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Abstract 

A method is presented for predicting the saturation levels and particle transport in weakly 

unstable systems where there are a discrete number of modes. Conditions are established 

for either steady sate or pulsating responses when several modes are excited for cases where 

there is and there is not resonance overlap. The conditions for achieving different levels of 

saturation are discussed. Depending on details, the saturation level can be quite low, where 

only a small fraction of the available free energy is released to waves, or the saturation level 

can be quite high, with almost a complete conversion of free energy to wave energy coupled 

with rapid transport. 
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I. Introduction 

The standard process for sustained ignition in a controlled fusion system' is the produc- 

tion and containment of charged fusion products (e.g. 3.5MeV alpha particles in the D-T 

reaction; 15MeV proton products in the D-He3 reaction) with the transfer of their energy 

to the background plasma through classical processes, such as electron drag. In this manner 

ignition is sustained and a steady-state distribution function of the energetic particle com- 

ponent is formed. A primary concern in this process is whether the free energy of instability 

associated with such an energetic particle distribution, causes the spontaneous build-up of 

waves which ca,n lead to the deposition of the energy of the fusion charged products to the 

wall rather than to the plasma.2 Clearly this process is of fundamental concern in the fu- 

sion program and it is important that the nonlinear processes that citn lead to anomalous 

diffusion be understood. The purpose of this presentation is to discuss a basic physics a p  

proach that is being developed to systematically analyze this problem both qualitatively and 

quantitatively. 

In dealing in nonlinear theories, it is kequently assumed that the nonlinear processes are 

so rapid, that the longer term evolution due to classical transport processes can be ignored. 

Further, a typical turbulence scenario assumes that there is continuous spectrum of  wave^,^'^ 

so that nonlinear theories for weak turbulence, such as quasi-linear theory, can be used. In 

the problem we are dealing with, the nonlinear description of Toroidal A&& Eigenmodes in 

a t ~ k a m a k , ~ - ~  we expect a discrete spectrum of weakly unstable waves (where the growth y 

is much less than the real frequency, w)  and the competition between classical and nonlinear 

processes to persist in the long term evolution of the distribution function and even in the 

establishment of the saturation level of the waves. This competition needs to be included in 

the nonlinear analy~is.~ Another mechanism that profoundly affects the nonlinear evolution 
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of the system and needs to be included in the malysis is damping from the background 

plasma. All these mechanisms determine whether the excitation spectrum appears at a 

steady level' or as pulsations,1o and whether the spectrum is a continuum that can give rise 

to global di&Sion"*l2 or a discrete set of modal2 which does not have a large effect on 

transport. Specific criteria for these responses have been obtained and is discussed below. 

A primary physics process in weak turbulence is the particle-wave resonance interaction. 

The paradigm problem for this process is the interaction of a freely flowing particle with an 

electrostatic wave. If at the resonance position (for the electrostatic problem the resonance 

condition is 52 w - k - v = 0 with k the wavenumber, w, the wave frequency and v the 

particle velocity), d f / d E  < 0 (f is the particle distribution function, and E the particle 

energy) there is Landau damping,13 while if Of/aE > 0, there can be wave g r o ~ t h . ~ * ~  This 

resonant particlewave interaction mechansim persists in every wave problem with a kinetic 

distribution function in long mean free path systems. In the problem we are most interested 

in, low frequency waves (w much less than the cyclotron frequency) in a torus, the resonance 

condition for the particle-wave interaction id4 

where q5 and 8 refer to toroidal and poloidal angles of the torus, n is the toroidal quantum 

number, and 4 is a set of integers, and E, p, P+ are particle's energy, magnetic moment and 

angular momentum. The particle-wave resonance produces a drive for possible instability if 

denotes at constant P+ - :E). This condition, which can always be satisfied 
(lP4-"EjU 

for any distribution that has a dependence on P+ for arbitrary n and w,  is what gives 

rise to the "universal instability" d r i ~ e . ' ~ ? ~ ~  For w < nE/P+, the particles primarily move 

spatially in response to the wave, and if such motion becomes stochastic, spatial diffusion 
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arises (this is the basic cause of anomalous plasma transport). An important point we 

emphasize, is that the mathematical structure of the particle-wave interaction for the bump 

on-tail problem and for particle-wave interaction with low frequency toroidal waves, have 

a great deal in common. We will see that many aspects of the toroidal problem can be 

understood by analyzing the simpler I-dimensional electrostatic bump-on-tail problem. The 

main extension that is needed, the treatment of many resonance interactions simultaneously, 

is relatively straightforward. 

An important issue for the response of a system is whether the instability spectrum 

produces mode 0ver1ap.l~ Without mode overlap, there is no global diffusion of particles. 

The saturation level of modes is then quite low, and the “free energy”18 that produces 

dF/aE > 0, is hardly tapped. However, if overlap suddenly arises, a release of free energy 

to wave energy arises, which causes rapid diffusion of particles, in a relatively short time 

interval. l 1 9 l 2  

The structure of the paper is as follows: In Sa. 11 we discuss the nonlinear theory with 

sources and sinks for the bump-on-tail problem when there is no mode overlap. In this 

section we present a discussion of the effect of frequency ~weeping,’~@~~~ a process, first 

applied to extract energy from a free electron laser,” that enhances the saturation level of 

single m ~ d e s . ~ * ~  It is a process that can be controlled externally and applied to channelling 

of the fusion product e n e r d 3  and even to the direct conversion of energy from charged 

fusion products.22 

In Sec. 111 we discuss how the &e& of mode-overlap can be described. We summarize 

our effort to build a quasi-linear transport code that models the correct behavior in both 

the mode overlap and non-overlap regimes. In Sec. IV we show how the formalism for the 

bumpon-tail problems applies to the toroidal problem, both for single-modes and for the 

model quasi-linear equations. In Sec. V we discuss the relevance of our theory to experiment. 
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11. Saturation of a Single Mode 

The first topic to be discussed is that of the saturation of a single mode in a weakly unsta- 

ble system, when there is no mode overlap. In this section we consider the one-dimensional 

bump-on-tail instability, and in Sec. IV we show how the analysis generalizes to more com- 

plicated systems. 

For the nonlinear properties, the most important aspect is the nonlinear properties of 

the particles that are nearly resonant with the wave. For these particles, 8F/dE > 0, where 

E is the kinetic energy of the particles. Thus the distribution has free energy that can 

spontaneously convert to wave energy. The linear growth, +y~ ,  in the absence of dissipation, 

is proportional to 6F/aE. The effects of dissipation will first be neglected and then later 

incorporated into this discussion. 

As a wave grows, the distribution will mix in the trapping region, lv - w/kl M wb/k with 

wb = (*)lI2 m the trapping frequency. Roughly, this mixing causes the trapped particle dis- 

tribution to flatten inside the separatrix, and leave the distribution nearly undected outside 

the separatrix. The flattening depletes the drive within the separatrix, but hardly affects 

the particles outside the separatrix. The frequency of the wave is determined from the back- 

ground plasma characteristics and not from the properties of the resonant particles. Thus, 

at saturation, the resonant phase velocity remains fixed in a region where the distribution is 

flat, so that the wave can no longer grow. 

Note that to the extent the distribution is t d y  flat inside the separatrix, with a value, 

F = F($naw2/k2), and the distribution responds adiabatically outside the separatrix, the 

saturation level can be computed from energy conservation arguments. One finds, by equat- 

ing the sum of the kinetic and potential energy in the h d  state, to the kinetic energy of the 

initial state, that WB = 2.887~. This scaling has now been established in several numerical 

simulation experiments.24-30 In the bumpon-tail instability the result is wg = 3 . 2 y ~ . ~ * ~  
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These results indicate that the relaxation ansatz gives the correct scaling for the saturation. 

The relaxation of the distribution is only somewhat more complicated than the assumed 

ansatz as a small portion of the passing region mixes as well. By empirically adjusting the 

width of the flattened region, as will be described in Sec. 111, where the quasi-linear model 

is discussed, the correct saturation level can be obtained. 

We call the saturation arising from wave trapping, the natural saturation mechanism. 

This terminology is used because this mechanism is the dominant nonlinearity for s a -  

ciently weak y~ << w, and isolated instabilities, where y~ << Ahw, with Aw the frequency 

difference between different resonance frequencies. This follows because the effect of trapping 

is proportional to lE11/2, rather than in powers of IE12 which arises in other nonlinear mode 

coupling problems .3 *32*33 

With dissipation present, a wave damps at a rate yd, in the absence of an instability 

source. For instability to arise, one needs y~ > ryd with the growth rate given by y = y~ - yd. 

We find that the natural saturation mechanism due to trapping, 7 m const, still applies, 

as seen from the result of particle simulation  experiment^^^ shown in Fig. 1 where the peak 

value of wb versus 1 - ~ d / y ~  is plotted. In these cases a mode appears as a pulse rather than 

reaching a steady level. The peak saturation level occurs when wb - 37, whereupon the 

instability is quenched as the result of the formation of a plateau at the resonance velocity. 

Then, the dissipation mechanism, which is assumed to be a nonresonant process that is not 

likely to be affected by nonlinearity, will cause the wave to damp at the dissipation rate 7d. 

In practice instability can be established by having a weak source that produces the 

energetic particles which then relax through collisional processes to the unstable distribution 

we are considering. When instability arises and a plateau in the resonant region is formed, the 

source will cause the original distribution function to reconstitute at a rate u a  = ud($) + 
us(%) + u,, where Vd is the drag rate that causes the resonant particles to reduce their 

speed by a factor of l/e, and us is the global velocity diffusion rate (the diffusion is due to 

wb 
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a superposition of collisional a n t  lleating processes that cause both pitch angle scattering 

and energy diffusion) and yo is a particle annihilation rate, and n is the resonance spread 

of a N l y  relaxed energetic particle distribution function (for the bump-on-tail problem for 

plasma waves, 0 = w - kv k: w ;  in other problems 3i can be substantially different from 

w). Thus, the flux of new particles into the resonance region, together with the relaxation 

processes, causes the instability to either reoccur, or even persist indefinitely. If u e ~  << yd << 

y ~ ,  instability is first quenched by plateau formation, but after a short time the transport 

processes will cause particles to relax to the unstable state. A weak precursor instability 

can occur when the distribution function in the resonance region is only a fraction of the 

prevailing slope surrounding the resonance. However, the relaxation of this precursor mode 

only affects a sma l l  fraction of the original resonance region. Hence, the plateau formed 

from the relaxation of the precursor mode, does not flatten most of the interval of the newly 

forming slope and the build-up of the overall slope, over most of the phase space region, 

continues in time. It is only when enough time has elapsed that the slope in the resonance 

region is a reasonable fraction (w 3) of the prevailing slope surrounding the resonance region, 

does enough free energy accumulate locally to allow the overall interval to flatten again and 

produce a major pulse of instability. Thus witlh a weak relaxation process present, i.e. 

veff << yd << TL, pulsations with precursors arise, with a significant spread of repeated pulse 

heights. In computer simulation, it is found that the average wb height of significant size 

pulses is given by a b  - 1.47~. The repetitiveness of the pulses and the flattening of the 

distribution function is shown in Fig. 2. 

When v d  > yd, the source of new particles that enter the resonance region from colli- 

sional processes, prevent a plateau from completely flattening. This result leads to a steady 

level in the mode amplitude being established and this level exceeds that natural satura- 

tion level. Thus, the sources that are supplying new particles, prevent complete plateau 

formation within the resonance interval and the source pumps the wave to a level above the 
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natural saturation level. An analytic calculation of the saturation level has been made when 

veff << and the results are easiest to understand when diffusive processes dominate drag 

processes. Then the nonlinear growth rate is found to be given by 

Hence, as an unstable mode grows, the energy rate reduces, until the damping rate, yd, is 

as large as the drive. When the drive and damping are equal, a steady level for the trapping 

frequency is then established, which is 

This level exceeds the natural level when < ' yd ,  it turns out that the steady-state 

level predicted above is unstable and the system evolves in the pulsation mode described 

previously. One can also show that when ud < 'yd, the natural level of saturation cannot 

produce a steady oscillation as then more energy would be absorbed by dissipation than can 

be injected into the system by the external source. Thus, when u,tr < yd, we return to the 

previously described pulsation scenario. 

> ̂ /d. If 

The steady-state response of the system, when v d  > Td, has been confirmed in computer 

simulations. In this case ud = u4, the particle annihilation rate. The results are shown in 

Fig. 3. 

The situation is more complicated when effects of drag dominate, which arise if vd > 

u , O / 7 ~ .  It turns out this case is similar to what can happen when the real frequency 

changes, and we defer this discussion to later in this section. 

Special analysis, which has recently been completed, is needed for the case near marginal 

stability, where 7 = 7~ - yd << 7 ~ .  Here when a steady source of instability is present, and 

1 - yd / 'y~  small, one would expect from the bifurcation theory of dissipative systems, that a 

steady solution should exist whose magnitude is proportional to (1 - y,&~)* with p > 0. The 
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saturation level in this case can be calculated from a perturbation theory that expands about 

the unperturbed solution with transport processes present. Such a perturbation procedure 

is applicable if a particle’s lifetime in resonance is short compared to a trapping time. One 

then finds that the system’s response can be described by an equation with a temporally 

nonlocal integral equation containing a cubic nonlinearity. In Ref. 30 an analysis of this 

equation is performed. 

When > 4.38, the integral equation admits a steady level of oscillation that is below 

the natural level. The trapping frequency is found to be given by, 

However, this level is found to be unstable if v e ~ / 7  < 4.4. For 4.4 < 7 < 2.4, pulsation 

levels at about the steady state level is observed with more complicated structure associated 

with smaller values of v e ~ / 7 .  However, when 5 2.4, a truly major change in the response 

arises. The reduced dynamics, described by the nonlinear integral equation is found to blow 

up in a finite time for perturbations that begin at a low amplitude (even for > 2.4, 

it found that the perturbation blows up in a finite time if the initial perturbation is high 

enough). Examples of solutions to the integral equation are shown in Fig. 4(a)-(e). 

In reality when there is rapid blow-up in the solution to the nonlinear integral equation, 

it means that the true solution of the system will increase rapidly until saturation due 

to particle trapping occurs. Then the oscillatian level will damp due to depletion of the 

drive, and over the longer term, pulsations again arise with the maximum saturation level 

determined by w b  N 3 ( 7 ~  - 7d). 

The discussion up to now assumed that the frequency does not change during resonance. 

Hence the depletion of the drive is only in the resonance region. As a result only a very 

small fraction of the available free energy is converted to wave energy. When v d  << 7 d  << y ~ ,  

it can be shown that the wave energy, WE, released per pulse in terms of the free energy, 
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WF (typically the free energy, WF, is comparable to the total kinetic energy of the energetic 

particle distribution), is given by 

3 

WE - (g) W F  (4) 

When V,R > y d ,  we have noted that wb N y~ va/3;r, which dows an increased wave energy 

at saturation. As u , ~  = us Q2/w;, the level of wave energy is given by 

which is still a fairly low level. 

Another way to enhance the wave energy conversion of a single mode is to have the 

frequency change.22 Our simulation results show that in systems with weak instability, where 

the background plasma parameters are constant in time, the frequency does not change 

during the saturation of the mode. However, mechanisms that cause the frequency to shift 

can well exist. For example, the parameters that define the plasma can be changing in 

time because the system has not reached a steady-state or because other instabilities cause 

transients in the background plasma parameter. The frequency shift allows the position of 

the particles in resonance to change and this leads to the possibility that additional free 

energy can be tapped. 

The rate of energy conversion of free energy is determined by two processes as the fre- 

quency is swept; a non-adiabatic process that gives energy conversion at the linear rate or 

less and an adiabatic process, that can give energy conversion rates that are even faster than 

linear energy conversion rate. First we will discuss the nonadiabatic process. 

In the nonadiabatic process, mechanisms exist that allows particles to enter the resonant 

region, and then leave it. If the particles remain in resonance in a time less than the bounce 

time, the fields do not have a chance to deplete the drive. As a result, the energy transfer rate 

from the free energy reservoir to the wave remains 2 7 ~ .  If the particles remain in resonance 
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for a time, T, is longer than the trapping time, the energy transfer rate is reduced to ' y L / W b T .  

The input of particles can be due to collisions, in which case T-' N ud N U ~ ~ ~ / W ~ .  It can 

also be due to the sweeping of the frequency, and then new particles enter the resonance 

region at the rate vw/wb where u = 3 %. It is interesting to note that particle drag has 

the same effect as frequency sweeping as the drag allows new particles enter the resonance 

region. Thus, with drag processes we can use the same relations as we can use with frequency 

sweeping, where we alter the definition of u to Y = v-'dv/dt. The integration of the 

wave energy transfer by this mechanism dlows for a level of wb N ( T L ~ ) ' / ~ ,  or equivalently 

WE - ( 3)3/2 WF. This level is appreciably greater than the natural saturation mechanism. 

In addition to this nonadiabatic process, it can be shown that in the absence of diffu- 

sion, that particles trapped in the wave will adiabatically follow the resonance as either the 

frequency is swept or as the particle slows down due to drag, as long as v ~ ( % ) ~  < u. The 

result is that phase space discontinuities will build up, which if they get strong enough, will 

dominate the energy transfer from the free energy reservoir to the wave. If collisions or 

wb 

damping are not important, adiabatic frequency sweeping (or drag) produce WB - (n''y~)'/~ 

or equivalently, a wave energy level is given by 

W E N - -  yL WF. 
?I 

This level exceeds the level that can be reached by the nonadiabatic frequency mechanism. 

This sweeping mechanism has been simulated numerically by using particle drag. In Fig. 5 

we observe that an enhanced depression on the distribution function forms. In Fig. 6 we see 

the energy transferred to the waves follows the predictions of analytic theory. 

In order to achieve the relatively high level of wave energy conversion, it is necessary to 

form a large enough trapping well so that collisions do not cause the loss of trapped particles. 

If diffusion processes limit the size of the phase space discontinuity that can be achieved, the 

energy transfer rate due to adiabatic sweeping is reduced.22 For ~ ~ ( 5 ) ~  > u, the level of Wb 
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that can be achieved is q, N v7h/vS and the wave energy level that can be reached is given 

bY 

This level still exceeds the nonadiabatic level if v/us > (fi/~h)l/~. 

The mechanism for adiabatic energy transfer may have an important application to energy 

channelling= ideas that have recently been proposed. Because the energy transfer rate can 

be made faster than linear theory would predict, it is possible to tap the free energy of 

a linearly stable system, i.e. where Y d  > y ~ .  Such extraction is not possible through the 

usual linear mechanisms that have been previously proposed. In addition, the problem of 

particle scattering due to collisions, can be mitigated by proper time shaping of the frequency 

sweep as discussed in Ref. 30. Another area where frequency sweeping coupled with energy 

enhancement may be important is in the explanation of “chirping” phenomena observed in 

fishbone31 experiments and in some Alhh instability e~perirnents.~~ The mechanisms for 

the change of frequency still needs to be clarified, but given a mechanism that changes the 

frequency, we now see that the wave energy release is enhanced. 

111. Quasilinear Theory 

The previous section discussed the nonlinear properties of a single mode. If modes do not 

overlap, i.e. #b < AQ N a with N the number of resonant modes, then these considerations 

also apply with several resonant regions being simultaneously active, as these regions hardly 

interact with each other. However, when there is mode overlap, #b 2 An, then the problem 

has to be analyzed differently. In this limit one may expect quasi-linear theory to apply. 

However even here, care is required in the analysis. In order for conventional quasi-linear 

theory to be applicable, it is necessary for the excitation spectrum to be of large enough 

intensity so that mode overlap is satisfied at all times. If it is not satisfied, the usual quasi- 



linear equations are not always valid. In this section we will show how a model set of 

quasi-linear equations can be constructed, that reproduce the correct dynamics both when 

there is and when there is no mode overlap. 

For the bump-on-tail problem, a steady-state analytic solution has been obtained in the 

presence of a background source and classical transport mechanisms. The solution shows 

that the combination of anomalous quasi-linear transport and classical transport allows the 

distribution to find a solution where the modes are nearly marginally stable. The scaling 

found for the anomalous loss rate, u,,,, of the energetic particles due to this combined 

diffusion processes, is 

(8) 
7 L  

7 d  
vanm --VO 

where uo is the overall loss rate due to transport from classical processes. This is a significant 

enhancement of loss when << 1. However, in order for the turbulence level to be large 

enough to justify the use of steady-state quasi-linear theory in the presence of N roughly 

equally spaced modes, one requires 

This criteria can well be violated in a system with a discrete number of modes. 

If Eq. (9) is violated, it means that when there is overlap, pulsations occur, with the 

conventional quasi-linear theory being able to describe the interval where there are large 

oscillations, while a new modified theory is needed to describe the system's evolution when 

there is no overlap. 

Let us consider the evolution of a system that has just formed a flattened plateau distri- 

bution function. Initially there is only a smal l  drive and the background damping keeps the 

wave stable as the sources and classical transport processes allow the distribution function 

to build-up the free energy associated with a destabilizing slope. At some point, y ~ ,  the 

linear drive becomes greater than the damping rate, yd, so that 7 = 7~ - 'yd > 0, and the 
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system goes into low level steady or benign pulsations. The distribution function can flatten 

locally in the resonance region, but the overall slope of the distribution function continues 

to grow until y = 7~ - yd > w / N ,  with N the number of unstable modes, which for now 

are assumed to be roughly equally spaced. At this stage a violent event happens, that can 

be characterized as a phase space explosion. Because, mode overlap effects the distribution 

function over the entire phase space region where resonances arise, nearly all of the free wave 

energy of the distribution function can be converted to wave energy on a time scale of - 7;'. 
Recall that at the verge of overlap, the excited waves of a single mode when 7~ > u e ~ ,  has 

a wave energy arising from the natural saturation mechanism WE - ( 7 ~ / ' s i ) ~ W ~  N Wp/N3.  

Even if all N of the modes were simultaneously excited, the total wave energy conversion 

would be WE - N ( y ~ / a ) ~ w ~  - WF/N'. This is still a relatively small wave energy release 

compared to the free energy available in the distribution function. However, because of the 

mode overlap, the plateau can extend over the entire distribution function if the resonance 

positions of unstable modes extend throughout the phase space of the unstable distribution 

function. Then particles with higher energy transfer to lower energy over the entire phase 

space, with excess energy being converted to wave energy. This created wave energy is then 

at a level that is comparable to the free energy available in the kinetic distribution function. 

Let us examine the ignition of this explosion in more detail. Suppose we have two modes 

that are at the verge of overlap. The plateaus that are formed are shown in Fig. 7(a), and 

associated with these two plateaus is a wave energy release. As a result of the overlap, the 

plateau that forms is at least twice as wide, as shown if Fig. 7(b), and hence the wave energy 

release is about four times the wave energy of two adjacent modes that do not quite overlap. 

This increase mode energy release, is strong enough to excite nearest neighbor modes, and the 

mode overlap region quickly spreads out, until the entire distribution function is in resonance 

with self-excited waves and the wave energy release only saturates when WE = WF. Note 

that once the explosion starts, the wave energy release quickly reaches a level that the 
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diffusion is properly described by the standard quasi-linear theory. 

We now discuss how quasi-linear equations can be altered to describe regimes when 

there is no mode overlap. Results of such modelling has recently been reported.12 In the 

conventional quasi-linear theory the diffusion coefficient consists of a superposition of partial 

diffusion coefficients whose correlation time is proportional to a delta function, i.e. D oc S(R), 

where in the bump-on-tail problem S1 = w - kv. In the modified quasi-linear theory, this 

partial diffusion coefficient is broadened to reflect that because the wave tends to saturate 

in a growth time, the wave causes local stochasticity in the particle motion that mixes the 

distribution function within a separatrix width of resonance. Further resonance broadening 

of a particle is caused by a growing wave, with a growth rate y = TL-yd, and with a classical 

diffusion process that causes particles in resonance to be lost in a time vG1. 

Hence the broadening occurs in a region AS1, given by 

Here 8 and X are numerical factors that are chosen to agree with analytic and numerical 

calculations. Thus the partial diffusion coefficient from a given resonance, is altered from 

the conventional quasi-linear formula as follows, 

where g(z) is a localized function, with &cg(x) = 1. (In practice g(z) = 8( i  - z2) with 

6 a step function, or g(s) = 4 - 6z2 in the interval, --+ < x < 1 / 2  are used). The choices 

q = 0.8 and X = 5.3, produce the best fit of single mode results arising from the more basic 

numerical and analytic simulation calculations. 

1: 

The evolution of the wave energy (normalized to w$) of each mode, is given by the 

relation , 
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where 

where fdenotes the integral over the region of resonance. 

In the absence of damping from the background plasma and external source, this equation 

and the quasi-linear equation for the broadened distribution function, lead to the conserva- 

tion of the total momentum, P,  which is the sum of kinetic and wave momentum; 

Qo 

--oo 3 

An interesting phenomena that has been investigated with this quasi-linear model is 

the possibility of mode overlap being achieved through a “domino” effect. In the previous 

discussion of mode overlap, when ’L - ‘yd N “ y ~ ,  we assumed that the mode overlap arises 

when modes were roughly equally spaced. But we also noted that once overlap starts, an 

excess of free energy is released when the wave energy is fully developed where the average 

bounce frequency of a single mode, w b j ,  of a single mode is N y~ N 1’2. This result indicates 

that if N >> 1, it is possible to achieve mode overlap even when the mean separation between 

resonant velocities is of order y ~ N l / ~ .  To get a domino effect, we need at least a pair of 

modes that have a resonant frequency separation &+I - f l j  = y~ between them. However, 

subsequent spacings can be wider, since the wave energy level increases as a plateau forms. 

Now, during the formation of the plateau, there needs to be a rapid change of f at the 

interface where the plateau has formed and the region that is unaffected by the plateau as 

shown schematically in Fig. 8. At this interface there is a rapid change in f of order Avpl E, 
where Avpl is the velocity width of the plateau. Such a jump in f gives rise to a linear growth 

rate f L  for the altered distribution function given by 

$ N ( ~ L ~ A v H ) ” ~ .  (13) 

Note that yL is much larger than the growth rate for the smooth distribution function. The 
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natural saturation level for this mode is then, u b  - - (~yr;kAv$)'/~. Thus the spacing 

for the next resonant mode frequency has to be AvT 5 ( ~ L L k a v $ ) ' / ~  in order for overlap to 

continue. If the resonant frequency separations satisfy this relation as Aupe increases during 

the development of the turbulent spectrum, one finds that all the free energy can be tapped 

if there are as few as a($)'/2 modes with a an order unity numerical factor. 

An example of such a domino effect has been demonstrated numerically for the model 

quasi-linear equations we have described. The results are shown in Fig. 9. In this figure we 

observe that only the two innermost modes can give overlap by the natural saturation level. 

However, the excess wave energy that is produced allows for all the modes to overlap, and 

the global diffusion causes transport of the particles to an absorbing wall. The result is the 

near complete loss of particles because overlap is achieved. 

Another type of domino effect is possible when there are many modes, but most of them 

are stabilized by linear damping. We have observed that if overlap occurs, that there is 

enhancement of the linear growth rate arising from the rapid variation of the distribution 

function at the interface of the plateau and undisturbed distribution function. This enhanced 

instability drive, N (?&Av,&/~, can cause a distribution function, that is normally stable 

when yd > ?L, to be unstable. Hence the phase space explosion can continue into the 

otherwise unstable region. This mechanism is a promising candidate in several experiments 

to explain rapid particle losses observed with wave energy bursts. 

Previously we pointed out that wave trapping effects dominate mode coupling effects if 

the amplitude of the perturbation is small. However, we have shown that in quasi-theory, es- 

pecially during a rapid explosion where all the free energy is tapped, relatively high perturbed 

fields are achieved. It is in this case that the quantitative evolution of the relaxation rate 

can be significantly altered by other nonlinear mode coupling and Compton ~ c a t t e r i n g . ~ ~ - ~ ~  

A complete theory of the nonlinear evolution of the system needs to include such effects. 
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Nonetheless, the gross feature, that the free energy of the distribution function rapidly con- 

verts to wave energy, should still persist even in a more detailed theory. 

IV. Generalization of Method 

The previous discussion for the bump-on-tail problem, can be generalized to almost any 

problem in plasma physics, including the interesting problem of alpha particles interacting 

with Alfv6n waves. The most important generalization is to obtain a nonlinear description of 

the simultaneous resonances of particles at different regions of phase space. We describe here 

such a treatment. For simplicity we limit ourselves to low frequency waves, i.e. waves with 

frequency less than the cyclotron frequency of the energetic particle, so that the magnetic 

moment p, can be treated as constant. 

For a given toroidal mode, where the perturbation of all quantities to leading order is 

proportional to Re exp(-i&+i4) (4 is the toroidal angle, and n the toroidal mode number), 

it follows from basic principles that H’ = H - P4 is also conserved in the perturbation, 

where we now use H ,  the Hamiltonian, to represent the energy. Hence, in response to a 

single mode, only P4 (at constant 1 and H’) can vary. The most important response is from 

those particles near resonance, defined as, 

with k‘ an integer and 04 and the mean toroidal and poloidal (represented by the poloidal 

angle 8) drift frequencies. Let P&(H, p),  satisfy EQ. (14). The locus of such solutions is 

shown schematically by the solid curve in Fig. 10. 

The instantaneous power transfer from a particle to a wave, can be written in terms of 

the constants of motion and “action” angles, qja and ea (these angles are modulated toroidal 

and poloidal angles respectively chosen so that 8, &,$a 5 Lj+ do not change during a 
- 
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particle's unperturbed motion). The form of the power transfer is, 

ev - e(,) exp( -id + in4) = P,,t(H, p ,  Pb) exp [-iwt + in4,, + it&]. (15) 
e 

The nonlinear response of a near resonant particle to a toroidal wave can be written in 

terms of the amplitude P,,t. One can show that a particle with a Pb value near Pd,t(H,p)  

(at k e d  H' and p) satisfies the equation,36 

BPg I 3 
where AP& is a constant (AP- 1 - 2 w ~ ( P ~ c ) / ) 4 $ I ) ,  €KIP wi(P4,t) = I n.p, s W  e(Pg,e) fWPd,C) 

and X t  = wt - n#,, + t& + Xm (X, is a phase constant). The phase function Xl satisfies the 

pendulum equation, 

Note that w ~ ( P 4 , t )  is the bounce frequency of a deeply trapped particle in the pendulum 

and from Eq. (15), it follows that it is proportional to the square root of the perturbing 

amplitude. This structure for the response is identical to the nonlinear response of particles 

trapped in a single electrostatic wave. This form has been previously derived under less 

general  assumption^.^^^^^ It is also a direct application of wellestablished nonlinear resonance 

theory. l7 

As in the bump-on-tail problem, one can find the scaling for the saturation level by 

assuming that some fraction of the separatrix width is flattened all along the resonance 

curve. The linear theory for the mode amplitude determines how the amplitude IPn,tl varies 

along the resonance line. The separatrix width is given by AP- = Z l w ~ ( P b , t ) / g l .  As 

linear theory determines IPn,el, the natural width is then known along the resonance curve. 

The broadening can then be expressed as we found in Ea. (lo), with ASZ = AP+dO/aPd. 

The broadened region of resonance is indicated schematically within the dashed curve of 

Fig. 10. 
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As in the previous section, we can take the difference between the initial state and final 

state, where the distribution function is flattened over some fraction of the separatrix, and 

find that the natural saturation mechanism due to trapping scales as, y~ cc Q, where the bar 

denotes a suitably averaged bounce frequency over the regions of resonance. 

It is worth noting that adiabaticity of trapped particles also applies, if the frequency (or 

some other external parameter) varies slowly. The adiabatic invariant, J is 

J = f (I?# + [.P& - ITR,,(P~,~)/uI C O S X ]  ”’} . 

Hence, as in the bump-on-tail case, in toroidal systems a similar enhancement of the wave 

energy due to frequency sweeping can be achieved. This property should have important 

consequences to either energy channelling or direct conversion of energy of charged fusion 

products (especially of the 15 MeV proton products that result in a D-He3 reaction), and 

needs to be pursued further. 

The problem of how to bridge quasi-linear theory when there is mode overlap and the 

description of single non-overlapping modes, is solved in a manner similar to the one dirnen- 

sional case. The distribution function f(P4, H , p ) ,  is taken to satisfy the following equation, 

where C(f) represents the effects of classical relaxation (this term will be discussed further 

below). The partial diffusion coefficient, Dn,!, is given in the line broadened quasi-linear 

theory by, 

with g(s) the previously defined window function (see after Eq. (ll)), and the width, 

AP4 E = 47wb + A(y + v e ~ ) ,  determined by the same arguments as previously given. 
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For the classical collision operator, C( f ) ,  we use a Krook-like operator, 

where fo is the distribution function expected if only classical relaxation processes were 

present, uo is the rate of formation of the predicted distribution function from classical 

processes only, and the symbol dP4 represents an integral only over the phase space window 

of each mode and is present to preserve particles during relaxation due to the combined 

classical and wave dependent processes. 

f 

One may also note that in treating this quasi-linear system for the alpha particle-Alfv6n 

wave interaction, it is frequently justified to neglect X & compared to 8 in &. (18), 

because the instability drive only arises if w is less than the diamagnetic drift. In this case 

the dihsion equation that needs to be solved is a set of one dimensional equations in P4) 

with p and H as parameters. Such a code is now being implemented. 

ap4 

In addition to the quasi-linear diffusion equations, one needs to solve for the time evo- 

lution of the mode amplitudes. The growth rates that appear in these equations can be 

expressed in terms of the identical line broadenings that appear in the quasi-linear equa- 

tions. The complete system of equations then has the property that in absence of external 

damping and external transport, that the total particle and wave toroidal canonical momen- 

tum is conserved. 

V. Discussion 

The overview of the nonlinear theory indicates many features that are consistent with 

experimental data, although detailed quantitative comparison have not as yet been made. 

In many of the observations of TAE modes one observes intervals of rapid oscillations that 

strongly correlate with particle ~ O S S . ~ * ~ ~ ~  

Evidence of this was first observed in the experiment of neutral-beam-driven TAE modes.% 
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Figure 11 shows the correlation between the TAE mode amplitude from the Mirnov coil data 

(bottom trace) and the neutron emission rate from the plasma (top trace). Each burst of 

TAE activity is accompanied by a drop in the neutron emission which indicates the loss of 

fast deuterium ions. A 10-channel BES (beam emission spectroscopy) array was used to 

measure the mode number.40 This technique works only when there is a single dominant 

TAE mode in the plasma. Modes with n = 2,3 and 4 have been observed under various 

conditions,38*40 The largest loss rates correlate to the cases where the dominant modes have 

comparable amplitudes. For example, we note in Fig. 12(a), that the spectral decomposition 

of the Mirnov coil signal at time t - 3.6965 sec is dominated by the signal at 72 kHz, with the 

other modes at lower frequencies not as strongly excited. Here the decrease of the neutron 

signal is - 5%. On the other hand, Fig. 12(b) shows the TAE burst at t - 3.7014 sec. Its 

frequency spectrum (Fig. 13(b)) reveals two modes with comparable amplitudes at 6OkHz 

and 72kHz. The corresponding drop in neutron emission is almost three times larger than 

the event at 3.6965 sec. This observation is consistent with the hypothesis that significant 

fast particle loss can be due to mode overlap which causes global quasi-linear diffusion. 

However, it should be pointed out that the event at 3.014 sec is accompanied by other MHD 

activities which can also contribute to the enhanced fast ion loss. The repetitive TAE bursts 

apparently regulate the fast ion pressure gradient and keep it near the instability thre~hold.~' 

TAE modes have also been observed during hydrogen minority (ICFU? (ion cyclotron 

radio frequency) heating where energetic protons are produced with energy - 0.5 - 1 MeV.42 

In this experiments the TAE mode amplitudes are very steady and only evolve slowly, on 

a time scale in which the plasma equilibrium changes. A fast particle probe placed near 

the plasma edge detects a continuous fast particle flux which correlates with the TAE mode 

amplitude.43 Faster variation of the mode amplitude and the corresponding fast ion loss 

me found to correlate with sawtooth activities. In these ICRF heating experiments, the 

TAE mode amplitude can be roughly estimated from reflectometer measurements of the 
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density oscillations associated with the mode. SB,/Bo is typically lo'*. The bounce 

frequency of the resonant particles trapped by the TAE mode is several times larger than 

the initial linear growth rate, consistent with estimates based on single mode saturation 

(wa - v e ~ y ~ / y d )  due to wave-particle trapping. However, the analysis is complicated by 

usually having several TAE modes coexisting with their fkequency separations comparable 

to the bounce frequency. The experiment observes particle loss, and there is not yet an 

explanation of why single mode saturation would lead to enhanced particle loss. If losses are 

due to a steady quasi-linear regime applying in experiments, more detailed calculations in 

the theory is needed to establish the saturation level that arises in experiments. 

Clearly, much is to be done to corroborate whether the theory presented here can lead 

to quantitative description of experimental data. It is however clear that the nonlinear and 

transport theories presented here produce many different scenarios. The theories are based 

on first principle concepts of the particle-wave interaction, and they appear the basis of a 

promising method for establishing a way by which. most experimental data can be explained 

and how predictions for ignition experiments can be established. The theory can now also 

be extended to investigate problems in energy channeling and direct conversion of energy in 

fusion systems. 
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FIGURE CAPTIONS 

FIG. 1. Plot of simulation results for maxwa vs. (1 - yd/y~). 

FIG. 2. Single mode pulsation. (a) Response of wave energy vs. time. (b) Particle distri- 

bution just at onset of instability at y ~ t  = 152. Slope in resonance region is large 

enough to produce a major pulse. (c) Particle distribution at end of pulsation. The 

distribution has flattened in the resonance region, and the source has not yet rebuilt 

the slope. 

FIG. 3. Numerical simulation of steady state oscillations. (a) Wave energy vs. time. (b) Steady- 

state particle distribution. Slope in resonance region is a balance between flattening 

due to finite amplitude wave and building-up of the slope from the source of new 

particles. (c )  Comparison of saturation levels between theory (curve) and particle 

simulation (dots). 

FIG. 4. Solution of nonlinear integral equation when 0 < y~ - yd << y ~ .  In (a), P 

u,ff/(y~ - yd) = 5 ,  and mode amplitude goes to a steady level, wb = 81/4 veff(l - 

7d/7~)'/~. (b) D = 4.3 where steady state is unstable and oscillates regularly about 

one of the steady state levels. (c) P = 3 and oscillations have regular amplitudes 

that are comparable to the steady state level. (d) D = 2.5 where a rather chaotic 

response is observed. (e) P = 2.4 where the chaotic response gives rise to blow-up in 

a finite time. (f) D = 2.4 with only the late time shown, when solution approaches 

a self-similar solution. 

FIG. 5. Simulation result from wave energy exchange from resonance sweeping. (a) yt = 6, 

local plateau from mode saturation established. (b) -yt = 18, distribution function 

after nonadiabatic amplification of mode has increased the depth of phase-space 
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trapping. (c) % = 36, adiabatic mechanism has further increased amplitude of 

mode and depth of phase-space trapping. 

FIG. 6.  Comparison with analytically predicted rate of evolution of wave energy for simula- 

tion in Fig. 5. 

FIG. 7. Schematic diagram of plateau formation with two adjacent mode. (a) no overlap. 

(b) overlap. 

FIG. 8. Build-up of rapid change of distribution function at interface between active wave 

region and unperturbed region. This interface causes an enhanced growth rate and 

enhanced saturation level of interface mode. 

FIG. 9. (a) Increased wave energy release allows widely spaced modes to overlap which 

causes a collapse of the distribution function shown in (b) due to the diffusion rate 

and loss to the boundaries. 

FIG. 10. Schematic diagram of the resonance broadening in phase space, is shown in (a). 

Equation (14) determines the center of the resonance, while the shape of the linear 

eigenfunction and the bounce frequency of particle in the wave determines the width 

of the resonance. 

FIG. 11. Correlation of particle loss with TAE burst. The top trace shows modulations in 

the neutron count (proportional to the density of energetic deuterium ions), while 

the bottom trace shows magnetic field oscillations picked up by Mirnov coils. Data 

originally shown in Ref. 38. 

FIG. 12. Spectral analysis of Mirnov coil signals at times (a) t N 3.6965 s and (b) t N 3.7014 s. 
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