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Abstract

We investigate the nonlinear, relativistic dynamics that result when intense

(101SW/cm 2 and above) a,ncl ultrashort (one pla,sma period or shorter) laser pulse

travels through a, cold underdense plasma. Using a Lagraagian analysis oi' the

. pla_sma reponse, it ca,n be demonstrated tha,t the noalinear wa,ke, the collective

dissipation, the nonlinear Compton losses, and the harmonic geaeration, are ali

determined by a finite set of integrated scalar quantities. This result holds for"

one-dimensional, short pulses cff _rbitrary amplitude, shape, and polarization, so

that these very short intense laser pulses in a plasma can be viewed essentially as

a qua.siparticle characterized by a small set of global parameters.
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1 Introduction

That electrons or photons might be accelerated by high phase velocity nonlinear plasma

waves [1] focusses attention to the possibility that such waves might be generated by means °

of intense ultrashort laser pulses in a cold plasma. Techniques of pulse compression [2] now

make possible the exploration of the laser-plasma interaction at fluxes above 101SW/cm 2.
Thus, there is a need to develop new theoretical tools to understand the intense relativistic

pulse-plasma interaction regime.

The nonlinearity parameter of an electromagnetic transvese wave with vector potential

a is rI = ehmc where c is the velocity of light, -e the electron chage, and m the electron

mass [3]. When 77 ,-, 1 (,-, 10_SW/cm2 for visible light), the quiver velocity becomes

relativistic. When the fields are so strong that the nonlinearity parameter 77> 1, the
dipolar approximation is no lo_ger valid, the Lorentz equations becomes nonlinear because

of the occurrence of a space-dependent term in the driving wave phase, and the relativistic

momentum is a nonlinear function of the velocity. Yet another source of nonlinearity,

appearing in the Eulerian representation but avoided in a Lagrangian analysis, arises
from the convective derivative of the velocity.

" This paper addresses the problem of the nonlinear relativistic interaction of a given

one-dimensional, very short, electromagnetic pulse of arbitrary amplitude, polarization

and shape, with a cold underdense plasmas. The plasma is considered cold, in that both

the electron quiver velocity in the pulse, and the electron longitudinal velocity in the wake,

are larger than the electron thermal velocity. "

Although there are no general methods to deal with such a nonlinear, initial value prob-

lem, a Lagrangian analysis of the electrons plasma response is powerful mathematically,

and affords a clear physical pictures of the nonlinear processes. Here we shall consider the

effects of a given pulse on the plasma; the'effects of the plasma on the pulse occur on a

time scale longer than the times scales involved in the dynamics of the plasma responses.

The slow evolution of the shape of the pulse will be considered in a forthcoming paper.

The consideration of an ultrashort pulse actually simplifies considerably the mathe-

matical analysis. This is fortunate, since, in the relativistic regime, the dipolar expansion

which assumes r/<<: 1 can not be used. Moreover, the usual formalism of parametric cou-

pling of nonlinear laser-p!asma interaction s can not be put at work efficiently, because, in

he regime we consider, the plasma experiences a ballistic, very short, passing perturbation
rather than an harmonic one.

Consider an ultrashort pulse with a broad spectra whose mean frequency, &, is above

the plasma frequency, wr, and whose width, 6w, is larger than wp. The plasma is assumed

to be underdense for the main spectral components of the pulse (_; 4- 6a; > wr). Thus,

there are two small parameters, wv/_; < 1, and wp/6w < 1, and, since _w < c_,,the second
inequality ensures the first one.

The inequality _ov/&o < 1 means that the pulse duration is shorter than the time for

the electrons to set up a collective response. In other words, the electron motion inside
IF



the pulse is dominated by the single particle response to the transverse wave packet, and

the collective longitudinal response can be treated as a perturbation in front of the driving

pulse forces. On the other hand, behind the pulse the plasma reorgnizes itself through a

purely longitudinal collective response to the initial perturbation induced by the pulse,
and this result in an electrostatic wake.

,_ A Lagrangian analysis, efficient in analysing the weakly relativistic regime of the beat

wave problem, [4] is also suited particularly to the present parameter regime of a given

arbitrary short pulse on a cold plasma. This problem of intense relativistic pulse-plasma

interaction has been recently addressed with a quasistatic approximation of the Eulerian

representation [5], which assumes an ordering of the same type. However, using present

Lagrangian method, rather than the quasistatic approximation of the Eulerian represen-

tatation, it can be shown that the plasma responses (wake, harmonic, Compton diffusion)

can be calculated in terms of a small set of global quantities; moreover, this can be accom-

plished for arbitrary amplitude, shape and polarization, of the pulse. From this analysis,

the pulse appears as a quasiparticle characterized by a few scalars parameters, which we

calculate. The Lagrangian analysis provided here can also deal with discreteness effects,

such as nonlinear Compton losses which do not appear in the fluid representation.

Suppose a wave packet propagates in the z direction, with vector potential a(t - z/c).

Suppose further that a(t-z/c < O) = a(t-z/c > T) = O. The pulse is then characterized

by two time scales: its mean frequency _ and its total phase duration T, where T6_ ,-_ 1.

Our study is restricted to a pulse traveling at the velocity of light, which is a goodq

approximation for waves in an underdense plasma, and an even better approximation for

very intense waves [6]. In that case, the duration seen by a rest observer is, in fact, T x/_2.

, It turns out that, for short pulses, many important phenomena do not depend on the

details of the pulse shape; rather, certain global parameters play a key role. For example,

consider the total energy content per unit surface, u. This quantity can be expressed in

term of the square of the electr.ic field (/,2 = _. _) as follows:

Ta 2
c0U- (:)

As will be demonstrated in the forthcoming sections, a set of integrated quaatities, or

what we call "global parameters," of which U is a member, turns out to characterize the

plasma dynamical responses.

The paper is organized as follows: In Sec. 2 and Sec. 3 we review the exact relativistic

orbit of an electron in an arbitrary electromagnetic pulse, and the Lagrangian theory of

relativistic nonlinear plasma waves. In Sec. 4 we study the relativistic interaction of a

short, intense pulse with an underdense plasma. The electron response inside the pulse is

calculated through an expansion that exploits the exact calculation, discussed in $ec. 2,

, of electron motion in vacuum fields. The net effect of the pulse on the plasma dep(._n(l: on

two quantities that describe the electron as lt leaves the pulse, the exit position H, a,_d

the exit velocity V. These quantities, like U above, can be expressed as weighte(I integrals

'_ over the pulse.
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In Sec. 5, and Sec. 6, on the basis of H and V, the wake structure, and collective

energy losses, are calculated. Then in Sec. 7 and Sec. 8, nonlinear Compton losses and

harmonic generation are studied, and these effects are shown to be determined by two

new global parameters. A Lagrangian picture of photon acceleration is briefly analyzed °

in Sec. 9. In Sec. 10, the various density regimes for nonlinear dissipation are explored.
In Sec. 11, our results and conclusions are summarized. 'i |

To simplify the presentation, in the following, rather than the I.S. of unit's we shall

use m = c =e = 1. Thus, the nonlinearity parameter r/is in fact a, and the permittivity

of free space eo is the inverse of the clasical electron radius 1/4_rr,.

2 Exact relativistic motion in a laser pulse

The relativistic motion of an electron in an electromagnetic pulse, of arbitrary polarization

and shape is integrable [7]. In this section, we will briefly review this important result

which is the underpinning of the Lagrangian analysis. Integrability is a consequence of the

existence of a space-time symmetry associated with the phase of the wave: since the system

is invariant with respect to translation along the phase direction in space-time, Noether's

theorem assures the existence of an additional invariant associated with this symme_try.
The motion of the electron in the wave is described by the the Lorentz equation,

dp d7 (2)d--i-= +v x (n x d-i=
where the wave travels in the direction of the unitary vector n, the electron momentum is

denoted by p and the velocity by v. The dot stands for differentiation with respect to the *

phase argument, (t- z), and 3' is the relativistic energy. Multiplying the first equation by

n, using a. n = 0, and subtracting the second equation, we find that the quantity A/_ n.p

is a constant of the motion. In a cold plasma (T, << 511KEV), this constant is clearly

7(-oo) - n. p(-ee) = 1. Thus, we have

7 - n.p = 1, r = t- z, (3)

where r is the particle proper time, and the equation at right is simply a proper time

integration (with a suitable choice of the integration constant) of the equation at left, i.e.,

7 = drdr, n. p = dz/dr. The solution of Eq. 2 can then be expressed in term of this
proper time as follows:

1/o"z(r) = -_ a2(u)du, 3,(r) "--1 -t- la2(r), (,t)

where we have used the conservation of the canonical transverse momentum, n x p =

n x a. This implicit result, if riot given explicitly, is, however, exact to all orders in a. mp

Alternatively, we can express this implicit solution in the form,

/o"1 a2
=, + o



from where we can deduce the following physical interpretation: as the pulse passes the
electron, no final exchange of energy or momentum between the pulse and the parti-

. cle takes place, and the only effect of the wave packet on the electron after the packet

passes the electron is a relativistic ponderomotive displacement of the electron, 6z =

foT a2(u)du/2, which occurs precisely in the direction of the wave propagation.

In a plasma, this displacement will induce electric forces resulting from perturbation of

the charge density. The plasma will try to restore local charge neutralityl The competition

between this plasma collective response and the pulse-induced ponderomotive displace-

ment dominates the physics of nonlinear short pulse-plasma interaction inside the pulse.

Clearly, however, from this picture we can anticipate certain excellent approximations,

namely, that the main result of the pulse is a displacement, and subsequent dynamics can

be considered without regard to the pulse.

3 Exact relativistic motion in intense plasma waves

We consider a cold plasma perturbed in the z-direction. Each electron is described by its

unperturbed position z0 and by its Lagrangian displacement h(t, zo), so that the running

Eulerian position is given by z = z0+ h [8]. Assuming that the initial perturbation

and the subsequent dynamics does not invert the initial z0 ordering of the electrons (no

, overtaking), we can apply Gauss's theorem to find the relativistic motion along the z axis:

dp -w_h, d_j_7= _w2h " dhd--[= dt p -_.. (6)
@

Integrating the equation at right with respect to time, we find that 7 + w_h2/2 = 1 +

a.,_h2M/2is an invariant, where hM is the maximum elongation of the considered oscillation.
This allows us to introduce the proper time r, and to express the dynamics in the proper

time representation'

WvhM ha
dr---_ + (o_ 1 + 2 h- = 0. (T)

Thus, the proper time representation of the dynamics leads to a nonlinear oscillator equa-

tion, whose solution can be put analytically in terms of Jacobian elliptic functions:

zt(k) (S)
h(r) = hMsn(wr, k), t(T) = r w bwp--_- K(k_

where w and k are, in fact, functions of the amplitude, given by

w2 2 1 + &2h_'tl - k_ = _p (9)
' -"wp v 4 ]' 4w2 '

The initial condition is h,(t = O) =/ZM, and/( is the complete elliptic integral of the first

kind. It is to be noted that the integral of cn 2 in Eq. 8 can be expressed in terms of the



elliptic integral of the second kind E, i.e., k 2f_ cn2[v, kldv -- E[am(u), k] - (1 - h2)zt. As

for the solution in the pulse, but without the plasma, described in the previous section,

the solution here is fully relativistic, and exact to all order in. hM, but implicit.

The nonlinear oscillator described by Eq. 7 can also be approached through perturba-

tire methods; the well known result of such an analysis is relevant to the weakly relativistic

regime and is given by: *

h = hMcos(_t), w = ,o_ [1 -3,,_h_/16]. (10)

We shall now address the problem of the competition between the motion described in

Secs. 2 and 3, the regime in which the electron is inside a relativistic wave packet that

propagates in a cold underdense plasma. The result of this competition will be captured

by the parameters H and V, the exit position and exit velocity from the pulse. Then,

behind the pulse, the motion is described by Eqs. 8, with the initial conditions being H
and V.

4 Pulse-plasma interaction

To address the problem of the motion of a plasma electron first inside a pulse, and then

behind it, let us refer to the space-time diagrams in Figs. 1 and 2. The forward and
#

backward fronts of the pulse travel along two light characteristics, and the length of the

pulse is T. When an electron enters the pulse, it is deflected according to the equations of

motion as given by Eq. 2. Fig. 1 coresponds to the case of circular polarization and Fig. 2 e

corresponds to the case of linear polarization of the wave. This deflection causes a density

perturbation inside the pulse, which leads to a longitudinal electric field. This collective

electrostatic field tends to pull the particle back to its unperturbed position. Accordingly,
we have

d2h a2

dr----_ = n. [a × (n ×/l)] - w_Th = -_- - w_Th. (11)

The initial condition is h = 0. If the pulse is short enough, the second term on the right

hand side will remain smaller than the first term, so that we can expand about the exact

result of Sec. 2, namely, we can expand h = h0 + hl + h2 + .... The other dynamical

quantities of the problem can be expanded similarly, "7= 70 + 7x + 72 + ... axd so on. The
"_ 2

first order correction, hx, due to the presence of plasma, will be either of order ,.,7_/w ,

w2p/Sw2, or W2p/W&,.,. As discussed in the ordering of Sec. 1, these are, by assumption,

a etc. The system of equations to besmall parameters; similarly, the h2 term scales as %,
solved is:

II

d__p = a2(t_ h)/9-w_hT, (1'))
dT "_

= a (t - h)/ ':'- hp, 'dr "



dh

d-7 = p' (_.l)
dt

" d-7= "y' (l_)

The zeroth order response is the one found in Sec. 2. The invariant, 7o - po = 1, allows

to calculate the proper time, r = to - ho, and the zeroth order energy and position

ho= _1 a2(u)du, 7o = 1 + a2(r). (16)

The first plasma correction is governed by the system of equations

@1 2ho7o, (17)
d---_"= (t_ - h_)£2(to - ho)/2--w,

2hoPo, (18)d,_, )a_(to ho)/2 %d--7"= (tl - hl - -
dh1

d-7 = P_' (19)
dr1

dr ")'1. (20) ,

To solve this system of equations, we subtract the first equation from the second one to

' derive an expression for 7x - pl. Then, we can solve for the quantity tl - hl, using

/o" /:/02 ho(s)ds, tl hl 2 du ho(s)ds. (21)
• '71 --Pl =wp -- =Wp

With these expressions for the first order quantities, Eq. (17) can be solved explicitly.

After integrating twice by parts, we get

Pl "- "_: [a2 fo'rdtt_oUdVJlVdsa2(,s)"a2_ordU foUdva2(v) - 2 fo'rdtz_oUdva2(v)] . (90)

After further algebra, the total effect of the pulse on an electron can be expressed as a net

displacement H and as a small exit velocity V. The displacement, H = ho(T) + hl(T),

is illustrated schematically in Figs. 1 and 2. Note that the exit velocity, V = po(T)+

p,(T)/(To(T) + 71(T)) - pl(T), is a pure plasma effect. These exit quantities can be
written as

lfooTa 2 lW2foT /o s /o uH = _. (u)du - 7 p ds du dva2(v)[1 + a2(s)], (23)

• /o°
From this solution, we can define precisely the range of validity of the Lagrangian ex-

pansion. When an electron exits th_ pulse, its displacement, clue to the plasma collective



effect, must be smaller than the displacement due to the ponderomotive force describecl

in Sec. 2, i.e., ho(T) > hl(T) In the weakly relativistic regime, a ._ 1, this condition is

equivalent to w_ < 5w2. In the strongly relativistic regime, a >> 1, regime this condition .
is equivalent to 2 2wpa < 5w2.

A complementary case, where the effect of a pulse on a plasma can be calculated

analytically, is when the time ordering condition is relaxed, but the interaction is non-

relativistic, (a << 1). Admittedly, for the purpose of wake and harmonic generation, this

nonrelativistic case is less important, but we present it here, for academic reasons, for the

sake of completeness. Consider an electromagnetic pulse described by its vector potential

a(t,z) << 1. We do not assume the pulse length or the wave period to be smaller than

the plasma wave pcriod, nor do we assume the group velocity to be the light velocity'. In

this linear, nonrelativistic case, a is the small parameter. The Lagrangian coordinates of

an electron inside the pulse are described by

-a(t,z).dt-----_ = -n.[a(t, z) x (n × Oz )]- -" Oz

This equation is valid provided that the velocity ortho electron remains smaller than the

velocity of light. This occurs if a << 1, otherwise proper time corrections are needed.

We can then use a dipolar approximation for the first term on the right hand side of

Eq. 16, a(t, z)= a(t, z0), and Oa(t,z)/Oz = Oa(t, zo)/Oz. Thus, the equation to be solved

becomes linear, and can be integrated directly. Let T be the pulse length. The sole effect

,. of the pulse on the plasma, as in the previous case, is to disturb the electron position and '

velocity by an amount H and V given by

1 foTsin[wp(u _ T)lOa=(u, O) 1 fo T Oa=('u,O) *H- 2wv Oz du, V =-_ cos[wE(u--T)] 0z d u. (26)

Whereas from either a practical, or a fundamental, point of view, this nonrelativistic

result may be less interesting than the relativistic one, this solution does arouse some

interest. Note that, if wET > 1, the scalings, with respect to wE, and a, of the incremental
displacement and velocity, H and V, are different from the fully relativistic nonlinear case.

This'indicates that to reach perturbatively, from the non relativistic case, the relativistic

case may require a large number of terms in the expansions that rely upon the smallness

of wE or a.

5 Nonlinear wake

Using the results of the previous sections, the structure of the nonlinear wake behind the

pulse can be calculated easily. First, let us investigate the weakly relativistic response

described by Eq. (10). The weakly relativistic Lagrangian displacement behind the pulse f
can be written as

h(t, zo) = H cos[w(t- Zo)] + _V sin[w(t - Zo)], t > Zo, (27) *
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where z0 is the initial unperturbed position of the electron. The nonlinear frequency is

given by

w(H,V) wp(1 2 2 H 2 V2

i/ It can be verified that Eq. (27) fulfills both the dynamical equation Of Sec. 3 and the initial
condition just behind the pulse calculated in Sec. 4. The Eulerian density perturbation

can be expressed on the basis of the unperturbed density n(zo) and h, namely

dk nl .zo.izo).t.-zo-l .zol (.9,n( z, l_)

where 6 is the Dirac function. The exponential of the oscillating Lagrangian position in

Eq. (27) can be expanded in terms of Bessel functions of the first kind, Jn. For t > z, we

obtain, behind the pulse,

f_t f¢¢ dk ",=+¢¢,=+ ¢0n= dzo __ V" _ imn(zo)Jn(kVlw)Jm(kH)e-{k("-:O)e '(m+'O_('-=°) (30)- 27r z...,
O0 O0 TrL _. -- O0 _,'-- -- 00

Note that after at least one plasma period, h(zo, t) is unaffected by the electrons just leav-

ing the pulse. Thus, the zo integral can be extended from _-oo to -I-oo. lt then becomes

apparent that Eq.(30) simplifies, because the integral over zo can be performed, giving

the the Fourier transform of the unperturbed density profile n(zo). Thus, Eq.(30) can be

, put into a particularly convenient form to study the effect of inhomeneous density distri-

butions, such as might arise, for example, in tapering the plasma in wake field accelerator

schemes. Here, we shall restrict our attention to the case of uniform unperturbed density,

_' so that the wake can be put in the form of a sum of harmonic waves, namely

n_._= _ y_ i"Jm_r_(mV)Jn[mw(H, V)H]e '_(H'v)('-=). (31)
720 m n

The use of the weakly relativistic approximation for the electron oscillation, EeI. (10),

means that Eq.(31) is valid where the sum over m is dominated by the small m.

Consider now the case of highly relativistic electrons descibed by Eq. (8). Here, it

appears that the wake structure can be expressed as an implicit function of (t- z).

Rather than using the harmonic representation of the Dirac distribution in Eel. (29), we

first make use of the representation

= dzo - zo- h(t,zo)]= no + .
In order to simplify we retain only zero order plasma effects inside the pulse, namely, we

use H = h0 and V = 0. TheLagrangian compression can then be calculated with the help

' of the chain rule for differentiation applied to Eel. (8). After some algebra, one obtain

[ 2wHen(wT, k)dn(wr, k) -_
__n_ I - (33)

'ii no - [ 2 + a.,v2H2cn:(wT", k) '



where _"is an implicit function of t - z given by

li(L) 2 2 f-
wpH cn2 (wu k)du. (34) "

t-z=r w Hsn(wr, k)+ 2 jK__ ,

Overtaking between neigboring electrons occurs when the velocity of an oscillating electron a

reaches the phase velocity of the wave [9]. The overtaking in the Lagrangian picture leads

to wavebreaking in the Eulerian picture, which results in the production of fast electrons.

Because we have assumed that the group velocity of the pulse is equal to the velocity of

light, overtaking clearly is impossible. Thus, the phenomenon of wavebreaking can not be

addressed within the framework of the present model. In fact, in the strongly nonlinear

regime, a >> 1, a precise and meaningful definition of the group velocity is still lacking.

We have shown in Sec. 3 that 7 + w_h2/2 is an invariant, so that, behind the pulse,

there is a the maximum electric field EM, and a maximum relativistic energy 7M of an

electron during its nonlinear oscillation in the plasma wave. These quantities are given by

E2M 2w_(TM 1) 4 2 2'2= - =%H +%V. (3,5)

Note that, here, EM is the peak electric field behind the pulse and should not be confused.

in the literature, with the maximum electric field of an infinite nonlinear plasma wave [9],

arising from the wavebreaking limit. Although, as mentioned above, the wavebreaking

limit is not considered in the present model, it so happens that even if tile group velocity *

of the pulse were smaller than c, Eq. (35) remains valid. This happens because the

maximum values of these quantities are reached here just behind the pulse, where we ,_
solved only an initial value problem, prior to the comple_ion of a plasma oscillation. On

the other hand, the difficulties that arise in overtaking occur only upon the completion of

one plasma oscillation, and there arise particular difficulties in studying the steady state

of non-linear plasma waves.

6 Nonlinear collective energy losses

If one views the pulse as a ballistic perturbation sweeping a one-dimensional array of

non-linear oscillators, one can imagine a continuous transfer of energy from this ballistic

perturbation to the array of oscillators. The energy balance of such a system can be per-

formed straightforwardly. Compare the plasma energy before and after the pulse passing;
the difference is the work of the pulse on the plasma,

,t 2

' _dU =-_WVH 2-_%V 2 (36)• dt 2 2 " 4

The nonlinear character of this dissipation is obvious from the fact that it is proportic nal

to the square of the electron density. A linear, resonant dissipative process would incur tt

this loss of energy through a decrease in the amplitude of the wave at constant frequency.

10



However, since the processes involved here in this energy exchange are nonresonant, the

wave action is conserved, and that the interaction result in a slowing down of the pulse,

i.e., a decrease in the mean frequency _.

j 7 Nonlinear Compton scattering

Competing with the losses calculate in Sec. 6, due to a cohere,._, transfer of energy to

longitudinal waves, is an incoherent transfer of energy to transverse waves. The latter

transfer can dominate at low density. When an electron enters the pulse, it is acceler-

ated in the transverse direction, in the process radiating part of the energy in the pulse.

This spontaneous process is, in fact, nonlinear Compton scattering. The single particle

dissipation is given by [10]

d"/ 2r_ [dp dp d7 dT]=-T7 _._- _._ . (,37)

Neglecting both the plasma response, and the radiation reaction force, inside the pulse

we can exploit the fact that t - z is the proper time r. The total energy loss S, resulting

from one electron transit through the pulse, can then be put in the form

, s =2, 3f0 + (3s)
The bracketed term in the integral above accounts for the nonlinear, relativistic modifica-

tions of the usual Thomson cross section. To obtain the pulse energy loss due to Compton

scattering, we sum the contributions from all electrons entering the pulse. The additional

loss term, which would complete the coherent losses in Eq. (33), is then given by

dU

d--/-= -_s" (30)
a

As might be imagined, these incoherent losse,_ tend, at very low density, to dominate

dissipation due to collective effects.

8 Application to relativistic harmonic generation

A short intense pulse produces transverse harmonic fields because of the nonlinear rc=

sponse of the plasma [5]. This occurs in addition to the effects considered above: nonlinear

b Compton scattering and the generation of a longitudinal wake. In harmonic generation,
the polarization of the wave plays an important role. In a linearly polarized pulse, the

quantity a2 is characterized by two time scales, 2c0, and Sw; on the other hand, a cir-

• cularly polarized pulse, in effect, characterizes a2 with only one time scale, namely, the

11



pulse width, 6w. This difference between the circular an5 linear polarization is depicted

schematically in Figs. 1 and 2. Linear polarization, because a s contains the time scale 2ai,,

gives rise to harmonic generation at 3_. •

The transverse current, due to the electrons response inside the pulse, is given by

j = -eoW, 7 _ I + _zo " (40)

The ponderomotive perturbation of the density inside the pulse, (1 + c)h/Ozo), can be

calculated using the results of Sec. 4. Expanding in the density, the leading terms for the

proper time of an electron initially at Zo are given by

. /; /0v = t-- Zo - h- ca, f du dv dsaS(s). (41)Y Jo

Now use the identity Oh/Ozo = (dh/dr)(Or/OZo) = pOr/OZo, to find, after some alg,_bra,

the density perturbation

l+_zoj =7 1-"_f ° duro dvaS(v)• (42)

Note that using Eq. (42), the current defined in Eq. (40) appears to be a stim of the usual
linear reactive contribution and an active nonlinear contribution. In the case of linear

polarization, the nonlinear contribution contains the third harmonic of the original pulse. t
I,et al be the harmonic vector potential radiated by this nonlinear part of the current,

where al obeys the inhomogeneous wave equation,

[" "] "J0'J:gs _ al = -a-_ du dvaS(v), (43)

which can be solved using the Green's function for the one-dimensional wave operator.

The Green's function is 0 everywhere except in the backward light cone denoted, in Fig. 3,

by C+ and C_. In this causal light cone, the Green's function takes the value 1/2. Thus,
to solve Eq. (43), the integral over the Green's function is resticted to the intersection of

this light cone with the support of jl, shown as the shaded area in Fig. 3. Assume now

that the interface between the vacuum and the plasma is located at z = 0, make a change

of variables from (z,t) to (z- t,z + t), whose Jacobian is 2, and find for the first order
plasma induced harmonic pulse

al(t, z) = ---_(z + t) a(w)dw du dva'(v) (4-1) '

This result can be simplified if we write z + t = 2t - (t - z), and then note that the •

first order harmonic response appears as the sum of a growing propagating term and a

12



constant propagating one, i.e., function of (t- z) only. Af_er few plasma periods, the

constant response is dominated by the growing term. The associated unstable electic field

-O(al Or) can then bw written as

O--tr- - du dva2(v). (4.5)

To describe the power conversion due to this unstable term, we introduce the integrated

quantities R, where

n = ]o dla2(l) dw dva2(v) . (46)

82

The energy, in the harmonic pulse grows as wpt R, representing a power loss, competing
with the terms in Eq. (36), which may be written as

dU

d--7= -2ootn.

The integral :_ captures the information relevant to the harmonic generation effect. Ev-
s

identally, the harmonic power conversion scales as wp, or with the fourth power of the
plasma density.

Note that, by varying the degree of polarization of the original pulse, the mean fre-

quency of the harmonic unstable pulse can be tuned between _ and 3_.
l

9 Application to relativistic photon acceleration

In an optimally efficient scheme for relativistic photon acceleration, a leading pulse, de-

picted as "Pl" in Fig. 4, delivers energy to the plasma wake, and this energy is entirely

reabsorbed by a lagging or accelerated pulse, depicted as "P2." Complete pulse reabsorp-

tion, leaving no energy in the plasma, implies

Hl = H2, V_ = V2, (.t8)

where Hi and 1// are the position and velocity shifts following pulse i. Since the energy

exchange process does not involve resonant processes, it follows that the pulse action is an

adiabatic invariant. Hence, in absorbing the wake energy, the lagging pulse experiences a

mean frequency upshift [11], rather than a growth in amplitude.

The salient parameters of such a photon accelerator are the mean frequency upshift

of the accelereLted pulse and the delay between the two pulses. A precise calculation of

the mean frequency upshift requires a study of the adiabatic transfer of energy from an

ocillating electron to a pulse, which is beyond the scope of the present study. \,\:e cat_,

however, calculate directly the optimally efficient time delay in an underdense plasma,

In the nonrelativistic regime this delay, is simply n + 1/2 times the plasma period,

"' where n is an integer. On the other hand, in the relativistic regime, which is particularly

13



important because of thepossibility of large density gradients, proper time corrections are

needed to calculate this delay.

Consider an underdense plasma, so that the exit velocities Vi can be neglected (1,_= e

0, Hi = H). The condition for an efficient transfer of energy then becomes h(D) = -H,

where D is the electron proper time delay between the two pulses. Using now Eq. (8), the
condition can be put in the form

wD = 2nK(k), w2 = w_(1 + w_H2/4), k 2 = @H2/4w 2. (49)

This condition on the proper time of the electron becomes a condition on the time delay

between the two pulses t(H,n), such that

2 2 2,_K(k)
wpH f cn2(u,k)du ' (50)

wt(H,n) = 2nK(k)-t 2 ao

which gives the condition for the time delay that allows a photon accelerator, operating

in an underdense plasma but in the relativistic wake regime, to be maximally efficient.

10 Density regimes for dissipation

The previous Sections shows that, to lowest order in wF, there are three main channels for

non linear energy dissipation, and, for very short pulses (V = 0), the total dissipation is
j

4

dU = w__EpH2 _ w_S - 2w_,tR (51)dt 2

From Eq. (51), we discern several different density regimes of dissipation. To investigate "

the boundaries between these regimes, consider, for a > 1, the scaling of the parameters,
H, S, and R:

H a2b'w-1 S a46w-l_o 2~ , ~ r., R ~ a66w-5 (52)

We expect, then, that incoherent spontaneous losses will dominate coherent longitudinal

dissipation for densities is low enough that

_. > , (,53)

where rr is the classical electron radius. Harmonic generation may dominate wake genera-

tion at higher density and higher laser intensity, but here there is an important dependence

upon the duration of the process or the length of the plasma. After a time, t, the losses

due to harmonic generation dominate if

_%t> . . (54)

At the present state of the art of short, intense laser pulse technology, losses incurred

through wake generation always dominate, and losses due to harmonic generation are
negligible.

14



11 Summary and discussion

We have shown in the previous sections that many of the effects of an intense, short laser

pulse on a cold, underdense pl_ma can be ca!culated by solving the equation of motion of

each plasma electron, and then summing the effects of all these motions. The result, valid

,_ to all order in the intensity, a, gives the collective transverse and longitudinal induced

fields. The nonlinear energy losses are mainly due to the longitudinal induced wake,

4 The losses due to the transverse induced response, which happenswhich scales as wp.
s In theat high frequency only in the case of non circular pol_.rization, scales as wp.

weakly relativistic regime, these losses are negligible compared to the longitudinal losses.

Incoherent nonlinear Compton scattering becomes important only at very low density.

We have been mainly concerned by the effect cZ a give,a pulse on the plasma; what we
have not considered in detail is the self-consistent probleln that considers also the effect

of the plasma on the pulse. We show, however, that thee effects occur on a longer time

scale than do the effects considered above, and so may be neglected.

Two time scAes are associated with the modification of the pulse due to the plasma:

one, a nonlinear time scale associated with the energy losses; and, two, a linear time

scale associated with the dispersive dynamics of the pulse envelope. The time scale tL

associated with the linear dispersive evolution of the pulse shape arises because of the

depence of the group velocity on the frequency, 6wtt, Ovg/Ow ,'_ c/6w. Using the usual

, dispersion relation for a cold plasma, we find, wptL ,_ (Cz/6w)2(_/wp). This time scale is
larger than the time scales associated with the processes studied above. To evaluate the

nonlinear time scale, t N, associated with the longitudinal energy losses, we use the global

_ energy balance, and we find Wpty "" (Cv/wp)2(hw/wp). This time scale is also longer tl_an

those associated with the processes studied in this paper.

In summary, on the basis of a fully relativistic Lagrangian density expansion, we have

demonstrated that the effects of an ultrashort intense laser pulse on a cold plasma can be

captured, in fact, by a small set of integral parameters, H, V, R, S, and U. The general

formula for the nonlinear wake, nonlinear Compton losses, and h_rmonic generation have

been obtained in term of these global quantities. In addition, what emerges from these

new results, and from the Lagrangian method for obtaining them, is a more clear physical

picture of the nonlinear processes involved in the ultrashort, pulse-plasma interaction.

A ck no-vled ge me nts

The authors would like to thank P. Sprangle and E. Valeo for a useful discussion of

harmonic generation. This work was sul,ported by the United St,_tes Department of

Energy, under contract number DE-AC02-76-CHO3073.

15



References

[1] T. Tajima and J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979). S.C. Wilks, J.M.
¢

Dawson, W.B. Mori, T. Katsouleas, and M.E. Jones, Phys. Rev. Lett. 62, 2602

(1989). T. Katsouleas, W. B. Mori, J.M. Dawson, and S. Wilks Femtosecond to

Nanosecond High Intensity Lasers and Applications S.P.I.E. 1229, 98 (1990).

[2] M. Pessot, J. Squier, G. Mourou and D.J. Harter, Opt. Lett. 14, 797 (1989). M.

Pessot, J. Squier, P. Bado, G. Mourou and D.J. Harter, IEEE J. Quantum Electron.

QE-25, 61 (1989).

[3] J.H. Eberly, Progress in Optics, North Holland, Amsterdam, 7, 359 (1969). Y.B.

Zeldovich Soy. Phys. Usp. 18, 79 (1974).

[4] M.N. Rosenbluth, and C.S. Liu, Phys. Rev. Lett. 29, 701 (1972). C.M. Tang, P.

Sprangle, and R.N. Sudan, Phys. Fluids 28, 1974 (1985). C.J. McKinstrie, and

D.W. Forslund, Phys. Fluids 30, 904 (1987). M. Deutch, B. Meerson, and J.E.

Golub, Phys. Fluids BT, 1773 (1991).

[5] P. Sprangle, E. Esarey, and A. Ting, Phys. Rev. A 41, 4463 (1990). P. $p,'angle., E.

Esarey, and A. Ting, Phys. Rev. Lett. 64, 2011 (1990). A. Ting, E. Esarey, and P.

Sprangle, Phys. Fluids B 2, 1390 (1990).

[6] P. Kaw and J. Dawson, Phys. Fluids 13,472 (1969).

[7] J.H. Eberly and A. Sleeper, Phys. Rev. 176, 1570 (1968).

[8] J.M. Dawson, Phys. Rev. 113,383 (1958). O. Buneman, Phys. Rev. 115,503 (1959).

R.C. Davidson and P.P. Schram, Nuclear Fusion, 8, 183.(1968).

[9] A.I. Akhiezer, and R.V. Polovin Soy. Phys. JETP 3, 696 (1956). J.M. Dawson,

Phys. Rev. 113,383 (1958). T. Speziale and P.J. Catto, Phys. Fluids 22,681 (1979).

W.B. Mori and T. Katsouleas, Physica Scripta, 30, 127, (1990). S.V. Bulanov, V.I.

Kirsanov, and A.S. Sakharov, JETP lett. 53,565 (1991).

[10] E.S. Sarachik and G.T. Scappert, Phys. Rev. D1 2738 (1970). J.E. Gunn and J.P.

Ostriker, Astr. J. 165,523 (1971). R.E. Waltz and O.P. Manley, Phys. Fluids 21,
sos(197s).

[11] E. Esarey, A. Ting, and P. Sprangle, Phys. Rev. A 42, 3526 (1990).

t

16



Figures

' Fig.1 Space-time diagram of the interaction of an electron initially at z0 with a

circularly polarized laser pulse. Within the pulse, the electron is deflected by the laser,

a Upon leaving the pulse, the electron oscillates in the self-consistent, nonlinear plasma
wake.

Fig.2 Space-time diagram of the interaction of an electron initially at Zo with a

linearly polarized laser pulse. Within the pulse, the electron is deflected by the laser,

where it oscillates at twice the mean pulse frequency., Upon leaving the pulse, the electron

oscilla'_es in the self-consistent, nonlinear plasma wake.

Fig.3 Only events inside the causal cone (C+,C_) can influence the point (t,z).

Inside the causal cone, only the shaded area, where the i_a,teraction between the incident

pulse and the plasma takes place, can support the nonlinear current source, jl.

Fig.4 Two pulses, P1 and P2, such that all the energy transferred from pulse P1 to

the plasma longitudinal relativistic wake is reabsorbed by pulse P2 after 1/2 a relativistic

plasma period.
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