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Nonlinear response of a forced van der Pol-Duffing oscillator at non-resonant 

bifurcations of codimension two  

 

Abstract 

Non-resonant bifurcations of codimension two may appear in the controlled van der Pol-

Duffing oscillator when two critical time delays corresponding to a double Hopf 

bifurcation have the same value. With the aid of centre manifold theorem and the method 

of multiple scales, the non-resonant response and two types of primary resonances of the 

forced van der Pol-Duffing oscillator at non-resonant bifurcations of codimension two are 

investigated by studying the possible solutions and their stability of the four-dimensional 

ordinary differential equations on the centre manifold.  It is shown that the non-resonant 

response of the forced oscillator may exhibit quasi-periodic motions on a two- or three-

dimensional (2D or 3D) torus. The primary resonant responses admit single and mixed 

solutions and may exhibit periodic motions or quasi-periodic motions on a 2D torus.  

Illustrative examples are presented to interpret the dynamics of the controlled system in 

terms of two dummy unfolding parameters and exemplify the periodic and quasi-periodic 

motions. The analytical predictions are found to be in good agreement with the results of 

numerical integration of the original delay differential equation. 

 
Keywords: van der Pol-Duffing oscillator, nonlinear feedback control, time delay, 

codimension two bifurcation, non-resonant Hopf bifurcations, primary resonances. 
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1. Introduction 

Stability and dynamics of van der Pol-Duffing oscillator (or harmonic oscillators) under 

delayed feedback control have received considerable interest [1-5]. Presence of time delays 

in the feedback control may induce instability and complex behaviour of the controlled 

system.  

An externally forced van der Pol-Duffing oscillator under a linear-plus-nonlinear 

feedback control considered in the present paper is of the form 

    )cos()( 00
322 texxxxx   )()(   txqtpx  )(3

1  txk  

       )(3
2  txk  )()( 2

3   txtxk  )()(2
4   txtxk   (1) 

where an overdot indicates the differentiation with respect to time t, x is the displacement, 

  is the natural frequency,   is the coefficient of the nonlinear term, 0 , 0 , 0e  

and 0  represent the amplitude and frequency of the external excitation, p and q are the 

proportional and derivative linear feedback gains, ik  ( 4,3,2,1i ) are the weakly nonlinear 

feedback gains, and   denotes the time delay occurring in the feedback path. The 

corresponding autonomous system (obtained by letting 0 0e   in equation (1)) is given by 

    )()(2   txqtpxxxx  )()( 3
2

3
1

32   txktxkxxx   

                )()()()( 2
4

2
3   txtxktxtxk  0 . (2) 

It was shown that the trivial equilibrium of the autonomous system (2) may lose its 

stability via a subcritical or a supercritical Hopf bifurcation and regain its stability via a 

reverse subcritical or a supercritical Hopf bifurcation as the time delay increases [6].  It 

was found that an interaction of two Hopf bifurcations may occur when the two critical 

time delays corresponding to a double Hopf bifurcation have the same value. In the 

vicinity of non-resonant Hopf bifurcations, the autonomous system (2) was found to have 

the initial equilibrium solution, two periodic solutions and a quasi-periodic solution on 2D 
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torus [7]. The primary objective of the present paper is to study the non-resonant response 

and primary resonance response of the controlled system (1) that results from an 

interaction of the external excitation and the bifurcation solutions of the corresponding 

autonomous system at non-resonant Hopf bifurcations of codimension two. 

The remainder of the present paper proceeds as follows. In the next section, the 

existence of non-resonant Hopf bifurcations is briefly reviewed for the autonomous 

system. The reduction of the delay differential equation is concisely discussed in Section 3. 

The non-resonant response is numerically and analytically studied in Section 4. Two types 

of primary resonance responses of the controlled system are analytically studied in 

Sections 5 and 6 using the method of multiple time scales. In Section 7, illustrative 

examples are given to show the primary resonance response of the controlled system. 

Results are presented in Section 8. 

 
2. Existence of non-resonant Hopf bifurcations 

This section briefly reviews background materials on the existence of non-resonant 

bifurcations of codimension two of the corresponding autonomous system after the trivial 

equilibrium loses it stability. More details can be found in reference [7]. 

The characteristic equation for studying the stability of the trivial equilibrium of 

equation (2) is given by  

           022     eqpe . (3) 

It is found that if 0)2( 222  q , 4222222 44)4)((   pqq , 

equation (3) has two pairs of purely imaginary solutions given by    i , with 

   2/)2()(42 2222422222   qpq , (4) 

where 0   . 
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Two sets of the critical time delays corresponding to two pairs of purely imaginary 

eigenvalues are given by 

      /)2( 1n1c, ns ,    /)2( 2n2c, ns ,    2,1,0n  (5) 

where 20 1  s , 20 2  s , )/()()sin( 22222
2,1    qpqqps . 

For clarity, the bifurcations occurring at points ) ,( n1c,   and ) ,( n2c,   will be termed 

the first and second Hopf bifurcation. The frequencies of the Hopf bifurcations, namely 

01  and 02 , are then given by   01 ,   02 . An intersection of the first and second 

Hopf bifurcations may lead to a non-resonant or resonant Hopf-Hopf interaction, 

depending on the ratio of the frequencies of the Hopf bifurcations. Such an intersection is 

usually referred to as the point of codimension two bifurcations in the context of dynamical 

system theory [8]. Non-resonant Hopf bifurcations is considered in the present paper. 

 
3. Reduction of the centre manifold 

For brevity, it is assumed that an intersection of non-resonant Hopf bifurcations occurs 

at the point ),,( 000 qp , where equation (3) has two pairs of purely imaginary roots 01i , 

02i , and all other roots have negative real parts. In order to study the dynamics of the 

oscillator in the neighbourhood of the point ),,( 000 qp , three small perturbation 

parameters, namely 1 , 2  and 3 , are introduced in equation (1) in terms of 10  pp , 

20  qq , 30   . These perturbation parameters can conveniently account for the 

small variations of the critical linear feedback gains and the critical time delay. 

By following the normal procedure for the reduction of delay differential equations to 

ordinary differential equations [9-11] and treating the external excitation in equation (1) as 

an additional perturbation term, the four-dimensional ordinary differential equations 

governing the local flow on the centre manifold can be expressed in the component form as 
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  )cos(),,,()( 1043211041431321211111 tezzzzfzlzlzlzlz   , 

  )cos(),,,()( 2043212042432322212112 tezzzzfzlzlzlzlz   , 

  )cos(),,,()( 3043213043423332321313 tezzzzfzlzlzlzlz   , 

  )cos(),,,()( 4043214044434322421414 tezzzzfzlzlzlzlz   ,  (6) 

where 1  and 2  are the normalized frequencies of Hopf bifurcations which are rescaled in 

the units of the critical time delay,  01210 ebe  , 02220 ebe  , 03230 ebe  , 04240 ebe  , the 

other coefficients and polynomial functions of order three ),,,( 43210 zzzzf i  (where 

4,3,2,1i ) are explicitly given in Section 3 of reference [7].  

Depending on the relationship of two frequencies 1  and 2  with the forcing frequency 

 , the nonlinear system (6) may exhibit non-resonant responses, primary, sub-harmonic 

and super-harmonic resonances, additive and difference resonances. The non-resonant 

response and primary resonance response of the system will be discussed in subsequent 

sections using the method of multiple scales [12], as the closed form of the solutions to 

equation (6) cannot be found analytically. 

 
4. Non-resonant response 

In this section, the dynamic behaviour of the system in the neighbourhood of the point of 

non-resonant bifurcations of codimension two will be studied based on a set of four 

averaged equations that determine the amplitudes and phases of the free oscillation terms 

contributing to the non-resonant response. 

4.1. First-order approximate solutions and their stability 

It is assumed that the approximate solutions to equation (6) in the neighbourhood of the 

trivial equilibrium are represented by an expansion of the form 

       ),,(),,();( 102101
2
3

2
1

TTzTTztz iii  , ( )4,3,2,1i . (7) 
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where   is a non-dimensional small parameter, and the new multiple independent 

variables of time are introduced according to tT k
k  , . ,2,1,0 k  

Substituting the approximate solution (7) into equation (6) and then balancing the like 

powers of   results in the following ordered perturbation equations 

2
1

 :      )cos( 01211110 TezzD   ,      )cos( 02111210 TezzD   , 

            )cos( 03412310 TezzD   ,        )cos( 04312410 TezzD   , (8) 

2
3

 :    )()( 111111221111120 jj zfzDzzgzD   , 

          )()( 121211121121220 jj zfzDzzgzD   , 

          )()( 131311422131320 jj zfzDzzgzD   , 

         )()( 141411322141420 jj zfzDzzgzD   , (9) 

where 00 / TD  , 11 / TD  , 41431321211111 )( zlzlzlzlzg mmmmjm  , )4,3,2,1( m , 

the coefficients ijl  in equation (6) have been rescaled in terms of ijij ll    and the overbars 

in ijl  have been removed for brevity. The amplitudes of the excitations in equation (6) 

have been rescaled in terms of 110
2
1

ee  , 220
2
1

ee  , 330
2
1

ee  , 440
2
1

ee  . The )( 11 ji zf  

are nonlinear functions of 1jz  ( 4,3,2,1j ).  

The solutions to equation (8) can be written in a general form as 

         )sin()cos()cos( 0201101111 TATATrz   , 

         )sin()cos()sin( 0201101121 TBTBTrz   , 

         )sin()cos()cos( 0403202231 TATATrz   , 

         )sin()cos()sin( 0403202241 TBTBTrz   , (10) 

where 1r , 2r , 1  and 2  represent the amplitudes and phases of the free-oscillation terms, 

)/( 22
1211   eA , )/( 22

112  eA , 121 /)( eAB  , 112 /AB  , 
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 )/( 22
2423   eA ,  )/( 22

234  eA , 2343 /)( eAB  , 234 /AB  . 

It is noted in seeking the second-order solutions to equation (9) that, in addition to four 

secular terms that are proportional to )sin( 11  t , )cos( 11  t , )sin( 22  t , and 

)cos( 22  t , nearly secular terms may appear whenever the system possesses primary, 

secondary, additive or difference resonances.  In particular, two types of primary 

resonances may occur when 1  or 2 . Two types of sub-harmonic resonances 

happen when 3/1   or 3/2  , and super-harmonic resonances take place when 

 31  or  32 .  It is also noted that for the nonlinear system given by equation (6) 

having 21   , a number of combinations of additive and difference resonances may 

appear. Specifically, additive resonances may appear when either  221  , or 

 212  , or  21 2 .  Difference resonances may occur when either 

 221  , or  22 21  , or  212  ; or  122  . As such, a total of 13 

types of resonances may take place in the forced nonlinear response of the system. Thus in 

eliminating the terms that may produce secular terms in seeking the second-order 

approximate solutions, six cases need to be distinguished, namely, (a) primary resonances 

at either frequency of two Hopf bifurcations; (b) sub-harmonic resonances at either of two 

Hopf bifurcation frequencies; (c) super-harmonic resonances at either of two Hopf 

bifurcation frequencies; (d) additive resonances; (e) difference resonances; and (f) non-

resonant response when   is well separated from the above-mentioned resonances. 

The averaged equations that determine the amplitude and phases of the free-oscillation 

terms in equation (11) are given by 

     2
2112

3
111111 rrsrsrr   ,   3

2222
2

121222 rsrrsrr   , 

     2
2132

3
131111111 rrsrsrrr   ,  3

2422
2

141222222 rsrrsrrr   , (11) 
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where 1011   T , 2022   T , a dot indicates the differentiation with respect to time 

0T , and the coefficients are not produced here for brevity. 

The fixed points are obtained by setting 021  rr   in the first two equations and the 

stability of the fixed points can be determined by studying the eigenvalues of the 

corresponding Jacobian matrix.  It is easy to note that equation (11) admits four solutions, 

which will be referred to here as Solutions S1, S2, S3, and S4. 

Solution S1 is given by )0,0(),( 21 rr  and is stable if 01  , 02  . 

Solution S2 is given by  0  ,/),( 11121 srr   for 0/ 111 s . It is stable under 01  , 

211121  ss  . 

Solution S3 is given by   22221 /  ,0),( srr   for 0/ 222 s . It is stable when 02  , 

122212  ss  . 

Solution S4 is a 3D torus solution given by  

  )/()( ,)/()(),( 221121122111212211211212221221 ssssssssssssrr    

for 0)/()( 22112112122212  ssssss  , 0)/()( 22112112211121  ssssss  . Solution S4 is 

asymptotically stable if 2
222

2
111 rsrs   , 22112112 ssss  . 

The non-resonant response of the nonlinear system given by equation (6) is periodic 

motion if a stable Solution S1 exists. When Solutions S2 and S3 exist, the non-resonant 

response may be quasi-periodic motion on a 2D torus if the involving frequencies are 

incommensurate. The non-resonant response corresponding to Solution S2 involves two 

frequencies being the forcing frequency   and the frequency resulting from the first Hopf 

bifurcation with 11311111 / ssH   . Two frequencies of the response relating to 

Solution S3 are the forcing frequency   and the frequency resulting from the second Hopf 

bifurcation being 22422222 / ssH   . The non-resonant response relating to 
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solution S4 is a quasi-periodic motion on a 3D torus, which can be viewed as a motion by 

adding a third periodic motion to the 2D quasi-periodic motion of Solutions S2 or S3.  The 

three frequencies involved are the forcing frequency   and two frequencies from Hopf 

bifurcation being )/()]()[( 2211211232113112131223221111 ssssssssssssH   , 

)/(])()[( 22112112242114112141224221222 ssssssssssssH   . 

It can be concluded that the non-resonant response of the controlled system at non-

resonant Hopf bifurcations of codimension two may be periodic motion having frequency 

 , quasi-periodic motions on a 2D torus having frequencies   and 1H  (or 2H ), or 

quasi-periodic motions on a 3D torus having frequencies  , 1H  and 2H . 

4.2. Illustrative example 

For a specific system with the parameters in equation (2) given by 1.0 , 0.1 , 

4.0p , 4.0 , 5.0 , 2.01 k , 0.032  kk , 5.04 k , and 402189.0q , as 

discussed in Section 2, two frequencies of non-resonant Hopf bifurcations of the 

corresponding autonomous system are found from equation (4) to be 28038.101   and 

71582.002  . The four solutions for this specific system can be easily found as follows: 

Solution S1 being 0.021  rr ; 

Solution S2 being 2
0211 19944.022715.0743886.092672.2 er   , 02 r ; 

Solution S3 being 01 r ,  2
0212 330278.0692885.0224145.069862.1 er   ; 

Solution S4 is given by 2
0211 061225.0062161.0252459.068465.6 er   ,  

     2
0212 2456.281818.17289.1049473.1 er   . 

Here the third dummy parameter has been set 0.03  . If let either 0.01   or 0.02   

in equation (11), the perturbation parameter 3  will involve in the four solutions and thus 
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the influence of time delay on the non-resonant response of the system can be easily 

studied in a similar procedure. 

Careful check on the existence of solutions and their stability conditions indicates that 

the ),,( 021 e  parameter space can be divided into four regions. The boundaries of these 

regions are defined by four planes, namely; 1P , 2P , 3P  and 4P , which are described by 

  1P : 2
012 47667.0323495.0 e  ,  )13598.0( 2

01 e , 

  2P : 2
012 87799.027483.3 e  ,  )13598.0( 2

01 e , 

  3P : 2
012 98494.006137.4 e  ,  )13598.0( 2

01 e , 

  4P : 2
012 23512.190095.5 e  ,  )13598.0( 2

01 e . (12) 

Stable solution S1 exists in the region between surfaces 1P  and 2P . Crossing these two 

critical surfaces leads to solutions either S2 or S3, which bifurcates from solution S1 via 

appearance of a zero eigenvalue. Stable solution S2 exists in the region between planes 2P  

and 4P , and stable solution S3 exists in the region between surfaces 1P  and 3P .  Crossing 

the critical surface 3P , a secondary Hopf bifurcation solution with frequency H1  takes 

place from Solution S3, which leads to a 3D torus solution S4. Similarly, a secondary Hopf 

bifurcation solution with frequency H2  occurs from the solution S2 along surface 4P , 

giving rise to a 3D torus solution S4. The non-resonant response of the system (1) exhibits 

a periodic motion if stable solution S1 exists, quasi-periodic motions on 2D torus if either 

S2 or S3 stably exists, and a quasi-periodic motion on 3D torus if stable S4 exists. 

The analytical predictions can be easily validated by numerical results as shown in 

Figure 1.  Figure 1a shows the time history and phase portrait of a periodic solution for a 

combination of 1 0.001  , 2 0.1   and 0 0.06e  , which is located in the stable region 

for solution S1.  A numerical solution for a quasi-periodic motion on a 2D torus (that is 

solution S3), as shown in Figure 1b, is obtained by choosing the perturbation parameters as 
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1 0.001  , 2 0.0035    and the amplitude of excitation 0 0.04e  , which is in the region 

bounded by planes 2P  and 3P . Figure 1c shows the trajectory and phase portrait of a 3D 

torus motion corresponding to solution S4 for the parameters located in the region bounded 

by planes 3P  and 4P , which are given by 1 0.001  , 2 0.0053  , and 0 0.016e  . It can 

be concluded that the analytical predictions of the response are in good agreement with the 

numerical results. 

 
5. Primary resonance at the frequency of the first Hopf bifurcation 

It is assumed that an approximate solution to the forced response of the system under 

primary resonances at the first Hopf bifurcation is of the general form that is given by 

equation (7). The frequency of external excitation is assumed to be almost equal to the 

linearized natural frequency according to 1 1    , where 1  is an external detuning 

parameter.  The amplitudes of the excitations in equation (6) are rescaled in terms of 

110 22
3

ee  , 220 22
3

ee  , 330 22
3

ee  , 440 22
3

ee  . 

The first-order approximate solutions of the primary resonance response can be written in a 

general form as 

     11 1 0 1cos( )z r T    ,  21 1 0 1sin( )z r T      

     31 2 2 0 2cos( )z r T   , 41 2 2 0 2sin( )z r T     (13) 

where 1r , 2r , 1 , 2  represent, respectively, the amplitudes and phases of the primary 

resonance response at the first Hopf bifurcation. 

The averaged equations that determine the amplitudes and phases of the primary resonance 

response at the first Hopf bifurcation can be written as 

       1211
2

2112
3

111111 sincos  eerrsrsrr  , 

       1211
2

2132
3

1311111 cossin  eerrsrsrr  , 
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       2 3
2 2 2 21 1 2 22 2r r s r r s r    , 

       2 3
2 2 2 2 41 1 2 42 2r r s r r s r    , (14) 

where the coefficients are not produced here for brevity. 

The steady state response of the primary resonance at the first Hopf bifurcation can be 

obtained by letting 1 2 0r r    and 1 0   in equation (14). It is found that the amplitudes of 

the primary resonance response admits two types of solutions, which are referred to here as 

the single solutions with 1 0r   and 2 0r  , and the mixed solutions with 01 r  and 02 r . 

For the single solutions, the so-called frequency-response equation is given by 

      2 2 2 2 2 2 2
1 11 1 1 31 1 1 1 2[( ) ( ) ]s r s r r e e       . (15) 

The amplitudes of the single solutions can be numerically obtained from equation (15) 

for a given set of system parameters. The stability of the single solutions is determined by 

the eigenvalues of the corresponding Jacobian matrix of the first two equations of equation 

(14). The corresponding characteristic equation is given by 

             022  ee b , (16)  

where 2
1 11 12e s r   ,  2 2 2 2 2 2 4

1 31 1 1 11 1 11 31 1( 2 ) ( 2 ) ( )eb s r s r s s r        . The single 

solution is asymptotically stable if both 0e  and 0eb . The single solution may lose 

its stability via two different ways. The first case occurs when 0e  and 0eb , for 

which a real eigenvalue passes through zero, i.e., 01  . The second situation may happen 

when 0e  and 0eb , for which a pair of complex eigenvalues cross the imaginary 

axis. The former will generate a saddle-node bifurcation while the latter a Neimark-Sacker 

bifurcation in the primary resonance response at the first Hopf bifurcation. 

For the mixed solutions, the amplitudes of the mixed solutions are determined by two 

algebraic equations: 
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02
2

222
2

121  rsrs ,  6 4 2
3 2 2 2 1 2 0 0c r c r c r c    , (17) 

where coefficients 0c  1c , 2c , and 3c , are not reproduced here for the sake of brevity. 

Equation (17) can be numerically solved by using the Newton-Raphson procedure. The 

stability of the mixed solutions can be examined by computing the eigenvalues of the 

corresponding Jacobain matrix of the first three equations of equation (14). The 

corresponding characteristic polynomial is given by 

               001
2

2
3  aaa  , (18)  

where  2
222

2
121

2
212

2
111212 3242 rsrsrsrsa   , and coefficients 1a  and 0a  are not 

produced here for brevity.  According to Hurwitz criterion, the mixed solutions are stable 

when 02 a , 0021  aaa , 0)( 0210  aaaa . 

The above analysis indicates that the primary resonance response of the system (1) at 

the first Hopf bifurcation may be periodic motion or quasi-periodic motions on a 2D torus. 

 
6. Primary resonance at the frequency of the second Hopf bifurcation 

At primary resonance to the second Hopf bifurcation, the frequency of external excitation 

is assumed to be  2 2    , where 2  is an external detuning parameter. 

The first-order approximate solutions can be written in a general form as 

         11 1 1 0 1cos( )z r T   ,       21 1 1 0 1sin( )z r T    , 

        31 2 0 2cos( )z r T    ,       41 2 0 2sin( )z r T     . (19) 

where 1r , 2r , 1 , 2  represent, respectively, the amplitudes and phases of the primary 

resonance response at the second Hopf bifurcation frequency. 

The amplitudes of the primary resonance response at the second Hopf bifurcation also 

admits two types of solutions, either the single solutions having 01 r  and 02 r , or 

mixed solutions with 01 r  and 02 r . 
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For the single solutions, the so-called frequency-response equation is given by 

2
4

2
3

2
2

2
2422

22
2222 )]()[( eerrsrs   . (20) 

For the mixed solutions, the amplitudes of the mixed solutions are determined by two 

algebraic equations 

  01
2

212
2

111  rsrs ,     00
2

11
4

12
6

13  arbrbrb ,  (21) 

where coefficients, 0b , 1b , 2b  and 3b are not reproduced here for brevity. 

The stability of the single and mixed solutions can be studied in a similar procedure to 

that developed in Section 5 for primary resonance at the first Hopf bifurcation frequency. 

 
7. Illustrative examples 

Except the amplitude and frequency of the excitation, the other system parameters are 

identical to those as given in Section 4.2. The amplitude and frequency of the excitation 

will be different in order to locate primary resonances at the first and second Hopf 

bifurcations. Numerical simulations have shown a similar qualitative behaviour for both 

primary resonances at the first and second Hopf bifurcation.  For brevity, only typical 

results of primary resonance response at the first Hopf bifurcation are given to illustrate the 

frequency response and an existence of two quasi-periodic solutions. 

Figure 2a shows the frequency response of the system under primary resonances at the 

first Hopf bifurcation for 18.01   (i.e. 31332.10  ) and 006.00 e , with an increase 

of the amplitude of excitation 0e  in the region ]04.0 ,001.0[0 e . Figure 2b is an 

enlargement of the frequency response in the region ]01.0 ,001.0[0 e . In these two 

figures, sr1 , mr1 and mr2  denote the single solutions and mixed solutions of the amplitudes 

of primary resonance response at the first Hopf bifurcation. The stable solutions obtained 

from equations (15) and (17) are indicated by solid curves. The unstable periodic solutions, 

which result from a real eigenvalue of equation (16) crossing the imaginary axis, are 



 15

displayed by long dot-dashed lines. The unstable periodic solutions, associated with a pair 

of complex eigenvalues crossing the imaginary axis which results in a Neimark-Sacker 

bifurcation, are represented by dashed lines. The Neimark-Sacker bifurcation of a periodic 

solution produces a quasiperiodic solution. 

It is easy to note that both single solutions and mixed solutions exist when the 

amplitude of the excitation 0e  is small. When 0073.00 e , the mixed solutions cease to 

exist.  On the contrary, the primary resonance response admits the single solutions only 

when 0073.00 e .  Figure 2(b) shows that the mixed solutions are stable if they exist 

while single solutions are unstable till point A at 0065.00 e , where a Neimark-Sacker 

bifurcations occurs.  This unstable single solution will exhibit a quasi-periodic motion 

when doing numerical simulation on the original equation (1).  For the single solutions, the 

branch of amplitude dashed curve B-C is unstable, as the real part of at least one 

eigenvalue is positive. Saddle bifurcations occur at points B and C when 0e  increases from 

a small value or decrease from a large value. An upward jump and downward jump occurs 

at points B and C. Two stable single solutions having different amplitudes coexist in the 

region between two points. The frequency-response curve of the system for the single 

solutions is very different from the one of a typical Duffing oscillator under primary 

resonances [12, 13]. 

Multiple solutions coexist in the region ]0073.0 ,001.0[0 e , where two quasi-periodic 

solutions appear when doing numerical simulations to equation (1) under different sets of 

initial conditions. The large-amplitude quasi-periodic motion corresponds to a stable mixed 

solution as shown in Figure 2b, while the small-amplitude quasi-periodic motion results 

from an unstable single solution. Figure 3 shows the time histories and phase portraits of 

two quasi-periodic motions of the system with identical system parameters but under 
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different sets of initial conditions. The numerical results on the coexistence of two quasi-

periodic motions are in good agreement with the analytical predictions. 

 
8. Conclusion 

A non-resonant bifurcation of Hopf-Hopf interactions may appear in the controlled van 

der Pol-Duffing oscillator after the trivial equilibrium loses its stability. The presence of a 

periodic external excitation in the controlled oscillator at non-resonant bifurcations of co-

dimension two can induce non-resonances, primary resonances, super- and sub-harmonic 

resonances, additive and difference resonances, when the frequency of the excitation and 

the frequencies of a double Hopf bifurcation satisfy a certain relationship. 

The non-resonant and primary resonance responses of the controlled oscillator at non-

resonant bifurcations of codimension two have been studied using centre manifold theorem 

and the method of multiple scales.  It was shown that the non-resonant response of the 

forced oscillator may exhibit periodic motion, quasi-periodic motions on a 2D or 3D torus.  

The primary resonance response may exhibit single solutions or mixed solutions. The 

single solution may lose its stability via a saddle-node bifurcation which leads to jump 

phenomena or a Neimark-Sacker bifurcation which gives rise to a quasi-periodic motion. 

The co-existence of two quasi-periodic motions has been found using different sets of 

initial conditions. 
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Figure 1. Time histories and phase portraits of non-resonant response for 3.00  ; (a) a 

periodic solution for 1 0.001  , 2 0.1   and 0 0.06e  ; (b) a 2D torus solution for 

1 0.001  , 2 0.0035    and 0 0.04e  ; (c) a 3D torus solution for 1 0.001  , 

2 0.0053  , and 0 0.016e  . 
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Figure 2. Frequency response of the controlled van der Pol-Duffing oscillator given by 

equation (1) under primary resonances at the first Hopf bifurcation. sr1 , mr1 and mr2  

denote the single solutions and mixed solutions to the amplitudes of the primary 

resonance responses. Solid curves represent stable solutions while unstable solutions 

are denoted by long dot-dashed lines and dashed lines. 
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(a)  
 

Figure 3. Time trajectories and phase portraits of two quasi-periodic solutions of the 

controlled system in the neighbourhood of primary resonances at the first Hopf 

bifurcation for 006.00 e ; (a) numerical integration starting from the initial 

conditions )1.0 ,1.1(),( xx  ; (b) numerical integration starting from the initial 

conditions )0.01- ,05.0(),( xx  . 
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(b) 
Figure 3. Time trajectories and phase portraits of two quasi-periodic solutions of the 

controlled system in the neighbourhood of primary resonances at the first Hopf 

bifurcation for 006.00 e ; (a) numerical integration starting from the initial 

conditions )1.0 ,1.1(),( xx  ; (b) numerical integration starting from the initial 

conditions )0.01- ,05.0(),( xx  . 


