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Loading
This paper investigates the nonlinear dynamic response of a shallow sandwich shell
subject to blast loading with consideration of core compressibility. The shallow shell
consists of two laminated composite or metallic face sheets and an orthotropic compress-
ible core. Experimental results and finite element simulations in literature have shown
that the core exhibits considerable compressibility when a sandwich panel is subjected to
impulse loading. To address this issue properly in the analysis, a new nonlinear com-
pressible core model is proposed in the current work. The system of governing equations
is derived by means of Hamilton’s principle in combination with the Reissner–Hellinger’s
variational principle. The analytical solution for the simply supported shallow shell is
formulated using an extended Galerkin procedure combined with the Laplace transform.
Numerical results are presented. These results demonstrate that this advanced sandwich
model can capture the transient responses such as the stress shock wave effect and the
differences in the transient behaviors of the face sheets and the core when a sandwich
shadow shell is subjected to a blast loading. However, in the steady state dynamic stage,
all the displacements of the face sheets and the core tend to be identical. This model can
be further used to study the energy absorption ability of the core and the effects of
different material and geometrical parameters on the behaviors of sandwich structures
subject to blast loading. �DOI: 10.1115/1.2937154�

Keywords: shallow sandwich shell, blast, impact, laminated face sheets, compressible
core, dynamic response, sudden loading
Introduction
The response of suddenly loaded structural configurations is

ssential in ensuring their integrity. Sudden loading can occur, for
xample, due to blast from an explosive device and this entails
oth distributed particle impact from the explosion fragments and
he overpressure from the shock wave. This study deals with the
ynamic response of sandwich shallow shells to a blast pressure
ulse. There have been indeed recently many efforts to investigate
he blast response of structures and suggest ways of mitigating
heir detrimental effects through an optimal sandwich construction
esign. Several papers have addressed various aspects of the prob-
em �1–7�. A typical sandwich structure consists of two stiff

etallic/composite face sheets and a soft honeycomb/foam core.
his layout gives the sandwich material system the integrity of
igh stiffness and strength with little resultant weight penalty and
igh-energy absorption capability and has led to many successful
pplications of sandwich structures in the construction of marine
essels, aerospace vehicles, and civil infrastructure.

In the study of the response of a sandwich structure to a static
oading or a dynamic loading of long duration, it has been cus-
omary to neglect the deformation of the core in the transverse
irection �8,9�. The core would then be considered infinitely rigid
n the thickness direction and assumed to only carry the shear
tresses. Though there are two transversely compressive core
odels proposed in literature �10–12�, the transversely rigid core
odel has been found to be working well in most of the studies

nvolving static or dynamic-long-duration loading. However, ex-
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perimental and numerical results �3–7� have shown that the core
undergoes significant deformation when the sandwich structure
experiences a sudden, impulsive loading and the core plays an
important role in the absorption of the impact energy. Therefore, a
model including the core transverse flexibility would offer a better
prediction over the classic transversely rigid core model in the
study of the transient response of sandwich structures. A detailed
look into the two currently available transversely compressive
core models would reveal that the transverse strains in the models
in Refs. �12,10,11� are constant and linear functions with regard to
the variable in the transverse direction, respectively. However, the
observations in Refs. �6,7� clearly demonstrate that the core trans-
verse deformation/strain is highly nonlinear with regard to the
variable in the thickness direction. Therefore, a more refined core
model is needed in order to obtain a better understanding of the
dynamic behavior of a sandwich construction under sudden, blast
loading. Furthermore, up to date, most of the studies for the re-
sponse of sandwich construction to blast loading have focused on
flat panels or plates. Very few works on this topic are available for
the sandwich shallow shell configuration, which is very often used
in engineering construction, for example, in ship hulls. Therefore,
the investigation of the behavior of the sandwich shallow shell to
blast loading has both practical and theoretical importance.

In this paper, we shall properly address these issues by first
proposing an advanced sandwich shallow shell model that ac-
counts for the highly nonlinear compressibility of the core. The
transient behavior of the face sheets and the core will be analyzed
in some detail. We organize this paper as follows: A nonlinear
transversely compressible core theory is proposed in Sec. 2. In the
model, the strain of the core in the transverse direction is no
longer constant or linear but a third order function with regard to

the transverse variable. The derivation of the governing equations
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nd boundary and initial conditions is presented in Sec. 3. These
nknowns in the equations are highly coupled in terms of both
patial and time variables. The solution procedure for solving the
onlinear partial governing equations is presented in Sec. 4. Ap-
lications and discussions of numerical results are given in Sec. 5.
n sec. 6, we present some conclusions and related work in the
uture.

Formulation

2.1 Basic Assumptions. The sandwich shell treated here is
omposed of two thin faces of high stiffness and a thick soft core
Fig. 1�, whose compressibility will also be taken into account.
ecause of the core compressibility, the widely used �4� assump-

ion that the transverse displacements of the two face sheets and
he core displacements are equal will not be adopted in this study.

e shall employ the following assumptions:

1 The face sheets satisfy the Kirchhoff–Love assumptions and
the thicknesses are small compared with the overall thickness
of the sandwich section. In the current study, the two face
sheets are further assumed to have identical thickness.

2 The curvatures of each shell in the two directions may not be
equal and the total thickness of the shell section is small
compared to its radii of curvatures.

3 The core is compressible in the transverse direction, that is,
its thickness may change.

4 The bonding between the face sheets and the core is assumed
to be perfect.

5 Uniformly distributed shock wave pressure on the front face
of the shell, will be considered. The intensities of the loading
would range from causing indentation to core crushing or
initiating face damage.

2.2 Kinematics for the Thin Face Sheets and the Com-
ressible Core of a Sandwich Shallow Shell. Thin Face Sheets.
et a Cartesian coordinates system �x ,y ,z� be on the middle plane
f the core, as shown in Fig. 1. The middle surfaces of the two
ace sheets and the core can then be defined in terms of a set of
urvilinear coordinates �� ,� ,�� as x=x�� ,��, y=y�� ,��, and z
�� ,��. Considering the shallow shell assumptions that the terms

,�
2 and z,�

2 can be neglected in comparison to unity �13�, the cur-
ilinear coordinate system can be approximated by the Cartesian

ig. 1 A sandwich shallow shell subject to a sudden, blast
mpact
oordinates in the middle surface and the transverse displacements
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through the thickness can be approximated by the middle surface
displacement for a thin shallow shell. We also define by � a global
transverse coordinate from the midsurface of the core, as opposed
to the local transverse coordinate from the midsurface of each
phase �face sheet or core�, which is denoted by z.

For thin face sheets, the transverse displacements can be
viewed as undergoing no change through the thickness. Therefore,
the displacements in the face sheets can be expressed as

ut�x,y,�,t� = uo
t �x,y,t� − �� +

hc + hf

2
�w,x

t �x,y,t� �1a�

vt�x,y,�,t� = vo
t �x,y,t� − �� +

hc + hf

2
�w,y

t �x,y,t� �1b�

wt�x,y,�,t� = wt�x,y,t�, − hf −
hc

2
� � � −

hc

2
�1c�

for the top face sheet, and

ub�x,y,�,t� = uo
b�x,y,t� − �� −

hc + hf

2
�w,x

b �x,y,t� �2a�

vb�x,y,�,t� = vo
b�x,y,t� − �� −

hc + hf

2
�w,y

b �x,y,t� �2b�

wb�x,y,�,t� = wb�x,y,t�,
hc

2
� � �

hc

2
+ hf �2c�

for the bottom face sheet. Omitting the superscripts t and b, the
nonlinear strain-displacement relations for the face sheets can take
the following form:

��� = � �x

�y

�xy
� = ��o� + z�k� = � �ox + zkx

�oy + zky

�oxy + zkxy
�, z = � �

hc + hf

2

�3�

in which the “�;” sign in the variable z corresponds to the top and
bottom face sheets, respectively, and ��o� is the middle surface
strain given by

��o� = � �ox

�oy

�oxy
� = � uo,x + 1

2w,x
2 + w/Rx

vo,y + 1
2w,y

2 + w/Ry

uo,y + vo,x + w,xw,y + 2w/Rxy

� �4�

Moreover, �k� is the curvature

�k� = � kx

ky

kxy
� = � − w,xx

− w,yy

− 2w,xy
� �5�

where Rx, Ry, and Rxy are the radii of the curvature for the middle
surfaces.

Higher Order Theory for Compressible Cores. The compress-
ibility in the thickness direction of the core can be important for
the absorption ability of a sandwich shallow shell subject to a
suddenly applied loading. This compressibility implies that the
displacement in the thickness direction should be a function of the
variable in the transverse direction and satisfy equilibrium equa-
tions and continuity conditions along the face sheets/core inter-
face. In literature, this function is often approximated in a linear
or quadratic form �4,10�. In this paper, a fourth order nonlinear
core theory is formulated. Details of the formulation are given in
Appendix A. Based on this model, the transverse displacement

can be expressed as follows:
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wc�x,y,�,t� = �1 −
2�2

hc
2 −

8�4

hc
4 �wo

c�x,y,t� + �2�2

hc
2 +

8�4

hc
4 �w̄�x,y,t�

− � �

hc
+

4�3

hc
3 �ŵ�x,y,t�, −

hc

2
� � �

hc

2
�6�

nd the in-plane displacements in the core are

uc�x,y,�,t� = ū�x,y,t� −
�

hc/2
û�x,y,t� + �

hf

hc
w,x

c �x,y,�,t� �7a�

vc�x,y,�,t� = v̄�x,y,t� −
�

hc/2
v̂�x,y,t� + �

hf

hc
w,y

c �x,y,�,t� �7b�

here w0
c�x ,y , t� is the transverse displacement of the middle sur-

ace of the core, w̄�x ,y , t� and ŵ�x ,y , t�, ū�x ,y , t� and û�x ,y , t�,
nd v̄�x ,y , t�, and v̂�x ,y , t� are defined in Appendix A.

This leads to the following strain-displacement relations for the
ore:

�z
c = �−

1

2hc
+

2�

hc
2 −

6�2

hc
3 +

16�3

hc
4 �wt�x,y,t� − �4�

hc
2 +

32�3

hc
4 �wo

c�x,y,t�

+ � 1

2hc
+

2�

hc
2 +

6�2

hc
3 +

16�3

hc
4 �wb�x,y,t� �8a�

�xz
c = −

2

hc
û�x,y,t� + �1���w,x

t �x,y,t� + �2���wo,x
c �x,y,t�

+ �3���w,x
b �x,y,t� �8b�

�yz
c = −

2

hc
v̂�x,y,t� + �1���w,y

t �x,y,t� + �2���wo,y
c �x,y,t�

+ �3���w,y
b �x,y,t� �8c�

n which

�1��� = −
1

2
�1 + 2

hf

hc
� �

hc
+ �1 + 3

hf

hc
� �2

hc
2 − 2�1 + 4

hf

hc
� �3

hc
3

+ 4�1 + 5
hf

hc
� �4

hc
4 �9a�

�2��� = �1 +
hf

hc
� − 2�1 +

3hf

hc
� �2

hc
2 − 8�1 +

5hf

hc
� �4

hc
4 �9b�

�3��� =
1

2
�1 + 2

hf

hc
� �

hc
+ �1 + 3

hf

hc
� �2

hc
2 + 2�1 + 4

hf

hc
� �3

hc
3

+ 4�1 + 5
hf

hc
� �4

hc
4 �9c�

The core is considered undergoing large rotation with a small
isplacement; therefore, the in-plane strains can be neglected.

2.3 Constitutive Relations. The equations developed so far
an be applied to general materials. In the following sections, we
hall assume the face sheets to be orthotropic laminated compos-
tes and the core to be orthotropic as well. The stress-strain rela-
ionship for any layer of the face sheets is

�	x

	y


xy
� = �Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66
�� �x

�y

�xy
� or �	� = �Q���� �10�

here Qij for i , j=1,2 ,6 are the plane-stress reduced stiffness
oefficients. With Eqs. �3�–�5�, �8a�–�8c�, and �10�, one can com-
ute the resultants for the top/front face sheet of the sandwich

hallow shell:
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�Nt� = � Nx
t

Ny
t

Nxy
t � =	

−hc/2−hf

−hc/2

�	t�d� =	
−�hc/2�−hf

−hc/2

�Qt���t�d� = �At���0
t �

+ �Bt��kt� �11a�

�Mt� = � Mx
t

My
t

Mxy
t � =	

−hc/2−hf

−hc/2

�	t��� +
hc + hf

2
�d� = �Bt���o

t � + �Dt��kt�

�11b�
in which the stiffness coefficients are

�Aij
t ,Bij

t ,Dij
t � =	

−hc/2−hf

−hc/2

Qij � 
1,� +
hc + hf

2
,�� +

hc + hf

2
�2�d�,

i, j = 1,2,6 �12�
Applying a similar procedure, one can obtain the following

resultant expressions for the bottom/back face sheet:

�Nb� = �Ab���0
b� + �Bb��kb� �13a�

�Mb� = �Bb���o
b� + �Db��kb� �13b�

with the stiffness coefficients reading as

�Aij
b ,Bij

b ,Dij
b � =	

hc/2

hc/2+hf

Qij � 
1,� −
hc + hf

2
,�� −

hc + hf

2
�2�d�,

i, j = 1,2,6 �14�
The stress-strain relations for an orthotropic core can be written

as

	z
c = Ec�z

c, 
xz
c = Gxz

c �xz
c , 
yz

c = Gyz
c �yz

c �15�

3 Governing Equations
The equations of motion and appropriate boundary conditions

can be derived using Hamilton’s principle. The sandwich shell is
subjected to a sudden loading q�x ,y , t� on the front face sheet. Let
the strain energy be denoted by U, the external potential by W,
and the kinetic energy by T, then the variational principle is stated
as

�	
to

t1

�T − �U − W��dt = 0 �16�

in which

�T =	
to

t1	
−b/2

b/2 	
−a/2

a/2 
	
−hc/2−hf

−hc/2

t�ut˙ �ut˙ + vt˙ �vt˙ + wt˙ �wt˙ �d�

+	
−hc/2

hc/2

c�uċ�uċ + vċ�vċ + wc˙ �wc˙ �d�

+	
hc/2

hc/2+hf

b�uḃ�uḃ + vḃ�vḃ + wb˙ �wb˙ �d��dxdydt �17�

�U =	
to

t1	
−b/2

b/2 	
−a/2

a/2 
	
−hc/2−hf

−hc/2

�	x
t ��x

t + 	y
t ��y

t + 
xy
t ��xy

t �d�

+	
−hc/2

hc/2

�	z
c��z

c + 	xz
c ��xz

c + 
yz
c ��yz

c �d�

+	hc/2+hf

�	x
b��x

b + 	y
b��y

b + 
xy
b ��xy

b �d� dxdydt �18�

hc/2

�
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�W =	
to

t1	
−b/2

b/2 	
−a/2

a/2

q�x,y,t��wtdxdydt �19�

here  is the mass density. The superscript t in Eqs. �18�, �17�,
nd �19� denotes the corresponding values for the top face sheet
hereas t when appearing in the variable list of the functions

efers to time. The equation of motion and the boundary condi-
ions can be obtained by substituting the stress-strain relations
10� and �15� and displacements �6� and �7a�–7�c� into Eqs. �18�,
17�, and �19�, then into Eq. �16� and employing integration by
arts. This results in seven equations, three for each face sheet and
ne for the core. There are seven unknowns: uo

t , vo
t , wt, wo

c, uo
b, vo

b,
nd wb.
The resulting equations for the top face sheet are

or the top face sheet as

61023-4 / Vol. 75, NOVEMBER 2008
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Nx,x
t + Nxy,y

t − �thf + chc

3
�üo

t − chc

6
üo

b + chchf

420
�23ẅ,x

t + 17ẅo,x
c

− 5ẅ,x
b � − Gxz

c 
 1

hc
�uo

t − uo
b� −

11

15
wo,x

c − �4�w,x
t + w,x

b �� = 0

�20�

Nxy,x
t + Ny,y

t − �thf + chc

3
�v̈o

t − chc

6
v̈o

b + chchf

420
�23ẅ,y

t + 17ẅo,y
c

− 5ẅ,y
b � − Gyz

c 
 1

hc
�vo

t − vo
b� −

11

15
wo,y

c − �4�w,y
t + w,y

b �� = 0

�21�

and
Mx,xx
t + 2Mxy,xy

t + My,yy
t + �Nx

t w,x
t �,x + �Nxy

t w,x
t �,y + �Nyx

t w,y
t �,x + �Ny

t w,y
t �,y − �thf +

29

315
chc�ẅt − c37hc

630
�ẅo

c −
11

37
ẅb� + � �2

�x2 +
�2

�y2�
�
�t hf

3

12
+ c19hchf

2

1155
�ẅt +

chchf
2

27720
�199ẅo

c − 61ẅb�� − chchf

420
�23�üo,x

t + v̈o,y
t � + 5�üo,x

b + v̈o,y
b �� + �1hc�Gxz

c w,xx
t + Gyz

c w,yy
t �

+ �2hc�Gxz
c wo,xx

c + Gyz
c wo,yy

c � − �3hc�Gxz
c w,xx

b + Gyz
c w,yy

b � − �4�Gxz
c �uo,x

t − uo,x
b � + Gyz

c �vo,y
t − vo,y

b �� − �Nx
t /Rx

t + 2Nxy
t /Rxy

t + Ny
t /Ry

t �

−
61

21

Ec

hc
�wt −

358

305
wo

c +
53

305
wb� + q�x,y,t� = 0 �22�
n which �i�i=1, . . . ,4� are constants in terms of the ratio of face
hickness and core thickness as follows:

�1 =
29

315
+

373

630

hf

hc
+

247

252
� hf

hc
�2

, �2 =
37

630
+

37

630

hf

hc
−

383

630
� hf

hc
�2

�23a�

�3 =
11

630
+

11

630

hf

hc
−

23

180
� hf

hc
�2

, �4 =
2

15
+

hf

2hc
�23b�

A similar set of equations for the motion of the bottom face
heet can be derived, and this is listed in Appendix B.

The equations of motion for the compressible core are

�5hc�Gxz
c wo,xx

c + Gyz
c wo,yy

c � + �2hc�Gxz
c �w,xx

t + w,xx
b � + Gyz

c �w,yy
t

+ w,yy
b �� −

194

315
̂wo

c −
37hc

630
c�ẅt + ẅb� −

17hfhc

210
c�û,x + v̂,y�

+
181hf

2hc

6930
c� �2

�x2 +
�2

�y2�
ẅo
c +

199

724
�ẅt + ẅb��

−
358

105

Ec

hc
�2wo

c − wt − wb� −
11

15
Gxz

c �uo,x
t − uo,x

b �

−
11

15
Gyz

c �vo,y
t − vo,y

b � = − 0 �24�

here

�5 =
194

315
+

194

315

hf

hc
+

383

315
� hf

hc
�2

�25�

Assuming that the sandwich shells are made of orthotropic ma-
erials and substituting Eq. �4� into Eqs. �13a� and �13b� and then
qs. �20�–�22�, one can rewrite the nonlinear governing equations
A11
t uo,xx

t + A66
t uo,yy

t + �A12
t + A66

t �vo,xy
t −

Gxz
c

hc
�uo

t − uo
b�

− �thf + chc

3
�üo

t − chc

6
üo

b = f̂1
t �26a�

�A21
t + A66

t �uo,xy
t + A66

t vo,xx
t + A22

t vo,yy
t −

Gyz
c

hc
�vo

t − vo
b�

− �thf + chc

3
�v̈o

t − chc

6
v̈o

b = f̂2
t �26b�

D11
t w,xxxx

t + 2�D12
t + 2D66

t �w,xxyy
t + D22

t w,yyyy
t +

61

21

Ec

hc
�wt −

358

305
wo

c

+
53

305
wb� + �thf + c29hc

315
�ẅt + c37hc

630
�ẅo

c −
11

37
ẅb�

− � �2

�x2 +
�2

�y2�
�t hf
3

12
+ c19hf

2hc

1155
�ẅt +

chf
2hc

27720

��199ẅo
c − 61ẅb�� − �1hc�Gxz

c w,xx
t + Gyz

c w,yy
t �

− �2hc�Gxz
c wo,xx

c + Gyz
c wo,yy

c � + �3hc�Gxz
c w,xx

b + Gyz
c w,yy

b �

= q�x,y,t� + f̂3
t �26c�

in which

f̂1
t = − Gxz

c 
11

15
wo,x

c + �4�w,x
t + w,x

b ��
− A11w,x

t w,xx
t − �A12 + A66�w,y

t w,xy
t − A66w,x

t w,yy
t − A11

w,x
t

Rx

− A12
w,x

t

− chfhc �23ẅ,x
t + 17ẅo,x

c − 5ẅ,x
b � �27a�
Ry 420
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f̂2
t = − Gyz

c 
11

15
wo,y

c + �4�w,y
t + w,y

b �� − �A21 + A66�w,x
t w,xy

t

− A66w,xx
t w,y

t − A22w,y
t w,yy

t − A21
w,y

t

Rx
− A22

w,y
t

Ry

− chfhc

420
�23ẅ,y

t + 17ẅo,y
c − 5ẅ,y

b � �27b�

f̂3
t = − �4�Gxz

c �uo,x
t − uo,x

b � + Gyz
c �vo,y

t − vo,y
b �� + �Nx

t w,x
t �,x + �Nxy

t w,x
t �,y

+ �Nyx
t w,y

t �,x + �Ny
t w,y

t �,y − �Nx
t

Rx
t +

Ny
t

Ry
t �

− chfhc

420
�23�üo,x

t + v̈o,y
t � + 5�üo,x

b + v̈o,y
b �� �27c�

The first terms in the expressions for f̂1
t and f̂2

t reflect the effects
f the higher order core theory, the second to fourth terms repre-
ent the effects from the von Karman nonlinear theory, the fifth to
eventh terms represent the effects from the initial curvatures of
he shallow shell, and the last terms can be viewed as the excita-
ion produced by the transverse motion for the in-plane motion.

oreover, f̂3
t includes the membrane-bending coupling effect.

ne can also see that the f̂3
t includes the effects from the curva-

ures of the shell and the in-plane motion on the transverse mo-

ion. In f̂1
t , f̂2

t , and f̂3
t , we can further group the nonlinear terms

nd define

F̂1
t = A11w,x

t w,xx
t + �A12 + A66�w,y

t w,xy
t + A66w,x

t w,yy
t �28a�

F̂2
t = �A21 + A66�w,x

t w,xy
t + A66w,xx

t w,y
t �28b�

F̂3
t =

Nx
t

Rx
t +

Ny
t

Ry
t − ��Nx

t w,x
t �,x + �Nxy

t w,x
t �,y + �Nyx

t w,y
t �,x + �Ny

t w,y
t �,y�

�28c�
Similarly, one can also recast the equations for core as follows:

�5hc�Gxz
c wo,xx

c + Gyz
c wo,yy

c � + �2hc�Gxz
c �w,xx

t + w,xx
b �

+ Gyz
c �w,yy

t + w,yy
b �� −

194

315
chcwo

c −
358

105

Ec

hc
�2wo

c − wt − wb�

−
37hc

630
c�ẅt + ẅb� +

181hf
2hc

6930
c� �2

�x2 +
�2

�y2�
�
ẅo

c +
199

724
�ẅt + ẅb�� = f̂ c �29�

here

f̂ c =
17hfhc

210
c�û,x + v̂,y� +

11

15
Gxz

c �uo,x
t − uo,x

b � +
11

15
Gyz

c �vo,y
t − vo,y

b �

�30�
Finally, for the bottom face sheet, the equations of motion be-

ome

A11
b uo,xx

b + A66
b uo,yy

b + �A12
b + A66

b �vo,xy
b +

Gxz
c

hc
�uo

t − uo
b�

− �bhf +
hc

3
c�üo

b − chc

6
üo

t = f̂1
b �31a�

�A21
b + A66

b �uo,xy
b + A66

b vo,xx
b + A22

b vo,yy
b +

Gyz
c

hc
�vo

t − vo
b�

− �bhf +
hc

c�v̈o
b − chc v̈o

t = f̂2
b �31b�
3 6
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D11
b w,xxxx

b + 2�D12
b + 2D66

b �w,xxyy
b + D22

b w,yyyy
b +

61

21

Ec

hc
� 53

305
wt

−
358

305
wo

c + wb� + �bhf + c29hc

315
�ẅb + c37hc

630
�ẅo

c −
11

37
ẅt�

− � �2

�x2 +
�2

�y2�
�b hf
3

12
+ c19hf

2hc

1155
�ẅb + c hf

2hc

27720
�199ẅo

c

− 61ẅt�� + �3hc�Gxz
c w,xx

t + Gyz
c w,yy

t � − �2hc�Gxz
c wo,xx

b

+ Gyz
c wo,yy

b � − �1hc�Gxz
c w,xx

c + Gyz
c w,yy

c � = f̂3
b �31c�

in which

f̂1
b = Gxz

c 
11

15
wo,x

c + �4�w,x
t + w,x

b �� − A11
b w,x

b w,xx
b − �A12

b + A66
b �w,y

b w,xy
b

− A66
b w,x

b w,yy
b − A11

b w,x
b

Rx
− A12

b w,x
b

Ry

+ chfhc

420
�23ẅ,x

b + 17ẅo,x
c − 5ẅ,x

t � �32a�

f̂2
b = Gyz

c 
11

15
wo,y

c + �4�w,y
t + w,y

b �� − �A21
b + A66

b �w,x
b w,xy

b − A66
b w,xx

b w,y
b

− A22
b w,y

b w,yy
b − A21

b w,y
b

Rx
− A22

b w,y
b

Ry

− chfhc

420
�5ẅ,y

t − 17ẅo,y
c − 23ẅ,y

b � �32b�

f̂3
b = − �4�Gxz

c �u,x
t − u,x

b � + Gyz
c �v,y

t − v,y
b �� + �Nx

bw,x
b �,x + �Nxy

b w,x
b �,y

+ �Nyx
b w,y

b �,x + �Ny
bw,y

b �,y − �Nx
b

Rx
b +

Ny
b

Ry
b� + chfhc

420
�5�üo,x

t + v̈o,y
t �

+ 23�üo,x
b + v̈o,y

b �� �32c�
As before, we can group the nonlinear terms and define

F̂1
b = A11

b w,x
b w,xx

b + �A12
b + A66

b �w,y
b w,xy

b + A66
b w,x

b w,yy
b �33a�

F̂2
b = �A21

b + A66
b �w,x

b w,xy
b + A66

b w,xx
b w,y

b + A22
b w,y

b w,yy
b �33b�

F̂3
b =

Nx
b

Rx
b +

Ny
b

Ry
b − ��Nx

bw,x
b �,x + �Nxy

b w,x
b �,y + �Nyx

b w,y
b �,x + �Ny

bw,y
b �,y�

�33c�

4 Solution Procedure
In this section, the solution procedure for the dynamic response

of sandwich shallow shells will be demonstrated through the study
of the simply supported case. The boundary conditions along the
x=0, a and y=0, b sides �Fig. 1� read as

u0
t = 0, u0

b = 0, v0
t = 0, v0

b = 0, wt = 0, wc = 0, wb = 0

�34�

and

Mxx
t = 0, Mxx

b = 0 for x = 0,a �35a�

Myy
t = 0, Myy

b = 0 for y = 0,b �35b�

The displacements can be assumed as
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uo
t = �

m,n

Umn
t �t�cos

m�x

a
sin

n�y

b

�36a�

v0
t = �

m,n

Vmn
t �t�sin

m�x

a
cos

n�y

b

uo
b = �

m,n

Umn
b �t�cos

m�x

a
sin

n�y

b

�36b�

v0
b = �

m,n

Vmn
b �t�sin

m�x

a
cos

n�y

b

wt = �
m,n

Wmn
t �t�sin

m�x

a
sin

n�y

b

�36c�

wb = �
m,n

Wmn
b �t�sin

m�x

a
sin

n�y

b

wo
c = �

m,n

Wmn
c �t�sin

m�x

a
sin

n�y

b

here Umn
t �t�, Vmn

t �t�, Umn
b �t�, Vmn

b �t�, Wmn
t �t�, Wmn

b �t�, and Wmn
c �t�

re unknown functions of time t. These displacements satisfy the
oundary conditions. Substituting Eqs. �36a�–�36d� into Eqs.

26a�–�26c�, �29�, and �31a�–�31c� with F̂i
t, F̂i

b�i=1,2 ,3�, and
�x ,y , t� being expressed into the following form:

F̂1
t = �

mn

F̂1mn
t �t�cos

m�x

a
sin

n�y

b

�37a�

F̂2
t = �

mn

F̂2mn
t �t�sin

m�x

a
cos

n�y

b

F̂3
t = �

mn

F̂3mn
t �t�sin

m�x

a
sin

n�y

b

�37b�

F̂1
b = �

mn

F̂1mn
b �t�cos

m�x

a
sin

n�y

b

F̂2
b = �

mn

F̂2mn
b �t�sin

m�x

a
cos

n�y

b

�37c�

F̂3
b = �

mn

F̂3mn
b sin

m�x

a
sin

n�y

b

q�x,y,t� = �
mn

Q̂mn�t�sin
m�x

a
sin

n�y

b
�37d�

e can obtain sets of second order ordinary differential equations
ith regard to the variable time in matrix form:

�Mmn�Ümn�t� + ��mn�U̇mn�t� + ��mn�Umn�t� = Fmn�t� �37e�

here �Mmn� is the equivalent mass matrix, ��mn� is the damping
oefficient matrix, and ��mn� is the equivalent spring constant ma-
rix. These are 7�7 matrices for a given pair �m ,n�.

The displacement vector Umn is defined as Umn

�Umn
t �t� ,Vmn

t �t� ,Wmn
t �t� ,Wmn

c �t� ,Umn
b �t� ,Vmn

b �t� ,Wmn
b �t��T and the

oading vector Fmn= �F̂1mn
t �t�+ Q̂mn�t� , F̂2mn

t �t� , F̂3mn
t �t� ,0 ,

ˆ
1mn
b �t� , F̂2mn

b �t� , F̂3mn
b �t��T. The F̂jmn

t �t�, F̂jmn
b �t�, Q̂mn�t� are ob-
ained from Eqs. �37a�–�37d� as
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Q̂mn�t� =
4

ab	0

a	
0

b

q�x,y,t�sin
m�x

a
sin

n�y

b
�37f�

F̂1mn
t �t� =

4

ab	0

a	
0

b

F̂1
t cos

m�x

a
sin

n�y

b
�37g�

F̂1mn
b �t� =

4

ab	0

a	
0

b

F̂1
b cos

m�x

a
sin

n�y

b
�38�

with similar expressions for the rest of the F̂jmn
t �t� and F̂jmn

b �t�.
Next, applying the Laplace transform

Ũ�s� = L�U�t���s� =	
0

�

U�t�e−stdt �39�

to Eq. �38�, one can further obtain

�s2�Mmn� + s��mn� + ��mn��Ũmn�s� = F̃mn�s� �40�
In the Laplace space, the solution in terms of the displacements

to Eq. �40� can be obtained without much difficulty if the loading

vector F̃mn= �F̃1mn
t + Q̃mn�s� , F̃2mn

t , F̃3mn
t ,0 , F̃1mn

b , F̃2mn
b , F̃3mn

b �T is
constant, then Eq. �40� is a set of linear algebraic equations, which

can be solved directly for Ũmn= �Ũmn
t , Ṽmn

t ,W̃mn
t ,W̃mn

c , Ũmn
b , Ṽmn

b ,

W̃mn
b �T and then the displacements in time domain Umn

= �Umn
t �t� ,Vmn

t �t� ,Wmn
t �t� ,Wmn

c �t� ,Umn
b �t� ,Vmn

b �t� ,Wmn
b �t��T can be

recovered using the inverse Laplace transform without much dif-
ficulty. Subsequently, the solution for the displacements can be
found by using Eqs. �36a�–�36d�. However, the loading coeffi-

cients F̃jmn
t and F̃jmn

b were derived from expressions �28a�–�28c�
and �33a�–�33c�, which are nonlinear functions of the displace-

ments. However, the right-hand side of Eq. �40�, F̃mn, are nonlin-

ear functions of Ũmn. Therefore, an iterative procedure is devel-

oped as follows: �1� First, Q̃mn is a known function once the
applied load is given. If the right-hand side of Eq. �40� is approxi-

mated by F̃mn= �Q̃mn ,0 ,0 ,0 ,0 ,0 ,0�T, then a first approximation to

the solution is easily obtained as Ũmn�s�=s2�Mmn�+s��mn�
+ ��mn��−1F̃mn �the superscript −1 denotes matrix inversion�. �2�
Application of the inverse Laplace transform to Ũmn�s� can lead to
the corresponding solution Umn�t�. Then, making use of Eqs.
�36a�–�36d�, �33a�–�33c�, and �28a�–�28c�, one can determine the

functions F̂1
t , F̂2

t , F̂3
t and F̂1

b, F̂2
b, F̂3

b and then the corresponding to

these Laplace transforms F̃1
t , F̃2

t , F̃3
t and F̃1

b, F̃2
b, F̃3

b. �3� The next
approximation for the displacements is found by solving Eq. �40�
with the updated vector F̃mn= �F̃1mn

t + Q̃mn�s� , F̃2mn
t , F̃3mn

t ,0 ,

F̃1mn
b , F̃2mn

b , F̃3mn
b �T. This procedure continues until the in-plane

and transverse displacements are determined by the nth iteration
with a convergence tolerance � applied on the displacements nor-
malized by the total height of the sandwich section, such that �
�10−5 between two consecutive steps.

5 Applications and Discussions
The formulas and solution procedure in the foregoing sections

can be applied to investigate the nonlinear transient response of a
shallow shell subjected to a sudden blast loading �14�. Detailed
analysis of a few example problems are presented in this section.

Uniformly Distributed and Exponentially Decaying Blast Load-
ing on an Orthotropic Sandwich Shallow Shell. In this example,
both the top and bottom face sheets of the sandwich shallow shell
are made of E-glass/polyester composite material with stiffnesses
�in GPa�: E1=50.8, E2=35.7, G12=7.1; Poisson’s ratios: �12

t,b 3
=0.35, �21=0.246; and mass density  =1632 kg /m . The ortho-
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ropic core material has the following properties: Ec=1.005 GPa,

xz
c =120.6 MPa, Gyz

c =75.8 MPa, �c=0.3, and c=64 kg /m3. The
op and bottom face sheets have an identical thickness hf
1.0 mm and the thickness of the core is hc=20.0 mm. The geo-
etric dimensions of the shell �Fig. 1� read as �in mm�: a=800,
=500, Rx=1000, and Ry =600. The top face sheet is subjected to
last loading, which is uniformly distributed over the entire sheet
urface, but its intensity varies with time exponentially:

pi�t� = qme−t/�, t � 0 �41�

e use in this example the values from Ref. �4�: qm
60.86 MPa and �=3.33435.
The results in Fig. 2 are the transverse displacements for the

enter points in the top face sheet, core middle plane, and bottom
ace sheet, respectively, within a few micrometers after the blast
oading impact on the front surface of the top face sheet. An
nteresting phenomenon can be observed in the early blast loading
tage: the top face sheet, core, and bottom face sheet behaviors are
ery different: �1� The displacement for the top face sheet in-
reases with time positively �relative to the loading direction� due
o the continuously applied loading; �2� the displacement for the

iddle plane in the core is negative when time t�2.15 �s, then it
ecomes positive; and �3� the displacement of the bottom face
heet changes from positive to negative around time t=2.6 �s,
hen it becomes positive again after time t=6.1 �s. This phenom-
non reflects the impact shock stress wave propagation in the
andwich shell. The blast loading impacts on the surface of the top
ace sheet at the instant of time t=0+ �s and induces a shock
ave propagating through the thickness of the shell. During this

ime period, a negative pressure zone, which is similar to the
avitation zone in water, behind the shock wave front, is created
n the core. This is why we see the displacement of the middle
lane of the core negative up to ta=2.15 �s. This negative pres-
ure zone reaches the bottom face sheet around tb=2.6 �s. The
isplacement of the bottom face sheet then becomes negative until

c=6.1�s, when this zone is dissipated. One may also interestedly
ote that the propagation velocity of the cavity zone is nonlinear
ince tc�2tb. This observation clearly demonstrates that the non-
inear higher core theory in this paper can give us deep insight on
hat happens at the different phases of the sandwich construction
hen it is subjected to a blast loading.
Two points need to be further explained in Fig. 2. First, it can

e observed that the midpoint back face displacement is double
hat of the midpoint core and this is because these two displace-

ig. 2 Transient response of a sandwich shallow shell at the
ery early stage of blast loading
ents are at different time instants and the back face and the core

ournal of Applied Mechanics
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are different materials. There is actually no direct relation between
them due to the core compressibility, which can mask the other-
wise intuitively derived behavior, i.e., the core can expand in the
process and therefore show larger back face displacement than at
an earlier instant. Furthermore, as the wave propagates in the
sandwich, energy is still added in the material system in this early
time period, which can make up for the energy dissipation as the
wave propagates in the sandwich. Therefore, the larger back face
deflection in Fig. 2 is quite plausible. Second, it can be seen that
during the early part of loading, the face sheets deform in one
direction and the core in the opposite and this is due to the core
compressibility and the shock wave propagation and reflection. It
should be noted that the curve of the core deflection is the deflec-
tion of the initial midpoint of the core, not the current core mid-
point location. In other words, in this early phase, a negative
pressure zone is induced within the core and, since the core is
compressible, it expands in the process of shock wave propaga-
tion. This negative pressure results in part of the sandwich struc-
ture deforming in the opposite direction. Therefore, the observed
deflections are compatible.

The results plotted in Fig. 3 show that the popular assumption
that the displacements of the middle planes in the top face sheet,
the core, and the bottom face sheet are identical may be true only
at some time instants. Most of the time, the transient responses of
these three displacements are different, as will be further shown in
the following discussion.

Presented in Fig. 4 is the transient response in terms of the
displacements �Wt�t�, Wc�t�, Wb�t�� for the center points in the
middle plane of the sandwich shallow shell in a short time period
�0� t�6 ms� after the blast loading is applied on the surface of
the top face sheet. The maximum values of these displacements
happen around time t=0.2 ms and then decrease to near-half of
the maximum values quickly. One can see that the solution con-
verges as the time increases. The detailed drawings in Sections A
and B show that the curves representing the displacements are
tangled in the sense that the core midplane displacement exceeds
that of the midplane bottom face sheet due to the compressibility
of the core. This observation would further indicate that the non-
linear core theory may be a good model to study the behavior of
sandwich structures subjected impact loading.

The behavior of the sandwich shell in the stage from the tran-
sient response to the steady dynamic response is demonstrated in
Fig. 5. It can be seen that after time t�12 ms, the sandwich
structure enters into a steady state dynamic response region. One
interesting result in the figure observed from the steady state dy-
namics response is that the curve for the displacement of the core
is not in the middle between the curves of the top and bottom face
sheets. This is due to the nonlinearity in the core transverse dis-
placement.

Finally, Fig. 6 shows the stress profile 	zz through the thickness
and as a function of time. It can be seen that at the top face sheet,
the stresses are always compressive and the highest in magnitude.
The bottom face sheet shows lower stresses and they can even be
at brief times tensile. This would indicate that damage would most
likely initiate at the front �top� face sheet or even more likely at
the front �top� face sheet/core interface. Such has been prelimi-
nary experimental evidence �15�.

6 Conclusions
In this work, a higher order nonlinear core theory is proposed

and is incorporated into the constitutive equations. A set of non-
linear governing equations is formulated and the solution proce-
dure is obtained using the extended Galerkin method and the
Laplace transform. Numerical results are presented to demonstrate
the application of this higher order core model for the transient
response of a composite sandwich shallow shell subject to blast
loading. The observations obtained in the forgoing study suggest
the following conclusions: �1� This nonlinear higher order core

model can be used to capture the complex behavior such as cavi-
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ation in the core caused by the shock wave in the sandwich shell
uring the very early stage following the blast loading and the
igh levels of core thickness reduction; �2� the conventional as-
umption that the middle plane of the top face sheet, the core, and
he bottom face sheet is identical may be not adequate in studying
last loading problems; �3� the highest in magnitude stresses are
bserved at the front �top� face sheet, which indicates that damage
ould most likely initiate at the front �top� face sheet/core inter-

ace.

cknowledgment
The financial support of the Office of Naval Research, Grant

o. N00014-07-10373, and the interest and encouragement of the
rant Monitor, Dr. Y. D. S. Rajapakse, are both gratefully ac-
nowledged.

Fig. 3 Transient response of a sandwich
loading

ig. 4 Transient response of a sandwich shallow shell at an

ven larger time scale following blast loading
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Appendix A: Derivation of the Fourth Order Nonlinear
Compressible Core Theory

Let the displacements in the core be approximated by a fourth
order polynomial in terms of the displacements in the top face
sheet, middle plane of the core, and bottom face sheet. Then, the
transverse displacement in the core can be expressed as

wc�x,y,�,t� = ��0 − �2
�2

hc
2 − �4

�4

hc
4�wo

c�x,y,t�

+ ��2
�2

hc
2 + �4

�4

hc
4�w̄�x,y,t�

− ��1
�

hc
+ �3

�3

hc
3�ŵ�x,y,t�, −

hc

2
� � �

hc

2
�A1�

in which w0
c�x ,y� is the transverse displacement of the middle

surface of the core, and w̄�x ,y� and ŵ�x ,y� are, respectively, the
average and difference of the middle surface transverse displace-
ments for the two face sheets,

allow shell at a larger time scale of blast

Fig. 5 The stage from transient to steady dynamic response
sh
for a sandwich shallow shell subject to blast loading
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�wt�x,y,t� + wb�x,y,t��
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ŵ�x,y,t� =
1

2
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The in-plane displacements in the core can also be approxi-
ated as follows �fifth power of ��:

uc�x,y,�,t� = ū�x,y,t� + �5
�

hc
û�x,y,t� + �

hf

hc
w,x

c �x,y,�,t�

�A3a�

vc�x,y,�,t� = v̄�x,y,t� + �6
�

hc
v̂�x,y,t� + �

hf

hc
w,y

c �x,y,�,t�

�A3b�

here ū�x ,y , t�, û�x ,y , t� and v̄�x ,y , t�, v̂�x ,y , t� are, again, respec-
ively, the average and difference of the middle surface in-plane
isplacements for the two face sheets:

ū�x,y,t� =
1

2
�uo

t �x,y,t� + uo
b�x,y,t��

�A4a�

û�x,y,t� =
1

2
�uo

t �x,y,t� − uo
b�x,y,t��

v̄�x,y,t� =
1

2
�vo

t �x,y,t� + vo
b�x,y,t��

�A4b�

v̂�x,y,t� =
1

2
�vo

t �x,y,t� − vo
b�x,y,t��

Therefore, there are seven constants �i, i=0,6, to be deter-
ined from displacement continuity as follows.
Top face sheet/core interface, �=−hc /2:

�uc�x,y,�,t���=−hc/2 = uo
t �x,y,t� −

hf

2
w,x

t �x,y,t� �A5a�

�vc�x,y,�,t���=−hc/2 = vo
t �x,y,t� −

hf w,y
t �x,y,t� �A5b�

Fig. 6 Stress profiles following blast loading
2
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�wc�x,y,�,t���=−hc/2 = wt�x,y,t� �A5c�

Bottom face sheet/core interface, �=hc /2:

�uc�x,y,�,t���=hc/2 = uo
b�x,y,t� +

hf

2
w,x

b �x,y,t� �A5d�

�vc�x,y,�,t���=hc/2 = vo
b�x,y,t� +

hf

2
w,y

b �x,y,t� �A5e�

�wc�x,y,�,t���=hc/2 = wb�x,y,t� �A5f�

Also, at the midsurface of the core, �=0:

�wc�x,y,�,t���=0 = w0
c�x,y,t� �A5g�

Substitution of Eqs. �A1�, �A3a�, and �A3b� into the seven conti-
nuity conditions �A5a�–�A5g� leads to

�0 = �1 = 1, �2 = − 2, �3 = − 4, �4 = − 8, �5 = �6 = − 1/2
�A6�

Appendix B: The Governing Equations for the Bottom
Face Sheet

One can see that the governing equations are nonlinear. Substi-
tuting equations Eq. �4� into Eqs. �13a� and �13b� and then Eqs.
�20�–�22�, the governing equations for the bottom face sheet can
be written as

Nx,x
b + Nxy,y

b − �bhf + chc

3
�üo

b − chc

6
üo

t + chfhc

420
�5ẅ,x
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c

− 23ẅ,x
b � + Gxz

c 
 �uo
t − uo

b�
hc

−
11

15
wo,x
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t + w,x

b �� = 0

�B1a�
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3
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6
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c
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wo,y
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b �� = 0

�B1b�
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bw,x
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