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Abstract

A fnethod is presented for predicting the saturation levels and particle transport in weakly
unstable systems Where there are a discrete number of modes. Conditions are established
for either steady sate or pulsating responses when several modes are éxcited for cases where
there is and there is not resonance overlap. The conditions for achieving different levels of
saturation are discussed. Depending on details, the saturation level can be quite low, where
only a small fraction of the available free energy is released to waves, or the saturation level

can be quite high, with almost a complete conversion of free energy to wave energy coupled

with rapid transport.
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I. Introduction

The standard process for sustained ignition in a controlled fusion system! is the produc-
tion and containment of charged fusion products (e.g. 3.5MeV alpha particles in the D-T
reaction; 15 MeV proton products in the D-He? reaction) with the transfer of their energy
to the background plasma through classical processes, such as electron drag. In this manner
ignition is sustained and a steady-state distribution function of the energetic particle com-
ponent is formed. A primary concern in this process is whether the free energy of instability
associated with such an energetic particle distribution, causes the spontaneous build-up of
waves which can lead to"the deposition of the energy of the fusion charged products to the
wall rather than to the plasma.? Clearly this process is of fundamental concern in the fu-
sion program and it is important that the nonlinear processes that can lead to anomalous
diffusion be understood. The purpose of this presentation is to discuss a basic physics ap-
proach that is being developed to systematically analyze this problem both qualitatively and
quantitatively.

In dealing in nonlinear theories, it is frequently assumed that the nonlinear processes are
so rapid, that the longer term evolution due to classical transport processes can be ignored.
Further, a typical turbulence scenario assumes that there is continuous spectrum of waves,4
so that nonlinear theories for weak turbulence, such as quasi-linear theory, ca.n. be useci. In
the problem we are dealing with, the nonlinear description of Toroidal Alfvén Eigenmodes in
a tokamak,®™® we expect a discrete spectrum of weakly unstable waves (where the growth -
is much less than the real frequency, w) and the competition between classical and nonlinear
processes to persist in the long term evolution of the distribution function and even in the
establishment of the saturation level of the waves. This competition needs to be included in

the nonlinear analysis.? Another mechanism that profoundly affects the nonlinear evolution




of the system and needs to be included in the analysis is damping from the background
plasma. All these mechanisms determine whether the excitation spectrum appears at a
steady level® or as pulsations,!® and whether the spectrum is a continuum that can give rise
to global diffusion!™? or a discrete set of modes!? which does not have a large effect on
transport. Specific criteria for these responses have beeﬁ obtained and is discussed below.
A primary physics process in weak turbulence is the particle-wave resonance interaction.
The paradigm problem for this process is the interaction of a freely flowing particle with an
electrostatic wave. If at the resonance position (for the electrostatic problem the resonance
condition is = w —.k -v = 0 with k the wavenumber, w, the wave frequency and v the
particle velocity), 9f/9F < 0 (f is the particle distribution function, and F the particle
energy) thei'e is Landau .damping,l3 while if 8f/OF > 0, there can be wave growth.3* This
resonant particle-wave intéraction mechansim persists in every wave problem with a kinetic
distribution function in long mean free path systems. In the problem we are most interested
in, low frequency waves (w much less than the cyclotron frequency) in a torus, the resonance

condition for the particle-wave interaction is'4
Qu(E, p, Py) = w — nidy( B, 1, Py) — lde(E, p, Py) = 0

where ¢ and 8 refer to toroidal and poloidal angles of the torus, n is the toroidal quantum
number, and £ is a set of integers, and K, y1, P are particle’s energy, magnetic moment and

angular momentum. The particle-wave resonance produces a drive for possible instability if
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denotes at constant Fy — 2 E). This condition, which can always be satisfied

FPy—nElw .
for any distribution that has a dependence on FP; for arbitrary n and w, is what gives
rise to the “universal instability” drive.’®1® For w < nE/P,, the particles primarily move

spatially in response to the wave, and if such motion becomes stochasti.c, spatial diffusion
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arises (this is the basic cause of anomalous plasma transport). An important point we
emphasize, is that the mathematical structure of the particle-wave interaction for the bump-
on-tail problem and for particle-wave interaction with low frequency toroidal waves, have
a great deal in common. We will see that many aspects of the toroidal problem can be
understood by analyzing the simpler 1-dimensional electrostatic bump-on-tail problem. The
main extension that is needed, the treatment of many resonance interactions simultaneously,
is relatively straightforward.

An important issue for the response of a system is whether the instability spectrum
produces mode overlap.”” Without mode overlap, there is no global diffusion of particles.
The saturation level of modes is then quite low, and the “free energy”'® that produces
AF/OF > 0, is hardly tapped. However, if overlap suddenly arises, a release of free energy
to wave energy arises, which causes rapid diffusion of particles, in a relatively short time
interval 3,12

The structure of the paper is as follows: In Sec. II we discuss the nonlinear theory with
sources and sinks for the bump-on-tail problem when there is no mode overlap. In this
section we present a discussion of the effect of frequency sweeping,!%2%2! a process, first
applied to extract energy from a free electron laser,'® that enhances the saturation level of
single modes.>? Tt is a process that can be controlled externally and applied to channelling
of the fusion product energy?® and even to the direct conversion of energy from charged
fusion products.??

In Sec. III we discuss how the effect of mode-overlap can be described. We summarize
our effort to build a quasi-linear transport code that modf;ls the correct behavior in both
the mode overlap and non-overlap regimes. In Sec. IV we show how the formalism for the
bﬁmp—-on—tail problems applies to the toroidal problem, both for single-modes and for the

model quasi-linear equations. In Sec. V we discuss the relevance of our theory to experiment.




II. Saturation of a Single Mode

The first topic to be discussed is that of the saturation of a single mode in a weakly unsta-
ble system, when there is no mode overlap. In this section we consider the one-dimensional
bump-on-tail instability, and in Sec. IV we show how the analysis generalizes to more com-
plicated systems.

For the nonlinear properties, the most important aspect is the nonlinear properties of
the particles that are nearly.resonaht with the wave. For these particles, 9F/0E > 0, where
E is the kinetic energy of the particles. Thus the distribution has free energy that can
- spontaneously convert to Wa;ve energy. The linear growth, «, in the absence of dissipation,
is proportional to 8F/3F. The effects of dissipation will first be neglected and then later
incorporated into this discussion.

As a wave grows, the distribution will mix in the trapping region, |v — w/k} = ws/k with
wy = (228)1/2 the trapping frequency. Roughly, this mixing causes the trapped particle dis-
tribution to flatten inside the separatrix, and leave the distribution nearly unaffected outside
the separatrix. The flattening depletes the drive within the separatrix, but hardly affects
the particles outside the separatrix. The frequency of the wave is determined from the back-
ground plasma characteristics and not from the properties of the resonant particles. Thus,
at saturation, the resonant phase velocity remains fixed in a region where the distribution is
flat, so that the wave can no longer grow.

Note that to the extent the distribution is truly flat inside the separatrix, with a value,
F = F(3;mw?/k?), and the distribution responds adiabatically cutside the separatrix, the
saturation level can be computed frbm energy conservation arguments. One finds, by equat-
ing the sum of the kinetic and potéﬁtial energy in the final state, to the kinetic energy of the
initial state, that wp = 2.88v;. This scaling has now been established in several numerical

simulation experiments.?*~% In the bump-on-tail instability the result is wg = 3.27y;.%%




These results indicate that the relaxation ansatz gives the correct scaling for the saturation.
The relaxation of the distribution is only somewhat more complicated than the assumed
angatz as a small portion of the pas'éing region mixes as well. By empirically adjusting the
width of the flattened region, as will be described in Sec. III, where the quasi-linear model
is discussed, the correct saturation level can be obtained.

We call the saturation arising from wave trapping, the natural saturation mechanism.
This terminclogy is used because this mechanism is the dominant nonlinearity for suffi-
ciently weak v <€ w, and isolated instabilities, where v, € Aw, with Z\a) the frequency
difference between different resonance frequencies. This follows because the effect of trapping
is proportional to | E|*2, rather than in powers of |E|? which arises in other nonlinear mode
coupling problems.3!:3232

With dissipation present, a wave damps at a rate 4, in the absence of an instability
source. For instability to arise, one needs yp > g with the growth rate given by v = v — 4.
We find that the natural saturation mechanism due to trapping, %t = const, still applies,
as seen from the result of particle simulation experiments?® shown in Fig. 1 where the peak
value of w; versus 1 —4/7vz is plotted. In these cases a mode appears as a pulse rather than
reaching a steady level. The peak saturation level occurs when wj, ~ 3y, whereupon the
instability is quenched as the result of the formation of a plateau at the resonance velocity.
Then, the dissipation mechanism, which is assumed to be a nonresonant process that is not
likely to be affected by nonlinearity, will cause the wave to damp at the dissipation rate 7.

In practice instability can be established by having a weak source that produces the
energetic particles which then relax through collisional processes to the unstable distribution
we are considering. When iristabiljty arises and a plateau in the resonant region is formed, the
source will cause the original distribution function to reconstitute at a rate vg = ud(%) +
v,(-gz—) + V., where vy is the drag rate that causes the resonant particles to reduce their

speed by a factor of 1/e, and v, is the global velocity diffusion rate (the diffusion is due to
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a superposition of colﬁsiénal and heating processes that cause both pitch angle scattering
and energy diffusion) and v, is a particle annihilation rate, and {2 is the resonance spreaci
of a fully relaxed energetic particle distribution function (for the bump-on-tail problem for
plasma waves, §] = w — kv &~ w; in other problems {I can be substantially different from
w). Thus, the flux of new particles into the resonance region, together with the relaxation
processes, causes the instability to either reoccur, or even persist indefinitely. If vg € 7 <
41, instability is first quenched by plateau formation, bu_t after a short time the transport
processes will cause particies to relax to the unstable state. A weak precursor instability
can occur when the distribution function in the resonance region is only a fraction of the
prevailing slope surrounding the resonance. However, the relaxation of this precursor mode
only affects a small fraction of the original resonance region. Hence, the plateau formed
from the relaxation of the precursor mode, does not flatten most of the interval of the newly
forming slope and the build-up of the overall slope, over most of the phase space region,
continues in time. It is only when enough time has elapsed that the slope in the resonance
region is a reasonable fraction (~ 1) of the prevailing slope surrounding the resonance region,
does enough free energy accumulate locally to allow the overall interval to.ﬂatten again and
produce a major pulse of instability. Thus with a weak relaxation process present, i.e.
Ve & '}'g < 7L, pulsations with precursors arise, with a significant spread of repeated pulse
heights. In computer simulation, it is found that the average w, height of significant size
pulses is given by @, ~ 1.4y;. The repetitiveness of the pulses and the flattening of the
distribution function is shown in Fig. 2.

When Vet > 7a, the source of new particles that enter the resonance region from colli-
sional processes, prevent a plateau from completely flattening. This result leads to a steady
level in the mode amplitude being established and this level exceeds that natural satura-
tion level. Thus, the sources that are supplyiﬁg new particles, prevent complete plateau

formation within the resonance interval and the source pumps the wave to a level above the




natural saturation level. An analytic calculation of the saturation level has been made when
Vet < wy,? and the results are easiest to understand when diffusive processes dominate drag

processes. Then the nonlinear growth rate is found to be given by

Veft
INL ™ YL (1)
Hence, as an unstable mode grows, the energy rate reduces, until the damping rate, g, is
as large as the drive. When the drive and damping are equal, a steady level for the trapping
frequency is then established, which is

YI, =2 1/ |
s (—n u,) . @
¥d

This level exceeds the natural level when v, > v4. v, < 74, it turns cut that the steady-state
level predicted above is unstable and the system evolves in the pulsation mode described
previously. One can also show that when v.g < 4, the natural level of saturation cannot
produce a steady oscillation as then more energy would be absorbed by dissipation than can
be injected into the system by the external source. Thus, when v.g < 72, We return to the

previously described pulsation scenario.

The steady-state response of the system, when vg > 4, has been confirmed in computer
simulations. In this case v.g = v,, the particle annihilation rate. The results are shown in
Fig. 3.

The situation is more complicated when effects of drag dominate, which arise if vy >
v, Q/vr. It turns out this case ié gimilar to what can happen when the real frequency
changes, and we defer this discussion to later in this section.

Special analysis, which has recently been completed, is needed for the case near marginal
stability, where ¥ = -y — ¥4 € yr. Here when a steady source of instability is present, and
1 — vg/~1 small, one would expect from the bifurcation theory of dissipative systems, that a
steady solution should exist whose magnitude is proportional to (1—~4/v.)? with p > 0. The
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saturation level in this case can be calculated from a perturbation theory that expands about
the unperturbed solution with transport processes present. Such a perturbation procedure
is applicable if a particle’s lifetime in resonarice is short compared to a trapping. time. One
then finds that the system’s response can be described by an equation with a temporally
nonlocal integral equation containing a cubic nonlinearity. In Ref. 30 an analysis of this
equation is performed. |

When 5;‘1’ > 4.38, the integral equation admits a steady level of oscillation that is below

the natural level. The trapping frequency is found to be given by,

1/4
Wwp = 81’(4 Ve (1 - Zﬁ) o (3)
Td

However, this level is found to be unstable if ver/y < 4.4. For 4.4 < 8 < 2.4, pulsation
levels at about the steady state level is observed with more complicated structure associated
with smaller values of veg/y. However, when i’}f < 2.4, a truly major change in the response
arises. The reduced dynamics, described by the nonlinear integral equation is found to blow
up in a finite time for perturbations that begin at a low a.mplitude (even for ‘—’;ﬁ > 24,
it found that the pertufbation blows up in a finite time if the initial perturbation is high
enough). Examples of solutions to the integral equation are shown in Fig. 4(a)-(e).

In reality when there is rapid blow-up in the solution to the nonlinear integral equation,
it means that the true solution of the system will increase rapidly until saturation due
to particle trapping occurs. Then the oscillation level will damp due to depletion of the
drive, and over the longer term, pulsations again arise with the maximum saturation level
determined by wp =~ 3(yL — 7a)-

- The discussion up to now assumed that the frequency does not change during resonance.
Hence the depletion of the drive is only in the resonance region. As a result only a very.
small fraction of the available free energy is converted to wave energy. When Vet € Y2 < VL,

it can be shown that the wave energy, Wg, released per pulse in terms lof the free energy,
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W (typically the free energy, W, is comparable to the total kinetic energy of the energetic
particle distribution), is given by

_ \ |
we~ (%) we (4
When veg > Ya, we have noted that ws ~ vz Veg /74, which allows an increased wave energy

at saturation. As veg = v, (2 Jw?, the level of wave energy is given by
Wg ~ = — Wpr, (5)
fY

which is still a fairly low level.

Another way to enhance the wave energy conversion of a single mode is to have the
frequency change.?? Qur simulation results show that in systems with weak instability, where
the background plasma parameters are constant in time, the frequency does not change
during the saturation of the modé. However, mechanisms that cause the frequency to shift
can well exist. For example, the parameters that define the plasma can be changing in
time because the system has not reached a steady-state or because other instabilities cause
transients in the background plasma parameter. The frequency shift allows the position of
the particles in resonance to change and this leads to the possibility that additional free
energy can be tapped.

The rate of energy conversion of free energy is determined by two processes as the fre-
quency is swept; a non-adiabatic process that gives energy conversion at the linear rate or
less and an adiabatic process, that can give energy conversion rates that are even faster than
linear energy conversion rate. First we will discuss the nonadiabatic process.

In the nonadiabatic process, mechanisms exist that allows particles to enter the resonant
region, and then leave it. If the paiticles remain in resonance in-a time less than the bounce
time, the fields do not have a chance to deplete the drive. As a result, the energy transfer rate

from the free energy reservoir to the wave remains 2. If the particles remain in resonance
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for a time, T, is longer than the trapping time, the energy transfer rate is redl_lced toyr/ws T.
The input of particles can be due to collisions, in which case 7= ~ v ~ v, (93 Jwd. 1t can
also be due to the sweeping of the frequency, and then new particles enter the resonance
region at the rate vw/w, where v = 1 %. It is interesting to note that particle drag has
the same effect as frequency sweeping as the drag allows new particles enter the resonance
region. Thus, with drag prooéss&s we can use the same relations as we can use with frequency
sweeping, where we alter the definition of v to v = v-!dv/dt. The integration of the
wave energy transfer by this mechanism allows for a ievel of wy ~ {(y.)¥/2, or equivalently
W ~ (3%)3/2Wp. This level is api)reciably' greater than the natural saturation meché.nism.

In addjtioh to this nonadiabatic process, it can be shown that in the absence of diffu-
sion, that particles trapped in the wave will adiabatiéally follow the resona.ﬁce as either the
frequency is swept or as the particle slows down due to drag, as lpng as v,,(;ﬁg)2 < v. The
result is that phase space discontinuities will build up, which if they get strong enough, will
dominate the energy transfer from the free energy reservoir to the wave. If collisions or
damping are not important, adiabatic frequency sweeping (or drag) produce wp ~ (P )1/

or equivalently, a wave energy level is given by
W ~ i’g‘- We. - (6)

This level exceeds the level that can be reached by the nonadiabatic frequency mechanism.
This sweeping mechanism has been simulated numerically by using particle drag. In Fig. &
we observe that an enhanced depression on the distribution function forms. In Fig. 6 we see
the energy transferred to the waves follows the predictions of analytic theory.

In order to achieve the relatively high level of wave energy conversion, it is necessary to
form a large enough trapping well so that collisions do not cause the loss of trapped particles.

If diffusion processes limit the size of the phase space discontinuity that can be achieved, the
' a

o)? > v, the level of w,

energy transfer rate due to adiabatic sweeping is reduced.?? For v,(
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that can be achieved is wy =~ v+ /v; and the wave energy level that can be reached is given

by

_fev\®
Wi = (m) Wp. G

This level still exceeds the nonadiabatic level if v /v, > (€/y)/2.

The mechanism for adiabatic energy transfer may have an important application to energy
channelling?® ideas that have recently been proposed. Because the energy transfer rate can
be made faster than linear theory would predict, it is possible to tap the free energy of
a linearly stable system, i.e. where v4 > . Such extraction is not pbssible through the
usual linear mechanisms that have been previously proposed. In addition, the problem of
particle scattering due to collisions, can be mitigated by proper time shaping of the frequency
sweep as discussed in Ref. 30. Another area where frequency sweeping coupled with energy
enhancement may be important is in the explanation of “chirping” phenomena observed in
fishbone®! experiments and in some Alfvén instability experiments.®? The mechanisms for
the change of frequency still needs to be clarified, but given a mechanism that changes the

frequency, we now see that the wave energy release is enhanced.
ITI. Quasilinear Theory

The previous section discussed the nonlinear properties of a single mode. If modes do not
overlap, i.e. wp < AQ ~ % with N the number of resonant modes, then these considerations
also apply with several resonant regions being simtdténeously active, as these regions hardly
interact with each other. However, when there is mode overlap, ws & A§2, then the problem
has to be analyzed differently. In this limit one may expect quasi—linear.theory to apply.
However even here, care is required in the analysis. In order for conventional quasi-linear
theory to be applicable, it is necessary for thé excitation spectrum to be of large enough

intensity so that mode overlap is satisfied at all times. If it is not satisfied, the usual quasi-
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linear equations are not always valid. In this section we will show how a model set of
quasi-liﬁea;r equations can be constructed, that reproduce the correct dynamics both when
- there is and when there is no mode overlap.

For the bump-on-tail problem, a steady-state analytic solution has been obtained in the
presence of a background source and classical transport mechanisms. The solution shows
that the comBination of anomalous quasi-linear transport and classical transport allows the
distribution to find a solution where the modes are nearly marginally stable. The scaling
found for the anomalous loss rate, Vaum, of the energetic particles due to this com’bined
diffusion processes, is |

Vanm

YL ' '
PO R
Vd w0 ®)

where 14 is the overall loss rate due to transport from classical processes. This is a significant
enhancement of loss when ‘rif <« 1. However, in order for the turbulence level to be large
enough to justify the use of steady-state quasi-linear theory in the presence of N roughly

equally spaced modes, one requires

1/3
N2 (3’2 3) . ©)
Y Yo .

This criteria can well be violated in a system with a discrete number of modes.

If Eq. (9) is violated, it means that when there is_overla,p, pulsations occur, with the
conventional quasi-linear theory being a.blé to describe the interval where there are large
oscillations, while a new modified theory is needed to describe the system’s evolution when
there is no overlap.

Let us consider the evolution of a system that has just formed a flattened plateau distri-
bution function. Initially there is only a small drive and the background damping keeps the
wave stable as the sources and classical transport processes allow the. distribution function
to build-up the free energy associated with a destabilizing slope. At some point, ¢, the
linear drive becomes greater than the damping rate, 4, so that v = vz — 74 > 0, and the
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system goes into low level steady or benign pulsations. The distribution function can flatten
locally in the resonance region, but the overal! slope of the distribution function continues
to grow until v = L — ¢ > w/N, with N the number of unstable modes, which for now
are assumed to be roughly equally spaced. At this stage a violent event happens, that can
be characterized as a phase space explosion. Because, mode overlap effects the distribution
function over the entire phase space region where resonances arise, nearly all of the free wave
energy of the distribution function can be converted to wave energy on a time scale of ~ vz ™.

Recall that at the verge of overlap, the excited waves of a single mode when vz > veg, has
a wave energy arising from the natural saturation mechanism Wg ~ (v, /QYWg ~ Wp /N3,
Even if all N of the modes were simultaneously excited, the total wave energy conversion
would be Wi ~ N(v./QPWr ~ Wg/N2, This is still a relatively small wave energy release
compared to the free energy available in the distribution function. However, because of the
mode overlap, the plateau can extend over the entire distribution function if the resonance
positions of unstable modes extend throughout the phase space of the unstable distribution
function. Then particles with higher energy transfer to lower 'energy aver the entire phase
space, with excess energy being converted to W&Vé energy. This created wave energy is then

at a level that is comparable to the free energy available in the kinetic distribution function.

Let us examine the ignition of this explosion in more detail. Suppose we have two modes
that are at the verge of overlap. The plateaus that are formed are shown in Fig. 7(a), and
associated Wii:h these two plateaus is a wave energy release. As a result of the overlap, the
plateau that forms is at least twice as wide, as shown if Fig. 7(b), and hence the wave energy
release is about four times the wave energy of two a.djacent modes that do not quite overlap.
This increase mode energy release, is strong enough to excite nearest neighbor modes, and the
mode overlap region quickly spreads out, until the entire distribution function is in resonance
with self-excited waves and the wave energy release only saturates when Wg =~ Wp. Note

that once the explosion starts, the wave energy release quickly reaches a level that the
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diffusion is pfoperly described by the standard quasi-linear theory.

We now discuss how quasi-linear equations can be altered to describe regimes when
there is no mode overlap. Resulté of such modelling has recently been reported.'? In the
conventional quasi-linear theory the diffusion coefficient consists of a superposition of partial
diffusion coefficients whose correlation time is proportional to a delta function, i.e. D o §(£2),
where in the bump-on-tail problem } = w — kv, In the modified quasi-linear theory, this
partial diffusion coefficient is broadened i;o reflect that because the wave tends to saturate
in a gr0th time, the wave causes Iocai stochasticity in the particle motion that mixes the
 distribution function within a separatrix width of resonance. Further resonance broadening
of a particle is caused by a growing wave, with a growth rate v = vy —+4, and with a classical
diffusion process that causes particles in resonance to be lost in a time v

Hence the broadening occurs in a region AQQ, given by
AQ = 4wy + A(y + veg)- (10)

Here 8 and A are numerical factors that are chosen to agree with analytic and numerical
calculations. Thus the partial diffusion coefficient from a given resonance, is altered from

the conventional quasi-linear formula as follows,

: - wha(e)
— T Yo — D, — X7 A

where g(x) is a loca.lizéd function, with _/; * dzg(z) = 1. (In practice g(z) = #( — z*) with
8 a step function, or g{z) = ¥ - 62 in th: interval, ~3 <z < 1/2 are used). The choices
n = 0.8 and A = 5.3, produce the best fit of single mode results arising from the more basic
numerical and analytic simldatién calculations.

The evolution of the wave energy (normalized to wi;) of each mode, is given by the
relation, | '




where

_ 2e%nw; wj F
%= R fvs (Aﬂ, )6v b

where f denotes the integral over the region of resonance.
In the absence of damping from the background plasma and external source, this equation
and the quasi-linear equation for the broadened distribution function, lead to the conserva-

tion of the total momentum, P, which is the sum of kinetic and wave momentum;
- _
P=m / dvvf + D kfwWg;
- J.

An interesting phenomena that has been investigated with this quasi-linear model is
the possibility of mode overlap being achieved through a “domino” effect. In the previous
discussion of mode overlap, when v — 4 ~ 7z, we assumed that the mode overlap arises
when modes were roughly equally spaced. But we also noted that once overlap starts, an
excess of free energy is released when the wave energy is fully developed where the average
bounce frequency of a single mode, ws;, of a single mode is ~ v, NV/2. This result indicates
that if N > 1, it is possible to achieve mode overlap even when the mean separation between
resonant velocities is of order v NV2, To get a domino effect, we need at least a pair of
modes that have a resonant frequency separation §2;11 — §2; =~ 1 between them. However,
subsequent spacings can be wider, sinée the wave energy level increases as a plateau forms.
Now, during the formation of the plateau, there needs to be a rapid change of f at the
interface where the plateau has formed and the region that is unaffected by the plateau as
shown schematically in Fig. 8. At this interface there is a rapid change in f of order Avy, %,
where Ay, is the velocity width of the plateau. Such a jump in f gives rise to a linear growth
rate 7, for the altered distribution function given by

Ve = (o kAvy) /2. - (13)
Note that v}, is much larger than the growth rate for the smooth distribution function. The
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natural saturation level for this mode is then, wy ~ 7, ~ (YpkAvpe)'/2 Thus the spacing
for the next resonant mode frequency has to be Aw, < (v.kAvy)Y? in order for overlap to
continue. If the resonant frequency separations satisfy this relation as Ay increases during
the development of the turbulent spectrum, one finds that all the free energy can be tapped
if there are as few as a(%)” g modes with a an order unity numerical factor.

An example of such a domino effect has been demonstrated numerically for the model
quasi-linear equations we have described. The results are shown in Fig. 9. In this figure we
observe that only the two innermost modes can give overlap by the natural saturation level.
However, the excess wave energy that is produced a.lldws for all the modes to overlap, and
the global diffusion causes transport of the pdrticles to an absorbing wall. The result is the
near complete loss of particles because overlap is achieved.

Another type of domino effect is possible when there are many modes, but most of them
are s_tabilized by linear damping. We have observed that if overlap occurs, that there is
enhancement of the linear growth rate arising from the rapid variation of the distribution
function at the interface of the plateau and undisturbed distribution funétion. This enhanced
instability drive, 4 = (yzkAu,e)"/?, can cause a distribution function, that is normally stable
when ~y3 > 7, to be unstable. Hence the phase space explosion can continue into the
otherwise unstable region. This niechamism is a promising candidate in several experiments
to explain rapid particle losses observed with wave energy bursts.

Previousljr we pointed out that wave trapping effects dominate mode coupling effects if
the arnplitilde of the perturbation is small. However, we have shown that in quasi-theory, es-
pecially during a rapid explosion whére all the free eriergy is tapped, relatively high perturbed
fields are achieved. Tt is in this case that the quantitative evolution of the relaxation rate
can be significantly altered by other nonlinear mode coupling and Compton scattering. 333

A complete theory of the nonlinear evolution of the gystem needs to include such effects.
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Nonetheless, the gross feature, that the free energy of the distribution function rapidly con-

verts to wave energy, should still persist even in a more detailed theory.
IV. Generalization of Method

The previous discussion for the bump-on-tail problerﬁ, can be generalizéd to almost any
problem in plasma physics, including the interesting problem of alpha particles interacting
with Alfvén waves. The mﬁst important generalization is to obtain a nonlinear description of
the sirmultaneous resonances of particles at different regions of phase space. We describe here
such a treatment. For simplicity we limit ourselves to low frequency waves, i.e. waves with
frequency less than the cyclotron frequency of the energetic particle, so that the magnetic
moment , can be treated as constant. |

For a given toroidal mode, where the perturbation of all quantities to leading order is
proportional to Re exp{—iwt+ing) (¢ is the toroidal angle, and n the toroidal mode number},
it follows from basic principies that H' = H — £ F; is also conserved in the perturbation,
where we now use H, the Hamiltonian, to represent the energy. Hence, in response to a
single mode, only Py (at constant 4 and H') can vary. The most important response is from

those particles near resonance, defined .as,
Q(P¢,,H,ﬂ)EN—W¢(P¢,H,#)*EE@(P¢.,H,M):0 (14)

with £ an integer and @y and @y the mean toroidal and poloidal (represented by the poloidal
angle 6) drift frequencies. Let Py (H,p), satisfy Eq. (14). The locus of such solutions is
shown schematically by the solid curve in Fig. 10.

The instantaneous power transfer from a particle to a wave, can be written in terms of
the constants of motion and “action” angles, ¢, and 8, (these angles are modulated toroidal

and poloidal angles respectively chosen so that 8, = s, ¢a = Wy do not change during a
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particle’s unperturbed motion). The form of the power transfer is,
ev - B(r) exp(—iwt +ing) = 3 Poo(H, 1, Py) exp [—iwt + indy, + i€6,] . (15)
¢ _

The nonlinear response of a near resonant particle to a toroidal wave can be written in
terms of the amplitude P, . One can show that a particle with a Py value near Fy(H, i)
(at fixed H' and p) satisfies the equation,®® -

UL, ) [°

Py=Pu+ |OPL +22(P; oosX/’
o = Pt s T 2w5(Fye) '/ 1735,

B Py ¢
8P¢

nPp o{ Py} HUP,
), wh(Pyy) = |PPmtlled Rd) |

where AP}, is a constant (AFy >
and X; = wt — ng, + £8, + X (Xn is a phase constant). The phase function X, satisfies the

pendulum equation,
d2X,
e

Note that wg{Ps.) is the bounce frequency of a deeply trapped particle in the pendulum

+ wh{Pyz) sin Xg = (16)

and from Eq. (15), it follows that it is proportional to the square root of the perturbing
amplitude. This structure for the response is identical to the nonlinear response of particles
trapped in a single electrostatic wave. This form has been previously derived under less
- general assumptions.®”® Tt is also a direct application of well-established nonlinear resonance
theory. !

As in the bump-on-tail problem, one can find the scaling for the saturation level by
assuming that some fraction of the separatrix width is flattened all along the resonance
curve. The linear theory for the mode amplitude determines how the amplitude [P, | varies
| along the resonance line. The separatrix width is given by AFg = 2(wp(Py,) / gﬂﬁl. As
linear theory determines [Py |, thé natural width is then known along the resonance curve.
The broadening can then be expressed as we found in Eq. (10), with AQ = AP, 8Q/0F,.
The broadened region of resoﬁance is indicated séhema.tica.lly within the dashed curve of
Fig. 10.
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As in the previous section, we can take the difference between the initial state and final
state, where the distribution function is flattened over some fraction of the separatrix, and
find that the natural saturation mechanism due to trapping scales as, vy o @ where the bar
denotes a suitably averaged bouﬁce frequency over the regions of resonance.

It is worth noting that adiabaticity of trapped particles also applies, if the frequency (or

some other external parameter) varies slowly. The adiabatic invariant, J is

J =){ g—:— {P¢g+ [AP2 InPn,g(PM)/ 'cosx]l 2} . (17

Hence, as in the bump-on-tail case, in toroidal systems a similar enhancement of the wave
energy due to frequency sweeping can be achieved. This property should have important
consequences to either energy channelling or direct conversion of energy of charged fusion
products (especially of the 15 Mev proton products that result in a D-He® reaction), and
needs to be pursued further.

The problem of how to bridge quasi-linear theory when there is mode overlap and the
description of single non—overlépping modes, is solved in 2 manner similar to the one dimen-

sional case. The distribution function f(P,, H, ), is taken to satisfy the following equation,

9 9
*""Z(naﬂ aP)D""( oH ap)f+c(f)

T 0 g
"3 mlmp""‘a_P;L:f I v

where C(f) represents the effects of classical relaxation (this term will be discussed further
below). The partial diffusion coefficient, Dy, is given in the line broadened quasi-linear

theory by,

_ |lwh,e(Po2)| (P¢ — P¢,z)
AP, |BEsal TN APy

w1th g(:z:) the previously defined window function (see after Eq. (11)), and the width,

APR, 22 55, = dnws + A(Y + vest), determined by the same arguments as previously given.
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For the classical collision operator, C(f), we use a Krook-like operator,

Clf)=—uf - fo)~ v AR, (1] faRof = 1o faPots)

where f; is the distribution function expected if only classical relaxation processes were
present, vy is the rate of formation of the predicted distribution function from classical
processes only, and the symbol f dF represents an integral only over the phase space window
of each mode and is present to presérve particles during relaxation due to the combined
classical and wave dependent processes.

One may also note that in treating this quasi-linear system for the alpha particle-Alfvén
wave interaction, it is frequently justified to neglect £ .2 compared to % in Eq. (18),
because the instability drive only arises if w is less than the diamagnetic drift. In this case
the diffusion equation that needs to be solved is a set of one dimensional equations in Fy,
with 4 and H as parameters. Such a code is now being implemented.

In addition to the quasi-linear diffusion equations, one needs to solve for the time evo-
lution of the mode amplitudes. The growth rates that appear in these equations can be
expressed in terms of the identical line broadenings that appear in the quasi-linear equa-
tions. The complete system of equations then has the property that in absence of external
damping and external transport, that the total particle and wave toroidal canonical momen-

tum is conserved.
V. Discussion

The overview of the nonlinear theory indicates many features that are consistent with
experimental data, although detailed. quantitative comparison have not as yet been made.
In many of the observatioﬁs of TAE modes one observes intervals of rapid oscillations that
strongly correlate with particle logs.®? |

Evidence of this was first observed in the experiment of neutral-beam-driven TAE modes.?®
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Figure 11 shows the correlation between the TAE mode amplitude from the Mirov coil data
(bottom trace) and the neutron emission rate from the plasma (top trace). Each burst of
TAE activity is accompanied by a drop in the neutron emission which indicates the loss of
fast deuterium jons. A 10-channel BES (beam emission spectroscopy) array was used to
measure the mode number.® This technique works only when there is a single dominant
TAE mode in the plasma. Modes with n = 2,3 and 4 have been observed under various
conditions,*®* The largest loss rates correlate ta the cases where the dominant modes have
comparable amplitudes. For example, we note in Fig. 12(a}, that the spectral decomposition
of the Mirnov coil signal at time t ~ 3.6965 sec is dominated by the signal at 72kHz, with the
other modes at lower frequencies not as strongly excited. Here the decrease of the neutron
signal is ~ 5%. On the other hand, Fig. 12(b) shows the TAE burst at t ~ 3.7014 sec. Its
frequency spectrum {Fig. 13(b)) reveals two modes with comparable amplitudes at 60 kHz
and 72kHz. The corresponding drop in neutron emission is almost three times larger than
the event at 3.6965 sec.. This observation is consistent with the hypothesis that significant
fast particle loss can be due to mode overlap which causes global quasi-linear diffusion.
However, it should be pointed out that the event at 3.014 sec is accompanied by other MHD
activities which can also contribute to the enhanced fast ion loss. The repetitive TAE bursts
apparently regulate the fast ion pressure gradient and keep it near the instability threshold.!

TAE modes have also been observed during hydrogen minority (ICRF (ion cyclotron
radio frequency) heating where energetic protons are produced with energy ~ 0.5— 1 MeV.%2
In this experiments the TAE mdde amplitudes are very steady and only evolve slowly, on
a time scale in which the plasma equilibrium changes. A fast particle probe placed near
the plasma edge detects a continuous fast particle lux which correlates with the TAE mode
amplitude.®® Faster variation of the mode amplitude and the corresponding fast ion loss
are found to correlate with sawtooth activities. In these ICRF heating experiments, the

TAE mode amplitude can be roughly estimated from reflectometer measurements of the
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density oscillations associated with the mode. 6B,/B, is typically £ 10~%. The bounce
frequency of the resonant particles trapped by the TAE mode is several times larger than
the initial linear growth rate, consistent with estimates based on single mode saturation
(wy ~ VegryL/va) due to wave-particle trapping. However, the analysis is complicated by
usually having several TAE modes coexisting with their frequency separations comparabie
to the bounce frequency. The experiment observes particle loss, and there is not yet an
explanation of why single mode satiuration would lead to enhanced particle loss. If losses are
due to a steady quasi-linear regime applying in experiments, more detailed calculations in
the theory is needed to establish the saturation level that arises in experiments.

Clearly, much is to be done to corroborate whether the theory presented here can lead
to quantitative description of experimental data. It is however clear that the nonlinear and
transport theories presented here produce many different scenarios. The theories are based
on first principle co.ncepts of the pmtibiéwave interaction, and they appear the basis of a
promising method for establishing a way by which most experimental data can be explained
and how predictions for ignition experiments can be established. The theory can now also
be extended to investigate problems in enefgy channeling and direct conversibn of energy in

fusion systems.
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FIGURE CAPTIONS
FIG. 1. Plot of simulation results for maxaws vs. (1 — va/vc).

FIG. 2. Single mode pulsation. (a) Response of wave energy vs. time. (b) Particle distri-
bution just at onset of instability at vt = 152. Slope in resonance region is large
enough to produce a major pulse. (c) Particle distribution at end of pulsation. The
distribution has flattened in the resonance region, and the source has not yet rebuilt

the slope.

FIG. 3. Numerical simulation of steady state oscillations. (a) Wave energy vs. time. (b} Steady-
state particle distribution. Slope in resonance region is a balance between flattening
due to finite amplitude wave and building-up of the slope from the source of new
particles. (¢) Comparison of saturation levels between theory (curve) and partiﬁle

simulation {dots).

FIG. 4. Solution of nonlinear integral equation when 0 < v —v¢ € v.. In (a), ¥ =
veﬂ/('yg — 74) = 5, and mode amplitude goes to a steady level, wy = 874 yz(1 —
va/vp)Y4. (b) ¥ = 4.3 where steady state is unstable and oscillates regularly abbut
one of the steady state levels. (¢} ¥ = 3 and oscillations have regular amplitudes

that are comparable to the steady state level. (d) # = 2.5 where a rather chaotic
response is observed. (e) & = 2.4 where the chaotic response gives rise to blow-up in
a finite time. (f) ¥ = 2.4 with only the late time shown, when solution approaches

a self-similar solution.

FIG. 5. Simulation result from wave energy exchange from resonance sweeping. (a) vt = 6,
local plateau from mode saturation established. (b) vt = 18, distribution function
after nonadiabatic amplification of mode has increased the depth of phase-space
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FIG. 6.

FIG. 7.

FIG. 8.

FIG. 9.

FIG. 10.

FiG. 11.

FIG. 12.

trapping. (c) 4t = 36, adiabatic mechanism has further increased amplitude of
mode and depth of phase-space trapping.

Comparison with analytically predicted rate of evolution of wave energy for simula-

tion in Fig. 5.

Schematic diagram of plateau formation with two adjacent mode. (a) no overlap.

(b) overlap.

Build-up of rapid change of distribution function at interface between active wave
region and unperturbed region. This interface causes an enhanced growth rate and

enhanced saturation level of interface mode.

(a) Increased wave energy release allows widely spaced modes to overlap which
causes a collapse of the distribution function shown in (b) due to the diffusion rate

and loss to the boundaries.

Schematic diagram of the resonance broadening in phase space, is shown in (a).
Equation (14) determines the center of the resonance, while the shape of the linear
eigenfunction and the bounce frequency of particle in the wave determines the width

of the resonance.

Correlation of particle loss with TAE burst. The top trace shows modulations in
the neutron count (proportional to the density of energetic deuterium ions), while
the bottom trace shows magnetic field oscillations picked up by Mifnov coils. Data
originally shown in Ref. 38.

Spectral analysis of Mirnov coil signals at times (a) t ~ 3.6965s and (b}t ~ 3.7014s.
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