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*e nonlinear resonant responses, mode interactions, and multitime periodic and chaotic oscillations of the cantilevered pipe
conveying pulsating fluid are studied under the harmonic external force in this research. According to the nonlinear dynamic
model of the cantilevered beam derived using Hamilton’s principle under the uniformly distributed external harmonic excitation,
we combine Galerkin technique and the method of multiple scales together to obtain the average equation of the cantilevered pipe
conveying pulsating fluid under 1 : 3 internal resonance and principal parametric resonance. Based on the average equation in the
polar form, several amplitude-frequency response curves are obtained corresponding to the certain parameters. It is found that
there exist the hardening-spring type behaviors and jumping phenomena in the cantilevered pipe conveying pulsating fluid. *e
nonlinear oscillations of the cantilevered pipe conveying pulsating fluid can be excited more easily with the increase of the flow
velocity, external excitation, and coupling degree of two order modes. Numerical simulations are performed to study the chaos of
the cantilevered pipe conveying pulsating fluid with the external harmonic excitation. *e simulation results exhibit the existence
of the period, multiperiod, and chaotic responses with the variations of the fluid velocity or excitation. It is found that, in the
cantilevered pipe conveying pulsating fluid, there are the multitime nonlinear vibrations around the left-mode and the right-mode
positions, respectively. We also observe that there exist alternately the periodic and chaotic vibrations of the cantilevered pipe
conveying pulsating fluid in the certain range.

1. Introduction

Pipes conveying fluid are widely utilized in many engi-
neering fields, such as aeronautic, astronautic, and me-
chanical engineering systems. It is extremely important for
us to ensure the efficient utilization and safe operation of the
pipe conveying fluid system, and its stable and safe opera-
tions are closely related to all aspects of the personal life and
industrial production. However, the applications of the pipes
conveying pulsating fluid are particularly challenging be-
cause they undergo the large deformations and significant
stresses. *e large deformations often lead to the nonlinear
vibrations of the pipes conveying pulsating fluid. One of the
main reasons for the nonlinear vibrations of the pipes

conveying pulsating fluid is the time-varying flow speed and
external harmonic excitation. Pulsating flow due to the
pump operation can cause a parametric excitation loading in
the pipes conveying fluid. *e nonlinear oscillations of the
pipes conveying pulsating fluid will lead to the structure
damages. As we all know, there are three typical types of
nonlinear oscillations in the structures and systems, namely,
the periodic, quasi-periodic, and chaotic oscillations. In fact,
the chaotic oscillations of the pipes conveying pulsating fluid
are dangerous because the amplitudes of the chaotic oscil-
lations are larger than those of the periodic oscillations,
which have been the object of increasing attention in en-
gineering applications. However, there is less research on the
nonlinear oscillations of the cantilevered pipe conveying
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pulsating fluid with 1 : 3 internal resonance when the fluid is
transported at a critical speed through the pipe. *erefore, it
is of great significance for us to study the nonlinear oscil-
lations of the cantilevered pipe conveying pulsating fluid
under the case of 1 : 3 internal resonance.

*e pipe conveying fluid mainly consists of three im-
portant elements: pipeline, fluid, and external environment.
It is necessary to establish a mathematical model for
obtaining a reasonable description of the pipes conveying
fluid. *e beam model is usually used for analysis of the
vibration when the pipe diameter is much smaller than the
length. *e nonlinear dynamic study of the pipe conveying
fluid system began in 1980s. Researches for the pipes
conveying pulsating fluid have become a hot field of engi-
neering and science [1–4]. Holmes and Marsden [5, 6]
established the first dynamic model of motion for the pipe
conveying fluid through considering the nonlinear factors.
*ey studied the bifurcation phenomena caused by the
velocity and the axial force and summed up the bifurcation
motion characteristics of the pipe conveying fluid system.
According to Hamilton’s principle and Euler-Bernoulli
beam theory, Huo and Wang [7] derived the differential
governing equation of motion for a vertical cantilevered pipe
conveying fluid when the pipe exhibits the deploying or
retracting motions and discussed the influence of the
deploying or retracting speed, mass ratio, and fluid velocity
on the dynamic responses and stability. Based on the
modified strain gradient theory in conjunction with Euler-
Bernoulli beam model, Hosseini and Bahaadini [8] studied
the size-dependent stability of the cantilever micropipes
conveying fluid and examined the influences of the geo-
metric parameters on the natural frequencies and the flutter
critical speeds. Askarian et al. [9] researched the dynamic
stability of a vertical clamped-free pipe conveying pulsatile
flow by using Euler-Bernoulli beam theory.

In addition, some scholars also provided several different
mathematical models to investigate the vibrations of the
pipes conveying fluid. According to the nonlinear Novoz-
hilov shell theory for the isotropic materials, Tubaldi et al.
[10] established a fully coupled fluid-structure interaction
model and studied the nonlinear vibrations of the circular
cylindrical shells conveying pulsatile flow with the flexible
boundary conditions subjected to the pulsatile pressure. Bai
et al. [11] simulated the varying density fluid of the vertical
cantilevered pipe conveying fluid by a new mathematical
model.

After the establishment of the rational mathematical
model, the further researches on the vibrations of the pipes
conveying fluid are mainly focused on three significant
aspects. Firstly, the vibration characteristics and instability
conditions of the pipes conveying fluid are studied, which
have different boundary conditions, material properties, and
functions. Secondly, the problems of the nonlinear dynamics
are studied to understand the nonlinear vibration charac-
teristics of the pipes conveying fluid because the pipes can be
regarded as the complex nonlinear dynamical systems.
*irdly, the transfer mechanism of the energy between two
modes and the internal resonance are studied to avoid the
chaotic vibrations of the pipes conveying fluid.

More and more researches about model and analysis
have been published with the continuous development of
modern computing and analytical techniques. Bajaj et al.
[12] researched the nonlinear vibration responses of the
pipes conveying fluid and analyzed the influences of flow
rate, mass ratio, and pressure on the nonlinear vibrations
and found that Hopf bifurcation occurs under the certain
conditions. Sri Namchchivaya and Tien [13, 14] examined
the nonlinear vibrations of the supported pipes conveying
pulsating fluid and found that the trivial solution of the
averaged equation loses its stability through the simple or
double zero bifurcations in the vicinity of the subharmonic
resonance. Based on a semianalytical approach, Sarkar and
Paidoussis [15] obtained the proper orthogonal modes to
describe the nonlinear oscillations of a cantilevered pipe
conveying fluid and to explore the nonlinear dynamics of the
pipe by means of the low-dimensional model. McDonald
and Sri Namachchivaya [16] studied the local bifurcation
behaviors of parametrically excited simply supported pipes
conveying fluid and the stability of solution where the energy
transfer may happen from the high-frequency to low-fre-
quency vibration modes.

Yoshizawa et al. [17] established the dynamic model of
the pipes conveying fluid under the fixed-hinge boundary
conditions and studied the vibration responses under the
effect of pulse flow. For the pipe conveying fluid system, Hou
and Zeng [18] obtained numerical solutions of the transverse
vibration equation through using the finite element method.
Setoodeh and Afrahim [19] investigated the nonlinear vi-
brations of the functionally graded materials micropipes
conveying fluid. An explicit expression of the nonlinear
fundamental frequency was given by using the homotopy
analysis method. Kheiri and Päıdoussis [20] derived the
equation of motion for a typical flexible pipe conveying fluid
by using the generalized Hamilton’s principle. Gan et al. [21]
simplified the equation of motion to the random variable
and researched the vibration characteristics of the pipes
conveying fluid clamped at both ends. Zhang et al. [22]
established three-dimensional nonlinear equations of mo-
tion for the pipes conveying fluid under the general
boundary conditions. *e natural frequencies of the pipes
under different boundary conditions were calculated and the
nonlinear dynamic characteristics were analyzed. Wang and
Liu [23] studied the transverse vibration and stability of the
functionally graded material pipe conveying fluid by uti-
lizing the symplectic method.

Based on the fluid-structure interaction, Liang et al. [24]
studied the free vibration of the pipes conveying fluid
through using the linear and nonlinear complex mode
approach. Liang et al. [25] gave the analysis of the nonlinear
free vibration for the spinning viscoelastic pipes conveying
fluid. Liang et al. [26] studied the transverse free vibration of
the spinning pipes conveying fluid and found that the
qualitative stability of the pipes mainly relies on the fluid-
structure interaction and mass ratio. Liang et al. [27]
established a dynamic model of simply supported spinning
pipes conveying fluid with the axial deployment and studied
the transverse free vibration involving the time-dependent
parameters. Liang et al. [28] researched the coupled
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flexural-torsional vibrations of the pipes conveying fluid
spinning on an eccentric axis. Recently, Liang et al. [29]
investigated the parametric vibrations of the pipes conveying
fluid by the nonlinear normal modes and numerical iterative
approach.

Several papers researched the nonlinear dynamic char-
acteristics of the pipes conveying fluid. Li and Paidoussis
[30] studied the nonlinear oscillations of a standing canti-
levered pipe conveying fluid and showed that the chaotic
oscillations of the cantilevered pipe exist when the gravity
parameter was sufficiently perturbed off the doubly de-
generate point. Based on the theoretical and experimental
methods, Semler and Paidoussis [31, 32] analyzed the
nonlinear oscillations of the cantilevered pipe conveying
fluid with a sinusoidally perturbed flow velocity and studied
the nonlinear dynamic responses of the cantilevered pipe
conveying fluid with a small mass attached at the free end.
*ey found that there exist the jumping phenomena and
quasi-periodic and chaotic oscillations. Jin and Zou [33]
studied the stability and nonlinear dynamics of the canti-
levered pipe conveying fluid with the motion limiting
constraints and a linear spring support and analyzed the
local behaviors in the neighborhood of a double degenerate
point. Ghayesh et al. [34] researched the nonlinear dynamic
characteristics of the pipes conveying fluid through con-
sidering the lateral and longitudinal displacements and
found that the cantilevered pipe will generate the flutter
through Hopf bifurcation at the critical velocity. Wang et al.
[35] studied the nonlinear oscillations of the pipes conveying
fluid under the loose constraint boundary conditions.
Askarian et al. [36] investigated the nonlinear oscillations of
an extensible cantilevered pipe conveying pulsating flow
with a nozzle attached to the end of the pipe.

For high-dimensional nonlinear dynamical systems, due
to the existence of the modal interactions, there exist the
relationships among several types of internal resonances,
which can lead to different nonlinear oscillations [37–40].
Panda and Kar [41] established the nonlinear dynamic
model of the pipes conveying fluid under the hinged
boundaries at both ends and studied the nonlinear dynamic
characteristics of the pipes. Ni et al. [42] simplified the pipes
conveying fluid to the constant coefficients gyroscopic
system and studied the nonlinear oscillations of the pipes on
the nonlinear elastic foundation under 3 :1 internal reso-
nance. Zhang and Chen [43] used the multiple-scale method
to determine the steady-state solutions of a pipe conveying
fluid under 2 :1 internal resonance. Mao et al. [44] inves-
tigated the forced oscillations of the pipe conveying fluid
with 3 :1 internal resonance around the bending configu-
ration. Zhang et al. [45] established the nonlinear dynamic
model of the cantilevered pipe conveying pulsating fluid
under the external harmonic excitation and analyzed the
multipulse orbits and chaotic oscillations with 1 : 2 internal
resonance through utilizing the energy phase method.

Recently, Ding et al. [46] investigated the nonlinear vibra-
tion isolation of the pipes conveying fluid through using the
quasi-zero stiffness characteristics.

To avoid the damage of the pipes conveying pulsating
fluid caused by chaotic oscillations, we study the nonlinear
oscillations of the pipes conveying pulsating fluid under 1 : 3
internal resonance. Based on the nonlinear dynamic model
of the cantilevered beam, the nonlinear dynamic equations
of motion for the cantilevered pipe conveying pulsating fluid
under the uniformly distributed harmonic excitation and
average equations are obtained through using the combi-
nation of the multiple-scale method and Galerkin technique
under 1 : 3 internal resonance and principal parametric
resonance.We analyze the nonlinear resonant responses and
the mode interactions of the cantilevered pipe conveying
pulsating fluid. Moreover, numerical simulations are per-
formed to study the multitime periodic and chaotic oscil-
lations of the cantilevered pipe conveying pulsating fluid
under the external harmonic excitation. It is found that, in
the cantilevered pipe conveying pulsating fluid, there are the
multitime nonlinear and chaotic oscillations around the left-
mode and the right-mode positions, respectively.

2. Equation of Motion and Perturbing Analysis

We consider a cantilevered pipe conveying pulsating fluid,
where A is the internal cross-sectional area, L is the length of
a tubular cantilevered beam,m is the mass per unit length of
the pipe, EI is the flexural rigidity,M is the conveying fluid
mass per unit length with an axial velocityUwhich may vary
with respect to time, and f is an external harmonic force, as
shown in Figure 1. It is assumed that initially vertical po-
sition along the X-axis is located in the direction of gravity
and the nonlinear vibrations occur in the (X, Y) plane for
the cantilevered pipe conveying pulsating fluid.

*e basic assumptions of the cantilevered pipe and the
fluid are made as follows:

(i) *e fluid is incompressible.

(ii) *e diameter of the pipe is small compared to its
length. *erefore, the pipe behaves like an Euler-
Bernoulli beam.

(iii) *e vibration of the pipe is planar, and the de-
flections of the pipe are large.

(iv) *e rotatory inertia and shear deformation are
neglected.

(v) *e pipe centerline has inextensible property in the
case of a cantilevered pipe.

Based on researches given by Semler et al. [3], Päıdoussis
[4], and Zhang et al. [45], the nonlinear partial differential
governing equation of motion for the cantilevered pipe
conveying pulsating fluid is derived through utilizing Ham-
ilton’s principle under the external harmonic excitation:
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(m +M)€y + 2MU _y′ 1 + y′2( ) +(m +M)gy′ 1 + 1

2
y′2( )

+ y″ MU2 1 + y′2( ) +(M _U − (m +M)g)(L − s)[
· 1 + 1

2
y′2( )] + EI y″″ + 4y′y″y″′ + y″3 + y″″y′2( )

− y″ ∫L
s
∫s
0
(m +M) _y′2 + y′ €y′( )dsds[

+ ∫L
s

1

2
M _Uy′2 + 2MUy′ _y′ +MU2y′y″( )ds]

+ y′ ∫s
0
(m +M) _y′2 + y′ €y′( )ds + f � 0.

(1)

In this paper, we assume that the cantilevered pipe
conveying pulsating fluid is made of Kelvin-Voigt type
viscoelastic material. *erefore, we have

σ � Eε + E_ε,

E � E 1 + a z

zt
( ). (2)

In order to obtain the dimensionless governing equation
of motion for the cantilevered pipe conveying pulsating
fluid, the transformations of the variables and the param-
eters are introduced as

ξ � s
L
,

η � y
L
,

τ � EI

m +M( )1/2 t
L2
,

α � EI

m +M( )1/2 a
L2
,

U∗ � M

EI
( )1/2UL,

c � m +M
EI

L3g,

β � m

m +M,

f∗ � L
3

EI
f.

(3)

For simplicity, the notation ∗ is omitted in the following
analysis. We obtain the dimensionless partial differential
governing equation of motion for the cantilevered pipe
conveying pulsating fluid:

α _η″″ + η″″ + €η + 2U
��
β

√
_η′ 1 + η′2( ) + η″ U2 1 + η′2( )[

+( _U
��
β

√
− c)(1 − ξ) 1 + 3

2
η′2( )]

+ cη′ 1 + 1

2
η′2( ) + 1 + α z

zτ
( ) η″″η′2 + 4η′η″η″′ + η″3( )

− η″ ∫1

ξ
∫ξ
0
η′2 + η′€η′( )dξdξ + ∫1

ξ

1

2
_U
��
β

√
η′2([

+ 2U
��
β

√
η′ _η′2 + U2η′η″)dξ]

+ η′ ∫ξ
0

_η′2 + η′€η′( )dξ + f � 0.

(4)
It is assumed that the flow velocity U is represented as a

periodic perturbation U � U0 + U1 cosΩ1t. In the mean-
time, the external excitation f is described as a periodic
perturbation f � F + f1 cosΩ2t.

We find that there exist the gyroscopic terms in equation
(4), which means that the damping of the cantilevered pipe
conveying pulsating fluid is too large to ignore. *e tradi-
tional methods dealing with the nonlinear oscillations are
first discretized by Galerkin method and then are analyzed
by the perturbation method. However, these methods
usually cancel the coefficients related to the gyroscopic terms
and lose a lot of important information. In order to retain
the gyroscopic terms as much as possible, we use a com-
bining method of both the multiple-scale method and
Galerkin method to obtain the average equation of the
cantilevered pipe conveying pulsating fluid.

U

X

Y

L f

Figure 1: *e dynamic model of a cantilevered pipe conveying
pulsating fluid is given.
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For the perturbation analysis, equation (4) is simplified
and the following expression is given for the cantilevered
pipe conveying pulsating fluid:

M€η + G _η + Kη � εF(η) − εN(η)
− 2εU1

��
β

√
_η′ cosΩ1t − 2εη″U0U1 cosΩ1t

− εη″Ω1U1

��
β

√
(1 − ξ)sinΩ1t,

(5)
where ε represents the small-scale transformation and other
parameters are given as follows:

M � I,

G � 2U0

��
β

√ z

zx
+ α z

zx4
,

K � U2
0 − c(1 − ξ)[ ] z

zx2
+ c

z

zx
+ z

zx4
,

(6a)

F(η) � − F − f1 cosΩ2t, (6b)

N(η) � 2U0

��
β

√
_η′η′2 + η″η′2 U2

0 −
3

2
c(1 − ξ)[ ] + 1

2
cη′3

+ 1 + a z

zτ
( ) η″″η′2 + 4η′η″η″′ + η″3( )
− η″ ∫1

ξ
∫ξ
0
η′2 + η′€η′( )dξdξ

− η″ ∫1

ξ
2U0

��
β

√
η′ _η′2 + U2

0η′η″( )dξ
+ η′ ∫ξ

0
_η′2 + η′€η′( )dξ.

(6c)

*e method of multiple scales [47] is applied to the
partial differential equation (5) to obtain the uniform so-
lutions in the following form:

η(t, ε) � η0 T0, T1( ) + εη1 T0, T1( ), (7)

where T0 � t and T1 � εt.
*en, the derivatives with respect to t become

d

dt
� z

zT0

zT0

zt
+ z

zT1

zT1

zt
+ · · · � z

zT0

+ ε z

zT1

+ · · ·

� D0 + εD1 + · · · ,
(8a)

d2

dt2
� D0 + εD1 + · · ·( )2 � D2

0 + 2εD0D1 + ε
2D2

1 + · · · ,

(8b)
where D0 � (z/zT0) and D1 � (z/zT1).

Substituting equations (7), (8a), and (8b) into equations
(6a)–(6c) and eliminating the secular terms, we obtain the
following:

ε0:

MD2
0η0 + G D0η0( ) +Kη0 � 0. (9)

ε1:

MD2
0η1 + GD0η1 +Kη1 � − F − f1 cosΩ2t

− 2U0

��
β

√ z2η0
zT0zX

zη0
zX

( )2

+ z2η0
zX2

zη0
zX

( )2

U2
0 −

3

2
c(1 − ξ)( ) − 1

2
c

zη0
zX

( )3

− 1 + α z

zT0

( ) z4η0
zX4

zη0
zX

( )2

+ 4
zη0
zX

z2η0
zX2

z3η0
zX3 +

z2η0
zX2

( )3 

+ z2η0
zX2 ∫1

ξ
∫ξ
0

zη0
zX

( )2

+ zη0
zX

z3η0
zT2

0zX
 dξdξ + ∫ξ

0
2U0

��
β

√ zη0
zX

z2η0
zT0zX

+ U2
0

zη0
zX

z2η0
zX2( )dξ 

− zη0
zX

∫ξ
0

z2η0
zT0zX

+ zη0
zX

z3η0

zT2
0zX

( )dξ − 2U1

��
β

√ z2η0
zT0zX

cosΩ1t

− z2η0
zX2 2U0U1 cosΩ1t − Ω1U1

��
β

√
(1 − ξ)sinΩ1t[ ] − 2MD0D1η0 − GD1η0.

(10)
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*e boundary conditions are given as

y(0) � y′(0) � 0,

y″(L) � y″′(L) � 0.
(11)

In order to simplify the cantilevered pipe conveying
pulsating fluid to the finite dimension by using Galerkin
discretization, the modal function is selected as a beam
function:

φj(ξ) � cos h βjx( ) − cos βjx( ) − λj sin h βjx( ) − sin βjx( )[ ].
(12)

*e general solution of equation (9) is expressed as
follows:

η T0, T1, ξ( ) �∑N
j�0
φj(ξ)Aj T1( )eiωjT0 + cc, (13)

where we take the nonlinear oscillations of the cantilevered
pipe conveying pulsating fluid into account in the first two
oscillation modes:

η T0, T1, x( ) � φ1(x)A1 T1( )eiω1T0 + φ3(x)A2 T1( )eiω3T0 + cc.
(14)

Substituting equation (14) into equation (5) and after a
series of calculations and simplification, the approximate
frequency relationships are obtained as follows:

ω2
1 � α12 −

α11L̃

2
( )c + α11U U + L̃

��
β

√
2

( ), (15a)

ω2
3 � α22 −

α21L̃

2
( )c + α21U U + L̃

��
β

√
2

( ), (15b)

where L̃, β, and U, respectively, represent the length, mass
ratio, and flow velocity, and α11, α12, α21, α22, and c are the
system parameters and dimensionless parameters.

According to the geometries and the material properties
of the cantilevered pipe conveying pulsating fluid, the pa-
rameters are chosen as β � 0.9, U � 3, α11 � − 1.9, α12 � 11,
α21 � − 4.8, α22 � 30, and c � 2. *e length L̃ is selected as
the variable. *e first-order and third-order natural fre-
quencies are solved, as shown in the Campbell diagram in
Figure 2. We find that the natural frequencies of the first-
order and third-order oscillation modes for the cantilevered
pipe conveying fluid decrease as the length increases. It is
observed that 1 : 3 internal resonance happens in the can-
tilevered pipe conveying pulsating fluid.

We only consider the case of 1 : 3 internal resonance,
principle parameter resonance, and 1/2 subharmonic res-
onance for equation (5). In this resonant case, there exist the
following relations:

ω1 �
1

2
Ω1 + εσ1,

ω3 �
3

2
Ω1 + εσ2,

Ω1 �
1

2
Ω2,

(16)

where σ1 and σ2 are two detuning parameters.
Substituting equations (12), (14), and (16) into equation

(10) yields

MD2
0η1 + GD0η1 +Kη1 � Γ1eiT0 (1/2)Ω1+εσ1( ) + Γ2eiT0 (3/2)Ω1+εσ2( ) − q1e

(1/2)iT0Ω1

+ Γ3eiT0 (1/2)Ω1− εσ1( ) + Γ4eiT0 (1/2)Ω1+εσ2( ) + Γ5eiT0 (3/2)Ω1+εσ1( ) + cc + NST,
(17)

where

Γ1 � iΩA2
11A12 U0

��
β

√
m1 +

3

2
αm2( ) + iΩA11A21A22 2U0

��
β

√
m3 +

3

2
αm4( )

+ A2
11A12 3U2

0m5 − cm6 − 3m7 +
3

4
Ω2m8( )

+ A11A21A22 U
2
0m9 − cm10 +m4 +Ω2m11( ) − iΩ1 _A11Mφ1 − _A11Gφ1,

(18a)

Γ2 � iΩA2
21A22 3U0

��
β

√
n1 + αn2( ) + iΩA11A12A21 6U0

��
β

√
n3 + αn4( )

+ A2
21A22 3U2

0n5 − cn6 + n7 +Ω2n8( )
+ A11A12A21 U

2
0n9 − cn10 + n4 +Ω2n11( ) − 3iΩ1 _A21Mφ2 − _A21Gφ2,

(18b)
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Γ3 � A11A
2
12 − 1

2
Ω21m12 − iΩ1U0

��
β

√
m13 + U

2
0m14( ) + iΩA11A12A21 6U0

��
β

√
n3 + αn4( )

+ A11A21A22 − Ω21m15 − iΩ1U0

��
β

√
m16 + U

2
0m17( ) + 1

2
iU1

��
β

√
A12Ω1m18 − U0U1A12m19,

(18c)

Γ4 �
1

2
iA21Ω1U1

��
β

√
m20 − A21U0U1m21, (18d)

Γ5 �
1

2
iA11Ω1U1

��
β

√
n12 − A11U0U1n13. (18e)

*e solution exists when the nonhomogeneous equation
corresponding to equation (17) satisfies that the right side of
the equation is orthogonal to the solution of its homoge-
neous accompanying equation. *us, we have

∫1

0
Γ1 − f1e

− iσ1T1 + Γ3e− 2iσ1T1 + Γ4e− iT1 σ1− σ2( )( )φ1dx � 0,

(19a)

∫1

0
Γ2 + Γ5e− iT1 σ2− σ1( )( )φ2dx � 0. (19b)

Let A1 and A2 be of the following forms:

A1 T1( ) � 1

2
a1e

iφ1( ) · e− i σ1T1− 2mπ( ),

A2 T1( ) � 1

2
a2e

iφ2( ) · e− i σ2T1− 2nπ( ).
(20)

Substituting equation (20) into equations (19a) and (19b)
and separating the real and imaginary parts, the averaged
equations in the polar form are obtained as follows:

_a1 �
1

8
β14 + β111 − β10 cos 2φ1 + β16 sin 2φ1( )a1a22 + 1

2
β17 sin 2φ1 − β18 cos 2φ1( )a1

+ 1

8
β13 + β110( )a31 + 1

2
β19 sin φ1 − φ2( ) − β20 cos φ1 − φ2( )[ ]a2 − F sinφ1 − μa1,

(21a)

a1 _φ1 �
1

8
β12 + β10 sin 2φ1 + β16 cos 2φ1( )a1a22 + 1

2
β17 cos 2φ1 + β18 sin 2φ1( )a1

+ 1

8
β11 − β15( )a31 + 1

2
β19 cos φ1 − φ2( ) + β20 sin φ1 − φ2( )[ ]a2 − F cosφ1 − σ1a1,

(21b)

_a2 �
1

8
β23a

3
2 +

1

8
β24a2a

2
1 +

1

2
β25 sin φ1 − φ2( ) + β26 cos φ1 − φ2( )[ ]a1 − μa2, (21c)

a2 _φ2 �
1

8
β21a

3
2 +

1

8
β22a2a

2
1 +

1

2
β25 cos φ1 − φ2( ) + β26 sin φ1 − φ2( )[ ]a1 − σ2a2. (21d)

1 2 3 4

~
L

5 6

2

4

6

8

0

ω

ω2

3ω1

1 : 3 internal resonance

Figure 2: *e Campbell diagram of the cantilevered pipe conveying pulsating fluid is obtained in the case of 1 : 3 internal resonance.
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In order to obtain the averaged equations in the Car-
tesian form, we express A1 and A2 in the following forms:

A1 T1( ) � x1 T1( ) − ix2 T1( )[ ]e− i o1T1− 2mπ( ),

A2 T1( ) � x3 T1( ) − ix4 T1( )[ ]e− i o2T1− 2nπ( ).
(22)

Based on the same way as the aforementioned analysis,
the averaged equations in the Cartesian form are obtained
for the cantilevered pipe conveying pulsating fluid:

_x1 � β17 − μ( )x1 − β18 + σ1( )x1 + β19x3 + β20x4 + β11 − β15( )x1 x21 + x22( ) + β12 − β16( )x1 x23 + x24( )
− β13 + β110 − p15( )x2 x21 + x22( ) − β14 + β111 − 2p17( )x2 x23 + x24( ), (23a)

_x2 � β17 − μ( )x2 − β18 − σ1( )x1 − β19x4 + β20x3 + β11 + β15( )x2 x21 + x22( ) + β12 + β16( )x2 x23 + x24( )
− β13 − β110 − p15( )x1 x21 + x22( ) − β14 − β111 − 2p17( )x1 x23 + x24( ) − Fp0,

(23b)

_x3 � − μx3 − σ2x4 + β25x1 + β26x2 + β21x3 x
2
3 + x

2
4( ) + β22x3 x21 + x22( )

− β23x4 x
2
3 + x

2
4( ) − β24x4 x21 + x22( ), (23c)

_x4 � − μx4 + σ2x3 − β25x2 + β26x1 + β21x4 x
2
3 + x

2
4( ) + β22x4 x21 + x22( )

+ β23x3 x
2
3 + x

2
4( ) + β24x3 x21 + x22( ), (23d)

where the coefficients are given, respectively, as

β10 � Ω1U0

��
β

√
p16,

β11 � U0

��
β

√
p1 +

3

2
αp2,

β12 � 2U0

��
β

√
p3 +

3

2
αp4,

β13 � 3U2
0p5 − cp6 + 3p7 +

3

4
Ω2p8,

β14 � U
2
0p9 − cp10 + p4 +Ω2p11,

β15 � Ω1U0

��
β

√
p13,

β16 � U
2
0p17 − Ω2p15,

β17 �
1

2
U1Ω1

��
β

√
p18,

β18 � U0U1p19,

β19 �
1

2
Ω1U1

��
β

√
p20,

β110 � U
2
0p4 −

1

2
Ω2p12,

β111 � U
2
0p17 − Ω2p15,

β20 � U0U1p21,

β21 � Ω 3U0

��
β

√
q1 + αq2( ),

β22 � Ω 6U0

��
β

√
q3 + αq4( ),

β23 � 3U2
0q5 − cq6 + q7 +Ω2q8,

β24 � U
2
0q9 − cq10 + q4 +Ω2q11,

β25 �
1

2
Ω1U1

��
β

√
q12,

β26 � U0U1q13.

(24)

Equations (21a)–(21d) and (23a)–(23d) describe the
nonlinear oscillations of the cantilevered pipe conveying
pulsating fluid under the external harmonic excitation. It is
known that the constant solutions of the averaged equation
correspond to the periodic solutions of the original system,
the periodic solutions of the averaged equation correspond
to the quasi-periodic solutions of the original system, and
the chaotic solutions of the averaged equation correspond to
the chaotic solutions of the original system.

3. Analysis of Resonant Responses

*e resonant response curves are the important basis for
judging and studying the nonlinear oscillations. *ey in-
clude many complex nonlinear dynamic phenomena. *e
practical problems can be solved better by analyzing these
phenomena. Based on the averaged equations (21a)–(21d) in
the polar form, we analyze the amplitude-frequency re-
sponse curves to reveal the nonlinear oscillations of the
cantilevered pipe conveying pulsating fluid. Since φ1 and φ2
are all constant, we make φ1 � φ2 � 0.25π. *erefore, we
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obtain the amplitude-frequency response functions of the
cantilevered pipe conveying pulsating fluid:

1

8
β13 + β110( )a31 + 1

8
β14 + β111( )a1a22 − 1

2
β20a2 −

�
2

√

2
F − μa1[ ]2

+ 1

8
β11 + β15( )a31 + 1

8
β12a1a

2
2 +

1

2
β19 − β20( )a2 −

�
2

√

2
F − σ1a1[ ]2

� 1

8
β110a1a

2
2 −

1

2
β18a1( )2 + 1

8
β16a1a

2
2 +

1

2
β17a1( )2,

(25a)

1

8
β24a2a

2
1 +

1

8
β23a

3
2( )2 + 1

8
β22a2a

2
1 +

1

8
β21a

3
2( )2

� 1

2
β26a1 + μa2( )2 + 1

2
β25a1 + σ2a2( )2. (25b)

Two cases of the amplitude-frequency response curves
[48, 49] are considered for the cantilevered pipe conveying
pulsating fluid:

(1) *ere is no coupling effect between the first-order
and third-order oscillation modes. We only consider
the decoupled case and set a2 � 0 in equation (25a)
and a1 � 0 in equation (25b).

(2) We let an amplitude change when another is fixed
because the amplitude is much smaller than that in
the case of weak coupling; namely, set a2 � 1 in
equation (25a) and a1 � 1 in equation (25b).

We obtain the amplitude-frequency response curves in
the decoupled and coupled cases based on equations (25a)
and (25b). Based on the geometries and the material
properties of the cantilevered pipe conveying pulsating fluid,
the basic parameters are chosen as

U0 � 1.5,

F � 2.5,

β � 0.9,

c � 2,

μ � 4,

U1 � 3.5,

Ω � 1.2,

Ω1 � 10,

p1 � 2 × 103,

p2 � 4,

p3 � 2,

p4 � 8,

p5 � 10,

p6 � 2,

p7 � − 20,
p8 � 1,

p9 � 100,

p10 � − 1,
p11 � − 3,
p12 � − 14,
p13 � − 6,
p14 � − 10,
p15 � 14,

p16 � 10,

p17 � 4,

p18 � − 1,
p19 � 20,

p20 � 30,

p21 � 12,

p22 � 1,

p23 � 1,

p24 � 6,

q1 � 15,

q2 � 16,

q3 � − 4.7,
q4 � 18,

q5 � 18,

q6 � 7,

q7 � 4,

q8 � 14,

q9 � 11,

q10 � 11,

q11 � 260,

q12 � 3,

q13 � 0.25.

(26)

For both the decoupled and coupled cases, when the
velocity parametric excitation is U0 � 1.5 and external ex-
citation is F � 2.5, it is found that the cantilevered pipe
conveying pulsating fluid has the hardening spring char-
acteristics because the amplitude-frequency response curves
bend to right, as shown in Figures 3(a) and 3(b). *e blue
line represents the coupled case and the red line gives the
decoupled case. *e bending of the amplitude-frequency
response curves also leads to the multiple amplitudes and
bifurcations. *e multiple amplitudes mean that there are
several possible responses in the cantilevered pipe conveying
pulsating fluid. *e actual response among several possible
responses depends on the initial conditions. Hence, the
typical jumping phenomena of the nonlinear oscillations can
be observed for the cantilevered pipe conveying pulsating
fluid. Comparing the amplitude-frequency response curves
between two cases given in Figure 3(a), we find that the
amplitude of the coupled case is larger and the resonant
response interval is wider than the decoupled case. *e
coupling effect of two oscillation modes will not change the
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system’s stiffness but will cause a stronger nonlinear reso-
nant response. Furthermore, it can be also observed that the
amplitude of the first-order mode is larger than that of the
third-order mode in the coupled case, as shown in
Figure 3(b). In the coupled case, there exists the mode in-
teraction between two oscillation modes. *erefore, the
amplitude-frequency response curves of the coupled case are
considered for the cantilevered pipe conveying pulsating
fluid in the following analysis.

In the weak coupling cases, the influences of the flow
velocity U0, external excitation F, and mass parameter β on
the amplitude-frequency response curves are analyzed in
Figures 4(a)–4(c), where the mass parameter β denotes the
ratio of the pipe mass and total mass. Figure 4(a) illustrates
the amplitude-frequency response curves of the cantilevered
pipe conveying pulsating fluid when the flow velocities are
U0 � 1.5 and U0 � 2.0, respectively. With the increases of
the flow velocity U0, it is obviously found that the amplitude
is larger and the resonant response interval is wider for the
cantilevered pipe conveying pulsating fluid, as shown in
Figure 4(a). *e increase of flow velocity will not change the
system’s stiffness but will cause a stronger nonlinear reso-
nant response. *ese characteristics indicate that the can-
tilevered pipe conveying pulsating fluid obtains the more
external energy. Figure 4(b) gives the amplitude-frequency
response curves of the cantilevered pipe conveying pulsating
fluid when the external excitations are F � 2.5 and F � 7.0,
respectively. In Figure 4(b), we find that the increase of the
external excitation F mainly results in the larger amplitude,
which has little effect on the resonant response interval.
Figure 4(c) shows the amplitude-frequency response curves
of the cantilevered pipe conveying pulsating fluid when the
mass parameters are β � 0.9 and β � 0.7, respectively. In
Figure 4(c), as the mass parameter β decreases, which means
that the pipe mass is lighter, we find that the nonlinear
stiffness of the cantilevered pipe conveying pulsating fluid

does not change. However, it is observed that the resonance
of the cantilevered pipe conveying pulsating fluid is more
easily excited and the amplitudes of the nonlinear oscilla-
tions are greater when mass parameters are smaller.

*e effects of the flow velocity and external excitation on
the amplitude-frequency response curves are investigated for
the cantilevered pipe conveying pulsating fluid in Figures 5(a)
and 5(b) under the coupling cases. We set σ � 10 and other
parameters are the same as the parameters given in Figures 3
and 4. *e amplitude-frequency response curves of the flow
velocity are given in Figure 5(a). It can be shown that the
amplitudes of the cantilevered pipe conveying pulsating fluid
increase with the increase of the flow velocity.*us, the energy
of the fluid motion is transferred into the energy of the can-
tilevered pipe. *e fluid-structure interaction occurs in the
cantilevered pipe conveying pulsating fluid. *ere are two
jumping phenomena on the amplitude-frequency response
curves with the increase of the flow velocity: one is jumping up
and one is jumping down. *e oscillations of the cantilevered
pipe conveying pulsating fluid are stable at a lower amplitude.
*e increase and decrease of the amplitudes alternatively
change with the increase of the flow velocity. It is indicated that
the flow velocity will affect the nonlinear oscillation behaviors
of the cantilevered pipe conveying pulsating fluid in a certain
range.*e amplitude-frequency response curves of the external
excitation are given in Figure 5(b). *e amplitudes of the
cantilevered pipe conveying pulsating fluid become larger with
the gradual increase of the external excitation. *e sudden
increase in the amplitude of the cantilevered pipe conveying
pulsating fluid appears when a jumping phenomenon occurs. It
is illustrated that the cantilevered pipe conveying pulsating
fluid will obtain more energy to create the larger amplitude
with the increase of the external excitation.

We explore the influences of different parameters on the
amplitude-frequency and force-amplitude response curves in
the cantilevered pipe conveying pulsating fluid, respectively. In
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Figure 3: *e amplitude-frequency response curves of the cantilevered pipe conveying pulsating fluid are obtained when flow velocity is
U0 � 1.5 and external force is F � 2.5. (a) Coupling influence on amplitude-frequency response curves; (b) amplitude-frequency response
curves of the first-order and third-order modes.
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Figure 4:*e amplitude-frequency response curves of the cantilevered pipe conveying pulsating fluid are obtained in the coupling case with
different parameters. (a) Amplitude-frequency response curves when flow velocities U0 � 1.5 and U0 � 2.0, (b) amplitude-frequency
response curves when external forces F � 2.5 and F � 7.0, and (c) amplitude-frequency response curves when mass parameters β � 0.9 and
β � 0.7.
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Figure 5:*e amplitude-frequency response curves of the cantilevered pipe conveying pulsating fluid are obtained. (a) Amplitude-response
curves on flow velocity; (b) amplitude-response curves on external excitation.
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Figures 6(a)–6(d), the changes of the amplitude-frequency and
force-frequency response curves in each figure are caused by
changing one parameter while other parameters remain un-
changed. *e influences of different parameters, such as the
parametric excitation and mass parameter, on the amplitude-
frequency response curves are studied, as shown in Figures 6(a)
and 6(b). Figure 6(a) gives the relations between the amplitudes
and flow velocity U0 for the cantilevered pipe conveying
pulsating fluid when the parametric excitations induced to the
flow velocity are F � 5.0 and F � 7.0, respectively. Figure 6(b)
indicates the relations on the amplitudes versus the flow ve-
locity U0 in the cantilevered pipe conveying pulsating fluid
when the mass parameters are β � 0.9 and β � 0.7, respec-
tively. We find that the amplitudes of the nonlinear oscillations
for the cantilevered pipe conveying pulsating fluid become
larger as the parametric excitation increases and the mass
parameter decreases. *is indicates that when the pipe mass is
lighter, the amplitudes of the nonlinear oscillations are greater.
In Figures 6(c) and 6(d), we study the influences of the external

excitations on the force-amplitude response curves. Figure 6(c)
demonstrates the relations between the amplitudes versus the
external excitations F in the cantilevered pipe conveying
pulsating fluid when the flow velocities are U0 � 15.8 and
U0 � 16.0, respectively. We find that the amplitudes of the
nonlinear oscillations for the cantilevered pipe conveying
pulsating fluid become larger when the flow velocity is larger.
Figure 6(d) shows the relations on the amplitudes versus the
external excitations F in the cantilevered pipe conveying
pulsating fluid when the mass parameters are β � 0.9 and
β � 0.7, respectively. It is found that the nonlinear oscillations
of the cantilevered pipe conveying pulsating fluid more easily
happen with the decrease of the mass parameter β.

Based on the analyses of the amplitude-frequency response
curves, it can be found that the hardening-spring type behaviors
and jumping phenomena are exhibited for the cantilevered pipe
conveying pulsating fluid. *e jumping phenomena also occur
in the force-amplitude response curves versus the flow velocity
and external excitation. Moreover, it is known that the flow
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Figure 6: *e influences of different parameters on the amplitude-frequency response curves and force-amplitude response curves are given for
the cantilevered pipe conveying pulsating fluid. (a) Amplitude-frequency response curves on flow velocity when F � 5 and F � 7, (b) amplitude-
frequency response curves on flow velocity whenmass parameters β � 0.9 and β � 0.5, (c) force-amplitude response curves on external force when
flow velocities U0 � 15.8 and U0 � 16, and (d) force-amplitude response curves on external force when mass parameters β � 0.9 and β � 0.7.
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velocity, external excitation, and coupling degree of two os-
cillation modes can affect the nonlinear oscillations of the
cantilevered pipe conveying pulsating fluid under the external
harmonic force. *e nonlinearity bends the amplitude-fre-
quency response curves to the right when the cantilevered pipe
conveying pulsating fluid has the hardening-spring type be-
haviors. *e bending of the amplitude-frequency response
curves leads to the occurrence of the jumping phenomena. *e
hardening-spring type behavior and jumping phenomenamean
that the oscillation amplitudes of the cantilevered pipe con-
veying pulsating fluid increase firstly and change abruptly. *e
energy of the fluid motion is transferred into the energy of the
cantilevered pipe when the flow velocity increases. *us, the
fluid-structure interaction happens for the cantilevered pipe
conveying pulsating fluid. *e nonlinear resonance of the large
amplitude for the cantilevered pipe conveying pulsating fluid
can be stimulated with the increase of these factors.

4. Numerical Simulations of Periodic and
Chaotic Oscillations

In order to study the nonlinear dynamic properties of the
cantilevered pipe conveying pulsating fluid, the influences of the
velocity parametric excitation and external excitation on the
nonlinear oscillations of the pipe are investigated. In this section,
the average equations (23a)–(23d) in the Cartesian coordinate
system are numerically simulated to find the multitime periodic
and the chaotic oscillations of the cantilevered pipe conveying
pulsating fluid under the external harmonic excitation based on
the fourth-order Runge-Kutta algorithm [50–52]. We choose
the velocity parametric and external excitations as the con-
trolling parameters to study the complicated nonlinear dy-
namics of the cantilevered pipe conveying pulsating fluid,
respectively. *e initial conditions are chosen as x1 � 0,
x2 � 0.1, x3 � 0, and x4 � 0.1. Other parameters are chosen as

β � 0.9,

c � 7,

μ � 15,

σ � 7.7,

Ω � 15,

Ω1 � 8.6,

α � 0.7,

p0 � − 3,
p1 � 0.5,

p2 � − 11,
p3 � 2,

p4 � 8,

p5 � − 10,
p6 � − 13,
p7 � 16,

p8 � − 10,
p9 � − 1,

p10 � − 10,

p11 � − 3,

p12 � − 14,

p13 � − 6,

p14 � − 1,

p15 � 14,

p16 � 10,

p17 � 4,

p18 � − 9,

p19 � 2,

p20 � 1,

p21 � 4,

p22 � 1,

p23 � 1,

p24 � 6,

q1 � − 5,

q2 � − 6,

q3 � − 4.7,

q4 � 18,

q5 � 18,

q6 � 7,

q7 � 4,

q8 � 14,

q9 � − 1,

q10 � − 11,

q11 � 9,

q12 � − 10,

q13 � 3.

(27)

To reveal the nonlinear dynamic behaviors of the can-
tilevered pipe conveying pulsating fluid, the bifurcation
diagrams, maximum Lyapunov exponents, phase portraits,
waveforms, and Poincare map are depicted. Figures 7 and 8
present the bifurcation diagrams and maximum Lyapunov
exponents to demonstrate the multitime nonlinear oscilla-
tion of the cantilevered pipe conveying pulsating fluid by
varying the velocity parametric excitation and external ex-
citation, respectively.

In order to study the influences of the flow velocities on
the multitime nonlinear oscillations of the cantilevered pipe
conveying pulsating fluid, we set the external excitation
while other parameters remain unchanged. *e bifurcation
diagrams and maximum Lyapunov exponents of the
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cantilevered pipe conveying pulsating fluid with the change
of the flow velocity are shown in Figure 7 when the external
excitation F � 7. According to changing characteristics of
the bifurcation diagram, with the increase of the flow ve-
locities, the period oscillations of the cantilevered pipe
conveying pulsating fluid appear at the beginning, the
multitime quasi-period oscillations appear, and the multi-
time chaotic oscillations happen. With the increase of the
flow rate, the multiple periodic windows appear for the
cantilevered pipe conveying pulsating fluid. *is illustrates
the alternating change of the periodic and chaotic oscilla-
tions. When the flow rate increases to a particular value, the
motion of the cantilevered pipe conveying pulsating fluid
evolves to a stable period-1 oscillation. *e maximum
Lyapunov exponents given in Figure 7(c) describe the in-
tervals of the flow velocity for the chaotic vibrations.

Based on numerical simulations corresponding to the
aforementioned analyses, we further investigate the effects of
the external excitations on the nonlinear dynamics of the
cantilevered pipe conveying pulsating fluid when the flow
velocity isU0 � 12 and other parameters remain unchanged,
as shown in Figure 8. It is found that the changing char-
acteristics of the oscillations with the increase of the external

excitations are similar to those with the increase of the flow
velocities for the cantilevered pipe conveying pulsating fluid.
*e periodic oscillation appears at the beginning, and then
the multitime periodic oscillation appears, and, finally, the
multitime chaotic oscillations occur for the cantilevered pipe
conveying pulsating fluid under the external harmonic ex-
citation. With the further increase of the external excitation,
several periodic oscillation windows appear for the canti-
levered pipe conveying pulsating fluid. When the external
excitation increases to a particular value, the motions of the
cantilevered pipe conveying pulsating fluid eventually be-
come the chaotic oscillations from the intermittent chaos.
*e intermittent chaos is verified in Figure 8(c) by whether
the maximum Lyapunov exponent is positive.

We present a variety of figures to confirm the vibrations
of the cantilevered pipe conveying pulsating fluid corre-
sponding to different flow rates and different external ex-
citations. In Figures 9–17, Figures(a) and (c) represent the
phase portraits on the planes (x1, x2) and (x3, x4), Figures
(b) and (d) depict the waveforms on the planes (t, x1) and
(t, x3), Figure(e) denotes three-dimensional phase portrait
in the space (x1, x2, x3), and Figure(g) depicts Poincare map
on the plane (x1, x2), respectively. *e aforementioned
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Figure 7: *e bifurcation diagrams and maximum Lyapunov exponents of the cantilevered pipe conveying pulsating fluid are given for the
parametric excitations of the flow velocities when the external excitation is F � 7. (a) x1 versus flow velocity, (b) x3 versus flow velocity, and
(c) maximum Lyapunov exponents versus flow velocity.
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figures are the effective tools to judge the chaotic oscillations
of the cantilevered pipe conveying pulsating fluid. Whether
the waveforms are regular or irregular, these indicate that the
motions of the cantilevered pipe conveying pulsating fluid
are the periodic or chaotic oscillations. *e phase diagram is
the projection curve of the solution in the phase plane and
phase space. *e closed curve represents the periodic os-
cillation, and the phase portraits of the chaotic oscillations
are the repeating unclosed curve confined within a bounded
region. According to Poincare mapping, the periodic and
quasi-periodic oscillations are the isolated points and curves
on Poincare cross section. *e nonlinear oscillations of the
cantilevered pipe conveying pulsating fluid are themultitime
chaotic oscillations when the discrete point sets appear with
the infinite self-similar structures on Poincare cross section.

According to the characteristics of each figure for dif-
ferent motions, there exist the periodic, multitime quasi-
periodic, and multitime chaotic oscillations of the canti-
levered pipe conveying pulsating fluid under different ve-
locity parametric excitations, as shown in Figures 9–13.
Figure 9 gives the periodic oscillation of the cantilevered
pipe conveying pulsating fluid when the velocity parametric
excitation is U0 � 11.0. Figure 10 indicates that there exists

the period-2 oscillation of the cantilevered pipe conveying
pulsating fluid when the velocity parametric excitation is
U0 � 19.5. Based on the definition of the coordinate system,
we know that the right is positive and the left is negative for
the cantilevered pipe conveying pulsating fluid. It is found
that, in the cantilevered pipe conveying pulsating fluid, there
are the nonlinear oscillations around the left-mode and
right-mode positions, respectively.*e first-order and third-
order oscillation modes of the cantilevered pipe conveying
pulsating fluid vibrate twice times around the right-mode
position and then vibrate twice times around the left-mode
position, as shown in Figures 10(b) and 10(d). Between the
left-mode and right-mode nonlinear oscillations, there exists
one-time oscillation around the vertical equilibrium position
in the cantilevered pipe conveying pulsating fluid. *is is a
typical nonlinear dynamic phenomenon.

Figure 11 illustrates that the multiperiodic oscillation
happens when the velocity parametric excitation is
U0 � 23.2. From Figure 11(b), it is demonstrated that, in the
first-order mode of the nonlinear oscillations, there exists
one-time oscillation around the right-mode position and
then there exists twice-time oscillation around the left-mode
position. For the third-order mode, there exists twice-time
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Figure 8: *e bifurcation diagrams and maximum Lyapunov exponents of the cantilevered pipe conveying pulsating fluid are obtained for
the external excitations when the flow velocity is U0 � 12. (a) x1 versus external excitation, (b) x3 versus external excitation, and (c)
maximum Lyapunov exponents versus flow velocity.
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oscillation around the right-mode position and then there
exists one-time oscillation around the left-mode position in
the cantilevered pipe conveying pulsating fluid, as shown in
Figure 11(d).

Figure 12 indicates that there exist the multitime chaotic
oscillations when the velocity parametric excitation is
U0 � 31.5. Around the left-mode and right-mode positions,
the chaotic oscillations of the cantilevered pipe conveying

pulsating fluid are the irregular motions. Figure 13 indicates
that the motion of the cantilevered pipe conveying pulsating
fluid again returns to the period-1 oscillation when the
velocity parametric excitation is U0 � 42.5. In this case, it is
found from Figure 13(b) that the first-order mode of the
cantilevered pipe conveying pulsating fluid is the oscillation
around the left-mode position. However, the third-order
vibration mode of the cantilevered pipe conveying pulsating
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Figure 9: *e periodic oscillation of the cantilevered pipe conveying pulsating fluid is obtained when the parametric excitation of the flow
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fluid is a motion around the right-mode position, as shown
in Figure 13(d).

We also find the periodic, multitime periodic, and
multitime chaotic oscillations of the cantilevered pipe
conveying pulsating fluid under different external excita-
tions, as shown in Figures 14–17. Figure 14 gives the
multiperiodic oscillation of the cantilevered pipe conveying
pulsating fluid when the external excitation is F � 2.9. It is

observed from Figure 14(b) that, for the first-order mode,
the motions of the cantilevered pipe conveying pulsating
fluid vibrate three times around the right-mode position and
twice times around the left-mode position. For the third-
order mode, the vibrations of the cantilevered pipe con-
veying pulsating fluid move twice times around the right-
mode position and three times around the left-mode po-
sition, as shown in Figure 14(d). In addition, it is observed
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Figure 10:*e period-2 oscillation of the cantilevered pipe conveying pulsating fluid is obtained when the parametric excitation of the flow
velocity is U0 � 19.5. (a) phase portrait on plane (x1, x2), (b) waveform on plane (t, x1), (c) phase portrait on plane (x3, x4), (d) waveform
on plane (t, x3), (e) three-dimensional phase portrait in space (x1, x2, x3), and (g) Poincare map on plane (x1, x2).
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from Figure 14 that the nonlinear oscillations of the can-
tilevered pipe conveying pulsating fluid also have the mo-
tions around the vertical equilibrium position.

Figure 15 indicates that the multitime periodic oscilla-
tion happens for the cantilevered pipe conveying pulsating
fluid when the external excitation is F � 4.5. For the first-
order mode, four-time nonlinear oscillations occur around
the right-mode position and twice-time nonlinear oscilla-
tions occur around the left-mode position in the cantilevered

pipe conveying pulsating fluid, as shown in Figure 15(b). It is
also found from Figure 15(d) that, for the third-order mode,
there are twice-time nonlinear oscillations around the right-
mode position and four-time nonlinear oscillations around
the left-mode position. Figure 16 represents that the quasi-
periodic oscillation occurs when the external excitation is
F � 6.3. Figure 17 demonstrates that there exist the multi-
time chaotic oscillations of the cantilevered pipe conveying
pulsating fluid when the external excitation is F � 6.5. *e
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Figure 11:*emultiperiodic oscillation of the cantilevered pipe conveying pulsating fluid is obtained when the parametric excitation of the
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Figure 16: *e quasi-periodic oscillation of the cantilevered pipe conveying pulsating fluid is obtained when the external excitation is
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irregular oscillations around the left-mode and the right-
mode positions exist in the cantilevered pipe conveying
pulsating fluid under the external harmonic excitation.

Moreover, the oscillations corresponding to different
velocity parametric excitations and external excitations are
consistent with the bifurcation diagrams of the cantilevered
pipe conveying pulsating fluid under the external harmonic
force, as shown in Figures 7 and 8. Based on the afore-
mentioned analyses, it can be found that the flow rate and
the external excitation can affect the nonlinear oscillations of
the cantilevered pipe conveying pulsating fluid under the
case of 1 : 3 internal resonance. When the velocity para-
metric excitation or the external excitation reaches a certain
value, the multitime chaotic oscillations will happen in the
cantilevered pipe conveying pulsating fluid, and the disor-
derly motions will lead to the destruction of the cantilevered
pipe conveying pulsating fluid under the external harmonic
force. *erefore, the velocity parametric excitation and the
external excitation causing the multitime chaotic oscillations
should be controlled when engineers design and use the
infusion tube system.

5. Conclusions

*e nonlinear resonant responses and multitime chaotic dy-
namics of the cantilevered pipe conveying pulsating fluid are
investigated under the external harmonic force. Based on the
nonlinear partial differential governing equation of motion for
the cantilevered pipe conveying pulsating fluid derived by using
Hamilton’s principle, the 1 : 3 internal resonance and primary
parametric resonance-1/2 subharmonic resonance are con-
sidered. A combination method of the method of multiple
scales and Galerkin technique is utilized to obtain four-di-
mensional nonlinear averaged equations. Several amplitude-
frequency response curves are obtained corresponding to the
certain parameters. From the analysis of the amplitude-fre-
quency response curves, it is found that there exist the
hardening-spring type behaviors and the jumping phenomena.
*e jumping phenomena also occur in the amplitude-force
response curves versus the flow velocity and external force.

Moreover, we find that the flow velocity, external force,
and coupling degree of two order modes can affect the
nonlinear vibrations of the cantilevered pipe conveying
pulsating fluid under the external harmonic force. *e
nonlinear vibrations of the cantilevered pipe conveying
pulsating fluid can be excitedmore easily with the increase of
the flow velocity, external force, and coupling degree of two
order modes. It is known that the nonlinear dynamic be-
haviors of the cantilevered pipe conveying pulsating fluid
under the external harmonic force will be affected due to the
flow rate and external excitation under the case of 1 : 3
internal resonance. It is observed that the multitime chaotic
vibrations will occur for the cantilevered pipe conveying
pulsating fluid when the velocity parametric excitation or
external excitation reaches a certain value. From
Figures 9–17, it is found that, for the first-order and third-
order vibration modes, several-time nonlinear vibrations
simultaneously or respectively happen around the right-
mode and left-mode positions in the cantilevered pipe
conveying pulsating fluid. *erefore, the velocity parametric
excitation and external excitation should be controlled when
engineers design and use the infusion tube systems.
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