this paper.

In summary, on the basis of a fully relativistic Lagrangian density expansion, we have
demonstrated that the effects of an ultrashort intense laser pulse on a cold plasma can be
captured, in fact, by a small set of integral parameters, H, V, R, S, and U. The general
formula for the nonlinear wake, nonlinear Compton losses, and harmonic generation have
been obtained in term of these global quantities. In addition, what emerges from these
new results, and from the Lagrangian method for obtaining them, is a more clear physical
picture of the nonlinear processes involved in the ultrashort, pulse-plasma interaction.
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Figures

Fig.1 Space-time diagram of the interaction of an electron initially at zy with a
circularly polarized laser pulse. Within the pulse, the electron is deflected by the laser.
Upon leaving the pulse, the electron oscillates in the self-consistent, nonlinear plasma
wake.

Fig.2 Space-time diagram of the interaction of an electron initially at z with a
linearly polarized laser pulse. Within the pulse, the electron is deflected by the laser,
where it oscillates at twice the mean pulse frequency. Upon leaving the pulse, the electron
oscillates in the self-consistent, nonlinear plasma wake.

Fig.3 Only events inside the causal cone (C,,C.) can influence the point (¢, z).
Inside the causal cone, only the shaded area, where the interaction between the incident
pulse and the plasma takes place, can support the nonlinear current source, j;.

Fig.4 Two pulses, P, and P, such that all the energy transferred from pulse P, to

the plasma longitudinal relativistic wake is reabsorbed by pulse P, after 1/2 a relativistic
plasma period.
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