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Abstract

While there has been much success in modeling the linear and nonlinear rheology of monodisperse entangled linear polymers, progress in

the constitutive modeling of polymeric materials continues to lag behind the needs of industry. Industrially sourced polymers are typically

polydisperse (comprising a broad distribution of molecular weights), making their rheology more suitable for processing but also more diffi-

cult to predict. To date, there are no molecular-based constitutive models that are practically suitable for describing industrially relevant

polymers in industrially relevant flows. In this article, we extend but strongly simplify the model of Read et al. [J. Rheol. 56, 823–873

(2012)], which is able to predict the linear and nonlinear rheology of bidisperse blends but is prohibitively complex for industrial use. We

propose a pair of simplified tube models for polydisperse melts of entangled linear polymers that combine the success of the double repta-

tion approximation [des Cloizeaux, Europhys. Lett. 5, 437–442 (1988)] in the linear regime with the success of the Rolie-Poly constitutive

equation [Likhtman et al., J. Non Newtonian Fluid Mech. 114, 1–12 (2003)] in the nonlinear regime. We first review the key concepts of

the double reptation approximation and the original (monodisperse) Rolie-Poly constitutive model. Subsequently, we provide the details of

our approximate models for the particular case of a bidisperse blend and show that these models naturally identify the effects from couplings

between constraint release and chain retraction (i.e., the so-called “enhanced stretch relaxation time”). Finally, we generalize to a multicom-

ponent (polydisperse) model, based on the same underlying principles. Along the way, we also show that both of our models are in qualita-

tive, and largely quantitative, agreement with experimental data for bidisperse and polydisperse melts of entangled linear polymers. © 2018
The Society of Rheology. https://doi.org/10.1122/1.5052320

I. INTRODUCTION

A. Polydispersity in entangled polymers

For academic study, it is possible to synthesize and isolate

small quantities of nearly monodisperse polymers, but practi-

cally all industrial polymers are polydisperse, comprising a

broad distribution of molecular weights. It is widely recog-

nized that polydispersity, especially as it pertains to the

longest chains, is an important factor in rheological and pro-

cessing behavior and can have a significant influence on the

transient and steady state response to the flow of polymeric

systems [1–3].

Considerable progress has been made in describing, from

a theoretical and practical point of view, the linear and non-

linear rheology of nearly monodisperse linear polymers [1].

Building on the early work of de Gennes [4,5] and Doi and

Edwards [6], modern constitutive models (such as the

so-called GLaMM (Graham, Likhtman and McLeish, Milner)

model [7]) have been developed to incorporate fundamental

molecular stress relaxation processes such as reptation, chain

retraction, and convective constraint release (CCR) [8]. These

models make quantitative predictions that are generally in

good agreement with experimental data for monodisperse

melts in strong (nonlinear) flow conditions [9]. Furthermore,

simplified “toy” models, such as the Rolie-Poly model [10],

retain the main features of more detailed models but permit

computation in complex nonrheometric flows [2,11–13].

By contrast, the theoretical predictions of the modern ver-

sions of Doi–Edwards theory [6], such as GLaMM [7], fail

to capture even the linear rheology of polydisperse melts.

The Doi–Edwards framework coarse grains the set of con-

straints (entanglements) acting on a polymer into a fixed

tubelike confining potential. Approximating constraints as

fixed is a reasonable first approximation for monodisperse

systems, but for melts of very long and very short chains, the

impermanence of the short chain constraints can no longer

be neglected. As short chains rapidly diffuse within the melt,

they facilitate a thermally driven release and renewal of

entanglements called “constraint release” (CR) for short.

With each CR event, the long chains (which are practically

not diffusing by comparison) are able to partially renew their

configuration and relax a portion of their stress. There is a

superficial simplicity to CR, but upon closer inspection,

the details become so complex that a completely general,

rigorous, theory has not yet been developed.

Building on (and to an extent simplifying) the idea of

Rubinstein and Colby [14], the double reptation approxima-

tion of des Cloizeaux [15] outlines a simple and intuitive

strategy for improving upon the predictions of reptation

theory without introducing additional free parameters. For a

wide range of blend compositions, this semiempirical

description of CR is reasonably accurate for predictions of
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linear viscoelasticity [1]. However, as we will discuss in

more detail below, double reptation often is an imperfect

approximation for some aspects of stress relaxation in binary

blends. For example, in many bidisperse blends, the terminal

relaxation time of long chains is decreased by the presence

of short chains (often this acceleration of long chain relaxa-

tion is clearly visible in the linear rheology data irrespective

of the method used to extract the terminal relaxation time; a

survey of the literature data can be found in [16]). The accel-

eration of long chains by short chains is not naturally

accounted for in a double reptation model [1,16]. Therefore,

we employ the double reptation formalism as a starting point

but allow for physically motivated corrections as needed.

B. Description of the double reptation

approximation

Double reptation describes polymer blends through a

semiempirical temporary network approximation. The full

complexities of topological interactions between chains are

coarse-grained into isolated, binary entanglements acting as

temporary cross-links. These cross-links accumulate stress

during deformation and relax stress only when the cross-link

is removed at some later time.

Assuming entanglements form between two chain seg-

ments, with a probability that is independent of the molecular

weight of the attached chains, then for any given test chain i,

the fraction of the entanglements on that test chain coming

from chains of type j is just fj, the volume fraction of the

j chains. But, test chains of type i are present with volume

fraction fi, hence the fraction of i-j entanglements (i.e.,

entanglements on chain type i coming from chain type j) is

fifj, and likewise the fraction of j-i entanglements is fjfi.

Overall, the total fraction of entanglements of either i-j or j-i

(i.e., involving distinct species) is 2fifj, and the total frac-

tion of entanglements of type i-i (i.e., involving identical

species) is just fifi.

The rate of cross-link release is dictated by tube model

descriptions of the relaxation kinetics for the constituent

monodisperse fractions within the melt. The two chains may

disengage from one another when either of the two chains

reptates past the relevant portion of its effective “tube.” We

can define pi(t) as the probability that a randomly selected

entanglement segment from chains of type i has not been

passed by the i-chain end, via reptation or contour length

fluctuation (CLF), after some time t [i.e., pi(t) is the tube sur-

vival probability for chains of type i]. Assuming that the

reptation of i and j are independent events, then the survival

probability pij(t) of an i-j entanglement is just the product of

the individual tube survival probabilities of the two chains,

i.e., pij(t) ¼ pi(t)pj(t). To a first approximation, pi(t) and pj(t)

can be estimated from the fixed-tube reptation kinetics of

each chain, i.e., a usual assumption of the double reptation

theory is that the relaxation function pi(t) of species i is

unaffected by the presence, or otherwise, of species j.

Double reptation further assumes that the stress relaxation

function following a step strain is proportional to the fraction

of remaining entanglements after time t, i.e., it considers the

entanglements effectively to be the stress-inducing objects.

Hence, the contribution to the stress relaxation modulus

associated with i-j entanglements is Gij(t) ¼ G0
Nfifjpij(t),

where the plateau modulus, G0
N , is typically considered

independent of the molecular weight distribution, and (con-

sistently with the entanglement counting above) we count i-j

entanglements and j-i entanglements separately. If there are n

components altogether, the overall relaxation modulus G(t) is

given by

G(t) ¼
X

n

i¼1

X

n

j¼1

Gij(t): (1)

Double reptation is most commonly applied for under-

standing the linear viscoelastic properties of a polymer melt,

but in principle G(t) could be inserted into an integral consti-

tutive equation to obtain rheological predictions under strong

flow conditions as well [17]. As a simple example, we can

use a Maxwell model

σ(t) ¼

ðt

�1

@

@t
G(t � t0)C�1(t, t0)dt0, (2)

where C
�1(t, t0) is the finger tensor representing affine

deformation occurring between times t and t0. For any

material with single-mode relaxation kinetics, i.e.,

pi(t)/ exp �t=τd,ið Þ, this integral Maxwell model has a

related differential form

σ(t) ¼
X

n

i¼1

X

n

j¼1

fifjσ ij(t),

σ
r
ij ¼ � 1

τd,i
þ 1

τd, j

� �

(σ ij � G0
NI),

8

>

>

<

>

>

:

(3)

where

A
r
;

DA

Dt
� κ � Aþ A � κT
� �

(4)

is the upper convected derivative representing the effect

of affine deformation on a tensor A, and κ is the velocity

gradient tensor.

When the double reptation approximation is presented in

such a differential constitutive form, σ ij can be interpreted as

the stress contribution arising from chain i due to entangle-

ments with chain j. We may also note that whereas indepen-

dent modes of relaxation are multiplicative when computing

Gij(t), the corresponding relaxation rates are additive when

computing the evolution of σ ij.

In the present report, we will pursue a generalization

(or extension) of the double reptation approximation, build-

ing upon this differential constitutive framework for double

reptation and incorporating effects of CLFs, chain retraction,

and CCR.

C. Beyond published double reptation models

Differential constitutive models incorporating ideas from

double-reptation have been around for over two decades and

were probably developed independently on more than one
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occasion. The earliest example of such work comes from

Marrucci and Ianniruberto [18,19], but as far as we can tell,

their model was never formally used to study polydisperse

systems. A closely related model by Mead [20] and its exten-

sions [21–24] incorporate similar ideas and are more explic-

itly intended for polydisperse systems. In particular, Mead

et al. [24] outlines a nonlinear rheology model for polydis-

perse systems where the description of the stretch is done via

elaborate bookkeeping measures, counting discrete ij entan-

glement pairs on the chain when entanglement dynamics and

stretch tube dilution operate. This work also incorporates the

possibility of flow-induced reduction in entanglement

density.

A potential weakness of these existing works is that

stretch and orientation dynamics are treated using separate

dynamical equations, which can lead to problems even in the

single-mode (monodisperse) rheology predictions [25]. Here,

we argue that this decoupling approximation is even more

problematic for polydisperse blends; couplings between CR

and chain retraction (related to the “enhanced Rouse time”

phenomena [9,26]) must be readmitted in an ad hoc fashion

and do not arise naturally from the model [23]. In contrast,

our work described below follows the GLaMM and

Rolie-Poly models [7,10], keeping the stretch and orientation

dynamics in a single tensor equation: The result is a very

natural generalization of these two models and of the results

of Auhl et al. [9,26] for bidisperse polymers. The stretch

dynamics, in particular, the “enhanced Rouse time,” emerge

directly from our equations and do not appear to require the

elaborate bookkeeping of stretch dynamics [24].

Finally, in a seemingly unrelated vein of research, Jupp

and Yuan [27,28] developed an approach in which some

double reptation concepts were adapted to preexisting consti-

tutive models ( Johnson–Segalman and Rolie-Poly). These

models do not decouple stretch and orientation, but they lack

internal consistency (Rolie-Poly) or are too phenomenologi-

cal ( Johnson–Segalman) to be reliable for qualitative or

quantitative rheological predictions.

D. Limitations of the double reptation

approximation—Viovy diagram

Two of the common assumptions of double reptation

theory, as described above, may be summarized as follows:

(i) that entanglements are binary events, so the contribution

to the modulus from entanglements of chains i with chains j

is proportional to fifj and (ii) that the relaxation function

pi(t) of species i is unaffected by the presence of species j.

For the long chains in a binary blend, the consequences of

these two assumptions are that (i) the terminal modulus asso-

ciated with the long chains should be proportional to the

square of their volume fraction, f2
L and (ii) their terminal

relaxation time should be unaffected by dilution with short

chains. Unfortunately, in many cases, one, or both, of these

assumptions fail when compared with experimental data, as

we explain below [1,16,26]. In contrast, for fully polydis-

perse systems many of the detailed dynamics are hidden

by the broad distribution of relaxation times, and double

reptation is often quite successful [1].

A more detailed appreciation of the regimes of applicabil-

ity of double reptation for binary blends of entangled poly-

mers can be attained through consideration of the “Viovy

diagram” [29], shown schematically in Fig. 1(a), and its

recent modification by Read et al. [16] shown schematically

in Fig. 1(b). The diagram is a two-dimensional projection of

the (three dimensional) binary blend parameter space. The

horizontal axis is the typical number of entanglements a long

chain has with other long chains. The vertical axis is the

FIG. 1. (a) Schematic Viovy diagram [29] indicating, in each region, the process governing terminal relaxation and how the terminal modulus scales with frac-

tion f of long chains. In region 1, dilute long chains relax terminally through CR; in region 2, they relax by reptation. In regions 3 and 4, long chains are self-

entangled hence the terminal modulus scales as f2; in region 3, reptation along the thin tube dominates, while in region 4, motion along the fat tube, occurring

due to CR of the thin tube, is predicted to accelerate the terminal reptation of the long chains. (b) Modified Viovy diagram as obtained by Read et al. [16]

including the effects of CLF. Region 3 is divided into three subregions: 3a, only CLF along the thin tube occurs; 3b, CLF occurs in a tube diluting by CR

Rouse motion; and 3c, CLF occurs in the fat tube. Region 2 is also subdivided into: 2a, only CLF along the thin tube occurs and 2b, CLF occurs in a tube dilut-

ing by CR Rouse motion. Equations for some lines indicated as derived from slip-spring models.
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Graessley parameter, Gr ¼ ZL=ZS
3 [1], and is a measure of

the relative rate of long chain relaxation by CR from short

chains, as compared to reptation (higher values of Gr repre-

sent faster CR). It is implicit in the construction of the

diagram that the short chains are somewhat shorter than the

long ones, i.e., ZS , ZL, meaning also that Gr . 1=ZL
2. The

diagram is divided into a number of regions according to the

expected relaxation pathway of the long chains. The original

diagram [Fig. 1(a)] considered only the effects of reptation

and CR: This gives a perfect projection into the two dimen-

sional space of the diagram. The modified diagram [Fig. 1(b)]

includes additionally the effects of CLFs; as a result, some of

the lines on the diagram, shown with dashed lines, move

weakly with the third independent parameter (for which there

are many choices, but which can conveniently be taken as the

undiluted entanglement number ZL).

To the right of the diagram (regions 3 and 4), long chains

feel the effects of entanglements with other long chains

before terminal relaxation. Hence, the terminal modulus from

long chains scales as G0
Nf

2
L, where G0

N is the plateau

modulus, in agreement with double reptation. In contrast, to

the left of the diagram (regions 1 and 2), the long chains are

too dilute to entangle with other long chains, and so the ter-

minal modulus is simply proportional to the long chain con-

centration fL. Hence, the prediction of double reptation for

terminal modulus fails to the left of the Viovy diagram.

Toward the lower end of the Viovy diagram, CR from the

short chains is sufficiently slow that the fastest mechanism to

relax long chains remains reptation along their undiluted

tube. Hence, in regions 2 and 3 of the original Viovy

diagram, the predictions of double reptation for the relaxation

time of the long chains are expected to hold. Toward the top

of the diagram, CR from short chains accelerates the relaxa-

tion of the long chains, either through CR Rouse relaxation

of long chains (region 1) or motion of long chains along the

“fat tube” of other long chain entanglements, at an

accelerated rate determined by CR from the short chains

(region 4). In these two regions, short chains affect the

long chain relaxation rate and so the prediction of double

reptation for terminal relaxation time fails. This situation

becomes yet more complicated in the modified diagram

[Fig. 1(b)] of Read et al. [16] who identified that CLFs in the

diluted fat tube provide a further acceleration mechanism for

long chain relaxation in much of region 3 (specifically,

regions 3b and 3c): Hence, the double reptation prediction

of long chain relaxation time fails also for a significant part

of region 3!

As a consequence, double reptation in its unmodified

form is technically valid only in a small part of the parameter

space [region 3a of Fig. 1(b)] since only here are the predic-

tions of both terminal time and terminal modulus for the

long chains valid. However, to the right of the Viovy

diagram, a modified double reptation scheme can be success-

ful, provided that one modifies the relaxation time of long

chains to account for the presence of short chains in the sur-

rounding medium. In this paper, we will introduce appropri-

ate (but approximate) schemes to achieve this prediction of

relaxation times, while also retaining the fifj scaling for the

modulus contribution from entanglements on chains i from

chains j. Therefore, the constitutive model presented here

could be applied throughout regions 3 and 4 of the Viovy

diagram.

E. Outline of this work

The central purpose of this paper is to develop a nonlinear

constitutive model for polydisperse linear entangled poly-

mers that is (i) simple enough for computational fluid dynam-

ics (CFD) studies and (ii) accurate enough to deal with high

polydispersity and high deformation rates.

We will present two constitutive models, satisfying objec-

tives (i) and (ii) above, that we call “Rolie-Double-Poly”

(RDP) and “Symmetric Rolie-Double-Poly” (SRDP), where

the “Double” signifies both “double reptation” and “double

poly” as in “POLYdisperse POLYmers.” Although these

models were originally constructed independently, from dif-

ferent microscopic pictures, their conceptual, structural, and

quantitative similarity is the reason why we have elected to

present them in a single publication.

In Sec. II, we study the specific case of a bidisperse blend

of long and short chains. We start with a short review of the

monodisperse Rolie-Poly model [10]. Subsequently, in Sec.

II B, we define our “RDP” and “SRDP” models for the case

of bidisperse blends and summarize our present understand-

ing for the quantitative agreement between the two formula-

tions. One important qualitative similarity, discussed in Sec.

II C, is that both models exhibit the natural emergence of an

enhanced stretch relaxation time [26,30], arising from the

coupling between stretch relaxation and CR processes. Given

that the two models are quantitatively indistinguishable for

cases where experimental data are available, in the interest of

concise exposition, calculations in the main body of the

paper and comparisons to data will only be presented for the

RDP model. We compare the model to experimental linear

and nonlinear rheology data for bidisperse melts in shear and

extension. For qualitative purposes, the RDP (and SRDP)

model requires no free parameters, but for quantitative inter-

ests, we require a set of experimentally tabulated tube-model

parameters (molecular weight between entanglements Me,

Rouse time of an entanglement strand τe, and plateau

modulus G0
N) to specify the model. In principle, Me and G0

N

are not independent parameters but are linked through Eq.

(44); in practical application, these are often treated as inde-

pendent parameters with Eq. (44) only approximately

enforced. We further allow a single fitting parameter to

correct for departures of the terminal relaxation modulus of

the blends from predictions of double reptation based solely

on total weight fraction of long chains. Such departures are

particularly acute in binary blends, and they arise because

some sections of the long chains (i.e., chain ends) relax rela-

tively rapidly and provide extra dilution to the terminal

modulus. This fitting parameter is set by the linear rheology

alone so that predictions of the nonlinear rheology (shear and

extension) are made without any further intervention.

Finally, in Sec. III, we generalize the bidisperse RDP

and SRDP models to the general polydisperse case. Again,

given the quantitative agreement between RDP and SRDP,

we compare the resulting predictions with experimental

74 BOUDARA et al.



observations of linear and nonlinear rheology in polydisperse

polymers for the RDP model only. In the linear regime, the

model yields quantitatively accurate predictions without any

adjustable parameters or empirical correlations; once the

molecular weight distribution is specified, no further free

parameters are needed to define the model. This result is

achieved through a novel strategy for approximating the

effect of couplings between CR and CLFs in polydisperse

melts developed in the Appendix. In the nonlinear regime,

initial comparisons with nonlinear rheological data of poly-

disperse polymers, presented in Sec. III B, indicate that the

nonlinear features are captured with good accuracy as well.

Hence, both the linear and nonlinear rheology can be pre-

dicted from this molecular-based theory, based only on a set

of experimentally tabulated tube-model parameters.

II. NONLINEAR RHEOLOGY OF BIDISPERSE

BLENDS

A. Preamble: The “classic” Rolie-Poly model for

monodisperse polymers

1. Formulation of the Rolie-Poly model

Before delving into the blend model formulations, we first

take a moment to review the classic Rolie-Poly model of

Likhtman and Graham [10], which has its origins in the full

chain GLaMM model.

The GLaMM model was originally proposed by Graham

and co-workers [7] as a full chain molecular theory for entan-

gled monodisperse linear polymer chains under fast deforma-

tion. The GLaMM model accounts for an accumulation of

stress via affine deformation and relaxation of stress by repta-

tion, chain retraction, and CCR—as introduced by Marrucci

[31]. Although successful in predicting the rheology of fast

flows, the GLaMM model is computationally prohibitive for

nonviscometric flow calculations; the dimensionality of the

model is high (three spatial dimensions plus two chain

contour indices) and the dynamics are stiff (the model

includes all relaxation times down to τe). Hence, as a simpli-

fied version of the GLaMM model, Likhtman and Graham

developed a one-mode differential constitutive equation for

entangled monodisperse polymer chains called the

Rolie-Poly equation (for Rouse linear entangled polymers)

[10]. The time evolution of the stress tensor of the polymer

melt, σ, is calculated via a conformation tensor for an

entanglement segment, A, as

σ(t) ¼ G0
N fE(λ)A(t),

A
r

¼ �Rrep � RCR � Rret � RCCR,

(

(5)

where the stretch ratio of the polymer chains, i.e., the ratio

of the current to equilibrium-with-no-flow chain contour

lengths, is defined as λ ¼ (TrA=3)1=2 and with the reptation

(rep), CR, retraction (ret), and CCR relaxation terms defined,

respectively, as

Rrep ;
1

τd
(A� I), (6)

RCR ;
βth

τd
(A� I), (7)

Rret ;
2 1� λ�1
� �

τs
fE(λ)A, (8)

RCCR ; βCCR
2 1� λ�1
� �

τs
fE(λ)λ

2δ(A� I): (9)

The time scale τd is the “disengagement time,” i.e., the

longest time scale for the chain to escape from a fixed tube

by the combined action of CLFs and reptation. τs is the

stretch relaxation time, which is anticipated to equal the

Rouse time of the chain: to relax stretch (along tube) in a

single entanglement segment, the whole chain needs to

retract along the tube, so, to good approximation, the stretch

relaxation time is the Rouse time of the whole chain.

Similarly, to relax orientation of the entanglement segment,

the whole chain needs to reptate. (βCCR, δ) are the CCR coef-

ficients taken equal to (1, � 1=2), and βth is the thermal CR

coefficient taken equal to 1. It is the correct value to

choose to be consistent with double reptation, although, in

principle, stress relaxation via tube escape and CR could

have different weightings. Note that we decorated the original

Rolie-Poly model with finite extensibility [32], via the

Warner approximation [33] of the inverse Langevin function

fE(λ) ;
1� λ�2

max

1� λ2λ�2
max

, (10)

with λmax the maximum stretch ratio. For the rest of this

work, we take λmax ¼ 10, unless stated otherwise. This

parameter usually depends on the chemistry and on dilution,

but it does not really affect the model predictions presented

in this work in shear. In elongation, when elongation harden-

ing would lead to diverging stress in the Rolie-Poly model,

this parameter enforces a finite steady state stress value.

At first glance, our introduction of thermal CR, Eq. (7),

appears to disagree with the usual presentation of the mono-

disperse Rolie-Poly model, where such a term is not present.

However, we argue that the difference is purely semantic. In

the original Rolie-Poly model, τd is the terminal stress relaxa-

tion time of the melt, whereas in our models, τd is the “bare”

disengagement time for a fixed tube (reptation time shortened

by CLF, as described later). The difference is subtle but

important; for monodisperse entangled polymer systems, the

terminal stress relaxation time is often equated with a repta-

tion time, but strictly speaking, the terminal stress relaxation

time comprises a combination of reptation, CLFs, and

thermal CR. So, typically, there is roughly a factor of 2 (or

more) difference between the terminal stress relaxation time

and the disengagement time [1]. In the above, we have

explicitly separated out the effects of disengagement [repta-

tion and CLF, Eq. (6)] from CR [Eq. (7)], in a manner which

is both consistent with double reptation and helpful for our

later presentation of the RDP and SRDP models.

On the CCR term, the factor of λ2δS is a phenomenological

correction introduced to improve fitting of rheological data at
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high shear rates. Loosely speaking, this fitting function can be

interpreted via the GLaMM model, which predicts that more

CR events are required to relax a chain that is stretched. This

correction could also be applied to the thermal CR terms,

although this is not done in the original Rolie-Poly model, and

we regard this as an unnecessary complication: We are consid-

ering cases where well-entangled chains dominate the rheolog-

ical response, and for these thermal CR is only significant

relative to CCR when chains are not stretched.

2. Wrong way toward polydispersity

Given that the Rolie-Poly model offers a reasonable

description for the rheology of monodisperse blends, a

common way of trying to model bidisperse or polydisperse

systems is to approximate the blend as a linear superposition

of its monodisperse fractions (i.e., neglecting any microscopic

couplings between chains of different lengths). For a melt con-

taining n components, the most straightforward way to define

the total stress σ is as a sum over the component stresses:

σ ¼
X

n

i¼1

fiσ i, (11)

where fi is the volume fraction of chain i and σ i is the average

stress on chain i, as determined by the monodisperse Rolie-Poly

equation for that component. This can actually be a good first

approximation for blends that fall into region 2 of the Viovy

diagram, where microscopic couplings between chains can be

neglected to a first approximation. More generally, however, a

linear superposition Rolie-Poly model (LSRP) is less useful; for

high polydispersity blends, the failure of a LSRP model is

evident even in its linear viscoelastic predictions!

Therefore, it is more common to separate linear superposi-

tion models from their microscopic interpretations, treating

the volume fractions and relaxation times as adjustable

parameters through which the model can be fit to linear and

nonlinear rheological data. Unfortunately, after fitting the

model to a specific set of rheological tests, there is no guar-

antee that its predictions will be transferable (useful under

substantially different flow conditions). Furthermore, since

the adjustable parameters have no physical interpretation, it is

impossible to predict how the material parameters will

change with the melt formulation.

In Secs. II B–II D, we outline the RDP and SRDP

polymer blend models which overcome the weaknesses of

LSRP by combining the best insights of double reptation and

Rolie-Poly. As an improvement over LSRP, these models

attempt to explicitly incorporate both linear and nonlinear

microscopic couplings between chains. Even without any

adjustable parameters, this yields qualitatively accurate and

(apparently) transferable predictions for both the linear and

nonlinear rheology of polydisperse melts.

B. Description of the RDP and SRDP models for

bidisperse melts

In this section, we present the structure of the RDP and

SRDP constitutive models for bidisperse melts of linear,

well-entangled polymers. As we shall see, the two models

primarily differ with regard to the symmetry (or asymmetry)

of stress relaxation across entanglements between different

types of chains. With regard to predictions of linear visco-

elasticity, both models are consistent with the usual results of

double reptation theory. The first model that we present is

referred to as the “RDP model” for “Rolie-Double-Poly”

(ROuse LInear Entangled Double reptation Polydisperse

Polymers) where “Double” signifies both “double reptation,”

and “double poly” as in “POLYdisperse POLYmers.” The

RDP model can be understood as a greatly simplified version

of the detailed molecular theory for bidisperse polymer melts

of Read and co-workers [26], as we explicitly show in the

supplementary material [51].

The second constitutive model, apparently more “ad hoc,”

applies the double reptation ansatz (and the entire microme-

chanical picture of a temporary network) to all nonlinear

relaxation mechanisms of the Rolie-Poly model. As we shall

see, this model is effectively a symmetrized version of the

RDP model, we refer to this work as the “SRDP model” for

“Symmetric-RDP” model, where enforcing symmetry is

found to be quantitatively harmless but advantageous for the

simulation of complex flows, as we will discuss later.

Note that a model for bidisperse blends of the forms pre-

sented here was circulating during the U.K. based Microscale

Polymer Processing 2 project (μPP2)1 and was partially

encoded in RepTate software,2 but never published.

Beginning with a bidisperse melt, we denote quantities

related to the shorter and longer chains with subscripts “S”

and “L,” respectively. We consider that our blend contains a

volume fraction fS of short chains, and a volume fraction fL

of long chains. We write the total stress tensor as

σ(t) ¼ G0
N fS fE(λS)AS(t)þ fL fE(λL)AL(t)ð Þ, (12)

where AS and AL are the average conformation tensors of an

entanglement segment in the short and long chains, respec-

tively, and

λS ¼ TrAS=3ð Þ1=2, λL ¼ TrAL=3ð Þ1=2, (13)

are the respective stretch ratios of the short and long chains.

The short chains and long chains entangle with other

short and long chains, releasing their entanglements on dif-

ferent time scales. Therefore, we break down the conforma-

tion tensors AS and AL as

AS ¼ fSASS þ fLASL, (14)

AL ¼ fLALL þ fSALS: (15)

The above structure, in which stress is first separated out

into chain contributions (via AS and AL) and then

1http://www1.irc.leeds.ac.uk/mupp2/.
2
“Old” RepTate can be found in http://reptate.com. A new version is avail-

able in http://reptate.readthedocs.io.

76 BOUDARA et al.

http://www1.irc.leeds.ac.uk/mupp2/
http://www1.irc.leeds.ac.uk/mupp2/
http://reptate.com
http://reptate.com
http://reptate.readthedocs.io
http://reptate.readthedocs.io


subsequently separated out into contributions from chain

pairs (e.g., ALL and ALS) as in Eqs. (14) and (15), can be

shown to be consistent with the much more detailed structure

of correlation functions in the model of Read and co-workers

[26]. We show this explicitly in the supplementary material

[51]. In this interpretation, the tensor AIJ accounts for the

effect of entanglements from chains of type J on the average

configuration for a tube segment of chains of type I [where I

and J could be short (S) or long (L)]. The RDP model pre-

serves this interpretation.

Further (and for the long chains especially), we show in

the supplementary material [51] that the tensor AL may be

considered to be the configuration tensor for a “thin tube”

entanglement segment, while ALL is the configuration tensor

for a “fat tube” entanglement segment. This interpretation

makes qualitative sense if it is understood that the “thin tube”

is the tube which represents entanglements with all other chains,

while the “fat tube” is the tube which represents entangle-

ments with other long chains only (see [1,16,26,29]). In

this context, we can define both the stretch along the

“thin tube” λthin ¼ (TrAL=3)
1=2 [as in Eq. (13)] and “fat

tube” (i.e., stretch measured along the fat tube contour)

λfat ¼ (TrALL=3)
1=2.

With regard to their underlying structure, the RDP and

SRDP models are in total agreement to this point. However,

the microscopic interpretation of the “off-diagonal” configu-

ration AIJ (with I = J) tensors differs between the two

models, and this leads to subtle differences in the constitutive

formulations of the chain retraction and CCR terms.

1. The RDP model

The time evolution of the tensors ASS and ALL follow pre-

dictably the “classic” Rolie-Poly model presented in Sec. II A

A
r

SS ¼ �
(1þ βth)

τd,S
ASS � Ið Þ �

2(1� λ�1
S )

τs,S
fE(λS)

� ASS þ βCCRλ
2δ
S ASS � Ið Þ

� �

, (16)

A
r

LL ¼ �
(1þ βth)

τd,L
ALL � Ið Þ �

2(1� λ�1
L )

τs,L
fE(λL)

� ALL þ βCCRλ
2δ
L ALL � Ið Þ

� �

: (17)

Note that the rate of retraction of the long chains is propor-

tional to (λL � 1) fE(λL)=τs,L, and for short chains, it is pro-

portional to (λS � 1) fE(λS)=τs,S; this gives relaxation of

stress from both the retraction itself and from the associated

CCR events.

Now, we define the evolution equation of the “S/L” tensor

representing the stress conformation tensor of the short

chains arising from entanglements with the surrounding long

chains

A

r

SL ¼ �
1

τd,S
ASL � Ið Þ �

2(1� λ�1
S )

τs,S
fE(λS)ASL

� ASL � Ið Þ
βth

τd,L
þ 2βCCR

(1� λ�1
L )

τs,L
fE(λL)λ

2δ
S

� 	

:

(18)

The first and second terms on the RHS are, respectively, the

short chain reptation and retraction contributions to the stress

relaxation. The third term, in βth, on the RHS allows the

short chains to relax the stress associated with a L-chain

entanglement whenever that entanglement is removed by

CLFs or reptation. Again, we take βth ¼ 1, which is the

correct value to choose to be consistent with double repta-

tion. The final term, in βCCR, on the RHS corresponds to the

relaxation of short chain stress due to the CCR that occurs

when a long chain retracts in flow and evacuates an entangle-

ment with a neighboring short chain. Note that the rate of

CCR is proportional to the rate at which long chains retract.

Similarly, we define the evolution equation for the

stress conformation tensor of the long chains arising from

entanglements with the surrounding short chains

A

r

LS ¼ �
1

τd,L
ALS � Ið Þ �

2(1� λ�1
L )

τs,L
fE(λL)ALS

� ALS � Ið Þ
βth

τd,S
þ 2βCCR

(1� λ�1
S )

τs,S
fE(λS)λ

2δ
L

� 	

:

(19)

Clearly, the RDP model is asymmetric in its treatment of

different chain species, i.e., ALS = ASL.

Equations (16)–(19) can be summarized as

A
r

ij ¼ �Rrep,ij � RCR,ij � Rret,ij � RCCR,ij, (20)

where i and j can be a long (L) or short (S) chain species

and with the reptation (rep), CR, retraction (ret), and CCR

relaxation terms being, respectively,

Rrep,ij ;
1

τd,i
Aij � I
� �

, (21)

RCR,ij ;
βth

τd, j
Aij � I
� �

, (22)

Rret,ij ;
2(1� λ�1

i )

τs,i
fE(λi)Aij, (23)

RCCR,ij ; 2βCCR
(1� λ�1

j )

τs,j
fE(λj)λ

2δ
i Aij � I
� �

: (24)

Together, Eqs. (12)–(15) and (20) define the RDP model.

2. The SRDP model

Although the RDP model can be shown to be derivable

from the underlying tube model (see the supplementary

material [51]), a functionally equivalent model (the SRDP

model) can be developed by simply assuming that the micro-

scopic picture of double reptation applies to all relevant non-

linear stress relaxation mechanisms.

The microscopic picture of double reptation is that of a

temporary network with stress relaxation kinetics imported
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from monodisperse tube-based models. When a temporary

cross-link (entanglement) is removed by CR, either thermal

or convective, the stress associated with that cross-link is

relaxed entirely. Likewise, when one of the two chains

relaxes its stretch (introducing “slack” into the entangle-

ment), we may assume that a portion of that slack is taken on

by the adjoining chain so that the two remain in mechanical

equilibrium. In other words, the configuration of long chains

at their point of entanglement with short chains, ALS, always

matches the configuration of short chains at their point of

entanglement with long chains, ASL. This is the microscopic

interpretation for the “symmetric” aspect of the SRDP

model.

To determine the rates of chain retraction and CCR, the

SRDP model employs the λ-dependent kinetic coefficients

from the monodisperse Rolie-Poly model without any further

microscopic re-interpretation to account for polydispersity.

The resulting constitutive model is formulated as follows:

A
r

ij ¼ �Rrep,ij � RCR,ij � Rret,ij � RCCR,ij, (25)

where i and j can be a long (L) or short (S) chain species and

with the reptation (rep), retraction (ret), CR, and CCR terms

being, respectively,

Rrep,ij ;
1

τd,i
Aij � I
� �

, (26)

RCR,ij ;
βth

τd, j
Aij � I
� �

, (27)

Rret,ij ;
1

2

2(1� λ�1
i )

τs,i
fE(λi)þ

2(1� λ�1
j )

τs,j
fE(λj)

" #

Aij, (28)

RCCR,ij ;
1

2
βCCR

2(1� λ�1
i )

τs,i
fE(λi)λ

2δ
i þ

2(1� λ�1
j )

τs,j
fE(λj)λ

2δ
j

" #

� Aij � I
� �

:

(29)

Together, Eqs. (12)–(15) and (25) define the SRDP

model. In contrast to the RDP model, here we find that

ASL ¼ ALS. For blends with many components (N � 1), the

SRDP model requires about half as many component config-

uration tensors [N(N þ 1)=2 vs N2]. Therefore, the SRDP

model should run about twice as fast as the RDP model

when considering CFD flow simulations of polydisperse

melts.

Finally, in the spirit of the original Rolie-Poly model [10],

we also provide a nonstretching version of the bidisperse

SRDP model. As with the nonstretching Rolie-Poly model,

the nonstretching SRDP model can be derived from the limit

of asymptotically fast stretch relaxation dynamics in both

chains:

Rret,ij ¼
1

2
(fi þ f j)Aij, (30)

RCCR,ij ¼
1

2
(fi þ f j)βCCR Aij � I

� �

, (31)

fL ¼
2

3
κ:(AL þ fS(AL � AS)), (32)

fS ¼
2

3
κ:(AS þ fL(AS � AL)), (33)

where κ is the velocity gradient tensor.

3. Comparison of the two models in nonlinear shear

flow

The difference between the RDP and SRDP models are

briefly summarized in Table I.

In more detail, comparing the RDP and SRDP model for-

mulations, we see that the two primarily differ by the way

that chain retraction and CCR relax the stress associated with

entanglements between long and short chains. Considering

only the effect of long chain retraction (and corresponding

CCR) on entanglements of long/short chains, the RDP model

predicts that stress on the long chain side is relaxed only by

retraction and stress on the short chain side is relaxed only

by CCR. By contrast, the SRDP model predicts that the

stress relaxation by retraction and CCR are evenly distributed

between the two chains.

However, when βCCR ¼ 1, the rate of CCR is necessarily

equal to the rate of retraction, and so the overall relaxation of

stress is roughly the same irrespective of how retraction and

CCR are divided between the two chains. Similar arguments

can be made for the effects of short chain retraction (and cor-

responding CCR). This physical argument for agreement of

the two models is predicated on βCCR equal to unity, and

unsurprisingly, we find that for βCCR ¼ 0, disagreements

between the two models are more evident, especially in the

individual component tensors (e.g., ALS vs ASL). Fortunately,

even in this case the total stresses still seem to agree for a

wide range of shear rates: If the SRDP model (relative to

RDP) underestimates the stress in long chains and overesti-

mates the stress in short chains, then to leading order the

total stress is apparently unaffected!

A more detailed quantitative comparison of the two

models is provided in the supplementary material [51] for the

interested reader. Overall, we find that the RDP and SRDP

models are in quantitative agreement to within ≏10% for

jκjτs,L , 1. Quantitative disagreement between the two

models is most evident when short chains are stretching but

TABLE I. Brief summary of the differences between the RDP and SRDP

models.

Effect RDP SRDP

Orientation and CR relaxation of ij Symmetric Symmetric

Stretch relaxation of ij from retraction of i chain, but

not j chain

Both i and j

chain

CCR relaxation of ij from retraction of j chain, but

not i chain

Both i and j

chain
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not near full extension, jκjτs,S ≏ O(1). However, even under

these conditions, qualitative agreement is still quite good and

neither model shows any clear advantage over the other

when compared against the available experimental data.

C. Enhanced stretch relaxation time

The onset of chain stretch and emergent extension harden-

ing in the nonlinear rheological response of molten binary

blends (of long and short polymer chains) is set by an effec-

tive stretch relaxation time of the long chains. It has been

found experimentally [30] that, for some particular blends in

region 3c of the modified Viovy diagram, Fig. 1(b), this

effective stretch relaxation time of the long chains initially

increases proportionally to the inverse volume fraction of

long chains f�α
L , where α is the dilution exponent for entan-

glements (we assume α ¼ 1, which is the correct exponent if

one assumes entanglements are binary events; it is also the

value favored by recent experimental evidence, e.g., [34]). In

elongation experiments, if the flow rate exceeds the inverse of

the stretch relaxation time of the long molecules, they are

stretched by the flow, i.e., their length along the tube contour

grows. The macroscopic consequence of chain stretch is elon-

gation hardening, i.e., the elongational viscosity, ηþE , grows

above the linear viscoelastic envelope (LVE) prediction.

A detailed theoretical framework for a bidisperse blend of

entangled polymers has been established by Read et al. [26],

where the enhanced stretch relaxation time appears naturally

within the theory: This occurs for blend parameters which

(as noted above) fall within region 3c of the modified Viovy

diagram. In terms of the short chain length, they should be

sufficiently short that the long chains can locally explore the

fat tube by CR motion; on the other hand, the short chains

should not be too short, otherwise, rapid CR along the fat

tube accelerates the long chain stretch relaxation: for more

details, see [26,30].

Although much simpler, the RDP and SRDP models

contain the same enhanced stretch relaxation time arising for

the same physical reasons as [26]. We consider the limit in

which the short chain dynamics are fast compared to the

stretch relaxation of the long chains (τd,S=τs,L � 1) and also

fast compared to flow time scales ( _ετd,S � 1, where _ε is the

typical strain rate). In this case, any tensors related to the

short chains will relax quickly on the important time scales

of either long-chain stretch relaxation, or of flow, and in par-

ticular, we have ALS � I. Hence the stretch, λL, of the

L-chain, defined in Eq. (13), is

λ2L ¼
1

3
fSTrALS þ fLTrALLð Þ

� fS þ
1

3
fLTrALL, τd,S=τs,L � 1: (34)

We take the time derivative of Eq. (34), and use Eq. (17)

keeping only the stretch relaxation term, to obtain

2λL
dλL

dt
�
fL

3
�

2

τs,L
(1� λ�1

L )TrALL

� 	

: (35)

We then use Eq. (34) to arrive at

dλL

dt
¼ �

1

τs,L

(1� λ�1
L )(λ2L � fS)

λL
: (36)

We write the stretch as λL ¼ 1þ ‘L, where ‘L is the “extra”

stretch. Therefore, we have

1� λ�1
L ¼ ‘L=(1þ ‘L), λ2L � fS ¼ fL þ 2‘L þ ‘2L, (37)

so Eq. (36) gives the time evolution of the extra stretch

d‘L
dt

¼ �
1

τs,L

‘L(fL þ 2‘L þ ‘2L)

(1þ ‘L)
2

�
� fL

τs,L
‘L, ‘L � 1

� 1
τs,L

‘L, ‘L � 1

(

: (38)

We see that the “effective” stretch relaxation time of the

L-chains at small stretch (‘L � 1) is

τeffs,L ¼
τs,L

fL

: (39)

The stretch relaxation time is, therefore, renormalized by a

factor f�1
L . 1, so, the long chains (blended with short

chains) will start to show the stretch effects at smaller flow

rates than if there were no short chains. In uniaxial elonga-

tion, we therefore expect hardening for flow rates such that
_ετeffs,L . 1. At large stretch, ‘L � 1, there is no renormaliza-

tion of the stretch relaxation time.

We illustrate this phenomenon in Fig. 2, where the predic-

tions of our RDP model in uniaxial extension are shown,

FIG. 2. Illustration of the enhanced stretch relaxation time using the RDP

model. Logarithms of the stress growth coefficient in elongation, ηþE as a

function of time for different elongation rates indicated in the figure legend

for a blend of S-chains (τd,S ¼ 0:05, τs,S ¼ 0:01) with, fL ¼ 0:05, L-chains
(τd,L ¼ 100, τs,L ¼ 1), in arbitrary units. We set λmax � 1. According to Eq.

(39), the enhanced stretch relaxation time is τs,L=fL ¼ 20. Time scales are

placed on axis to aid interpretation: τd,L indicates the terminal relaxation time

of the LVE, and short chains are not stretched as all flow rates are below

τ�1
s,S . Although elongation hardening is expected at rates above τ�1

s,L , the

enhanced stretch relaxation time can be seen to give hardening at much

lower rates than this.
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in arbitrary units, effectively without finite extensibility

(λmax � 1). Short chains (τd,S ¼ 0:05, τs,S ¼ 0:01) are blended
with 5% of long chains (τd,L ¼ 100, τs,L ¼ 1). When the elon-

gation rate, _ε, is small, the stress growth coefficient (viscosity),

ηþE , follows the LVE. Note that η
þ
E ; (σxx � σyy)= _ε in uniaxial

elongation along the x-axis. The onset of elongation hardening

is clearly seen for _ε ¼ 0:05 and above. This is in agreement

with Eq. (39) as τs,L ¼ 1 and fL ¼ 0:05 so that τeffs,L ¼ 20, and

elongation hardening is expected for _ετeffs,L . 1. Another feature

of Fig. 2 is that the stress grows but then reaches a maximum

for flow rates between 0.05 and 1; but then it continues to grow

for larger flow rates. This has to do with nonlinear terms in Eq.

(38) since, for large ‘L, the effective relaxation time returns to

simply τ�1
s,L. Hence, for (τ

eff
s,L)

�1
, _ε , (τs,L)

�1, we expect the

onset of extension hardening, but for it to be limited when

nonlinearities become important.

We now illustrate this further by examining the stretch in

thin and fat tubes in detail. As noted earlier in Sec. II B, the

tensor AL may be considered to be the configuration tensor for

a “thin tube” entanglement segment, with associated thin tube

stretch λthin ¼ (TrAL=3)
1=2, while ALL is the configuration

tensor for a “fat tube” entanglement segment, with fat tube

stretch λfat ¼ (TrALL=3)
1=2. In Fig. 3, we present the steady

state values of λthin (a), and λfat (b) as a function of

Wis,L ; _ετs,L, for different dilutions, fL. Note that the thin

tube diameter is fixed for all dilutions, but the fat tube diameter

gets wider with increasing dilution (i.e., with decreasing fL).

For interesting blends (e.g., short chains with long chains),

CR from the short chains is fast, so the thin tube locally equil-

ibrates in the fat tube. When we consider the stress, it is

natural to look at the orientation and stretch at the coarse-

grained lengthscale of the fat tube. When there is significant

stretch at the fat tube lengthscale, we see extension hardening.

From Fig. 3, we note the following:

(i) For intermediate and large values of Wis,L, the steady

state stretch in the thin tube is essentially unaffected by

increasing dilution, i.e., as fL decreases. The only differ-

ences seen are for the extremely small stretches at rates

where _ετd,L , 1, i.e., where the stretch is additionally

relaxed by fat tube reorientation.

(ii) The steady state stretch in the fat tube increases with

increasing dilution, i.e., as fL decreases, and the lowest

flow rate at which significant stretch in the fat tube is

observed gets smaller with increasing dilution. In this

sense, the effective stretch relaxation time along the

fat tube increases as the long chains are diluted.

Consequently, since stress is obtained from orientation

and stretch at the fat tube lengthscale, this means we

observe extension hardening at lower flow rates as long

chains are diluted by shorter ones.

D. Comparison with experimental data

In this section, we pursue a quantitative comparison of the

RDP model predictions against experimental data for the four

bidisperse melts of [26]. As we have noted previously, the

predictions from the SRDP model are indistinguishable from

those of RDP under the flow conditions represented by this

data. The majority of the parameters in the model are fixed

by chemistry, taken from the literature values, or calculated

therefrom. For qualitative purposes, the RDP model requires

no further (free) parameters: The model correctly predicts the

overall trends in the data and could be used (for example) to

make qualitative predictions in complex flow fields. For

quantitative interests (i.e., closely matching the experimental

data), we allow a single fitting parameter to correct for depar-

tures from α ¼ 1 entanglement probabilities (predicted by

double reptation and the chemical composition of the blend),

as discussed in more detail below. This fitting parameter is

set by the linear rheology alone so that predictions of the

nonlinear rheology (shear and extension) are made without

any further intervention. The primary effect of this additional

parameter is to change the orientation relaxation time and

modulus associated with the long chains in the blends, so it

makes no qualitative change to the structure of the model.

FIG. 3. Effect of increasing dilution on the steady state stretch in (a) the thin tube, λthin ¼ (TrAL=3)
1=2 and (b) the fat tube, λfat ¼ (TrALL=3)

1=2, as a function

of Wis,L ; _ετs,L. The volume fraction of long chains, fL, is indicated in the figure legend. Relaxation time parameters are the same as in Fig. 2. Note that

stretches diverge for Wis,L . 1 since finite extensibility is not included here.

TABLE II. Parameters of four binary blends from [26] and from [30] and

[35] for the last two columns.

PI226_23_20 PI226_23_40 PI483_34_40 PS blend 2

T (�C) 25 25 25 130

fL 0.2 0.4 0.4 0.1437

Ge (kPa) 595.5 595.5 595.5 276

ML (kg/mol) 226 226 483.1 390

MS (kg/mol) 23.4 23.4 33.6 51.7

Me (kg/mol) 4.816 4.816 4.816 18.1

τe (s) 1.314�10�5 1.314�10�5 1.314�10�5 0.91

80 BOUDARA et al.



1. Fixed parameters

We use the parameters {τe, Me, ML, MS, Ge}, provided in

Table II of [26], for four blends of (long and short) linear

monodisperse entangled chains [26,30,35]. We reproduce

these parameters in Table II. For these parameters, and

the parameters derived from them below, we use the

“G-definition” from the options described by [36].

2. Calculated parameters

a. Stretch relaxation times. The stretch relaxation times of

the short (S) and long (L) chains are computed from these

fixed parameters, Table II, as follows:

τs,S ¼ ZS
2τe, τs,L ¼ ZL

2τe, (40)

where Z ¼ M=Me is the entanglement number, M is the

molecular mass of the S- or L-chains, Me is the entanglement

molecular mass, and τe is the Rouse time of an entanglement

segment.

b. CLF correction to reptation times. For monodisperse

polymer melts of asymptotically large entanglement number

(Z � 1), the average reptation time is given by

τd ¼ 3Z3τe: (41)

Using Eq. (41) for each reptation time in our model gives the

thin dashed lines in Figs. 4–7, which offers a good qualita-

tive description of the data. We can improve the model pre-

diction by noting that, for chains with finite Z, fluctuations in

the polymer’s contour length (CLF) can facilitate a quantita-

tively significant speed-up of stress relaxation dynamics. In

this case, we can incorporate the effects of CLF as a correc-

tion to the “bare” reptation time, as discussed in [37,38],

such that the relaxation time τd becomes the reptation time

shortened by CLF. More precisely, we define τd by

τd ¼ 3Z3τe fμ(Z), with

fμ(Z) ¼ 1�
2C1

Z1=2
þ
C2

Z
þ

C3

Z3=2
,

(42)

where the function fμ(Z) accounts for the CLF effects. The

coefficients are C1 ¼ 1:69, C2 ¼ 4:17, and C3 ¼ �1:55 [37].

Taking a similar approach for our binary blend, we define

τd,S ¼ 3ZS
3τe fμ(ZS), τd,L ¼ 3ZL

3τe fμ(~ZL), (43)

where ~ZL ¼ fLZL is the effective number of entanglements

along the long chain, after accounting for the CR effects (dilu-

tion from the short chains). The expression for τd,L is as given

by Read et al. [16] for blends in region 3c of the Viovy

FIG. 4. PI226_23_20. Experimental data (symbols) and model predictions using ~fL (solid and dashed lines). (a) LVE. (b) Nonlinear rheology, shear stress

growth coefficients ( _γ ¼ {0.03493, 0.4416, 1.164, 2.22, 4.416, 6.661, 13.25, 22.2, 44.16, 66.61, 132.5, 222} s�1). Thin dashed lines are predictions using Eq.

(41) for τd.

FIG. 5. PI226_23_40. Experimental data (symbols) and model predictions using ~fL (solid and dashed lines). (a) LVE. (b) Nonlinear rheology, stress growth

coefficients. Elongation ( _ε ¼ {0.2321, 6.796, 22.65, 67.64, 225.5} s�1); shear ( _γ ¼ {0.02903, 0.2903, 0.9676, 2.903, 9.676, 22.65, 67.96, 226.5, 679.6} s�1),

top and bottom curves, respectively. Thin dashed lines are predictions using Eq. (41) for τd.
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diagram [see Fig. 1(b)] and corresponds to the case where

chains transport is fastest along the thin tube (hence the use

of bare reptation time 3ZL
3τe) but where there is freedom for

CLF along the fat tube [hence the diluted value of ~ZL is

used in the CLF correction fμ(~ZL)]. Read et al. [16] also

provide expressions that can be used in other regions of the

Viovy diagram. As the short chains become longer and CR

is slowed down, CLF in the fully diluted fat tube is no

longer possible [and ultimately, CLF is only possible in the

thin tube so that Eq. (42) is recovered]. For faster CR

(shorter short chains) blends move into region 4 of the

Viovy diagram, and are further accelerated by CR-induced

reptation along the fat tube.

c. Plateau modulus. Doi–Edwards theory predicts the plateau

modulus to be 4/5 of the rubber modulus, Ge ¼ ρRT=Me,

because entanglements do allow longitudinal motion along the

tube and therefore are different from cross-links [6]. We use

the “G-definition” [36,39,40] of the plateau modulus, which

includes this 4/5 prefactor from Doi–Edwards theory. Hence,

the value of the (experimentally observed) plateau modulus,

G0
N , that we use in Eq. (12), is taken as

G0
N ¼

4

5

ρRT

Me

¼
4

5
Ge, (44)

where Ge is the value reported in Table II.

In Table III, we summarize the calculated parameters used

to produce the predictions in Figs. 4–7.

3. Fitting parameter ~fL

The RDP model requires no free parameters for qualitative

purposes, however, for quantitative comparisons, we allow a

single fitting parameter to correct for departures from the

ideal binary picture of entanglement probabilities (α ¼ 1).

The double reptation approximation assumes that the number

of entanglements between chains i and j scales as fifj, and

so in a sense the RDP and SRDP models treat volume frac-

tions as a proxy for computing entanglement densities.

Experimentally, however, the long chains in a bidisperse

melt are often found to be less self-entangled than a simple

double reptation approximation would predict; this effect is

especially visible when the relaxation times of short and long

chains are well separated. For such melts, the double repta-

tion approximation predicts that the effective entanglement

molecular weight in the long chains should scale with 1=fL.

However, this assumes that all parts of the long chains

provide “slow” entanglement constraints on the time scale of

the terminal relaxation. In reality, CLFs and the faster repta-

tion modes relax the outer portions of long chains relatively

quickly so that by the time of the terminal relaxation the

effective dilution of the entanglements constraining the long

chains is reduced to a smaller fraction ~fL 	 fL. Such an

FIG. 6. PI483_34_40. Experimental data (symbols) and model predictions using ~fL (solid and dashed lines). (a) LVE. (b) Nonlinear rheology, stress growth

coefficients in elongation ( _ε ¼ {0.12, 1.2, 10.4, 100.4} s�1). Thin dashed lines are predictions using Eq. (41) for τd.

FIG. 7. PS Blend 2. Experimental data (symbols) and model predictions using ~fL (solid and dashed lines). (a) LVE. (b) Nonlinear rheology, stress growth

coefficients in elongation ( _ε ¼ {0.001, 0.003, 0.01, 0.03, 0.1} s�1). Thin dashed lines are predictions using Eq. (41) for τd.
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effect was noted by Shahid et al. [34] in examining dilution

by short, oligomeric chains: Despite the actual dilution expo-

nent being equal to one, the apparent dilution exponent for

terminal modulus was found to be greater than one, because

of the change in the relaxation spectrum toward a greater pro-

portion of fast modes as the number of long chain entangle-

ments decreased. Likewise, Read et al. [16] noted a similar

effect in their assessment [based on Eq. (43)] of the change

in terminal time for long chains upon dilution. Hence,

without further correction our model will tend to over-

estimate the stress contribution from long chains.

It is beyond the scope of the present report to account for

this effect in detail. Nonetheless, as a practical (albeit phenom-

enological) solution, we can simply replace the true volume

fraction of long chains with its diluted value, fL ¼ ~fL and

fS ¼ 1� ~fL, where the diluted fraction ~fL is a free (fitting)

parameter assumed to take a value a little less than the total

long chain fraction. The value of ~fL is determined from a best

fit between the model and the experimental data of the linear

rheology, cf. Figs. 4(a)–7(a), giving the values reported in

Table III. A similar fitting parameter was used in [26]. Note

that with only two relaxation times, we are able to obtain a

reasonably good match (but not perfect) between the linear

rheology predictions and the data. Other than the tube model

parameters listed in Table II, ~fL is the only fitting parameter

used in this section. Subsequently, the nonlinear rheology

predictions are produced without extra fitting parameters.

4. Nonlinear rheology predictions

Nonlinear data and model predictions for the viscosity

[in shear ηþ ; σxy= _γ and in uniaxial elongation

ηþE ; (σxx � σyy)= _ε] are shown in Figs. 4(b)–7(b) using

Eqs. (41) (dashed lines) and (43) (lines) for the reptation

times. In the former case, the RDP model captures the

qualitative features of the experimental data, while in the

latter case, the RDP model quantitatively matches the experi-

mental data in elongation at all elongation rates. Since an

enhanced stretch time is evident in the data (see, e.g., [30]),

we conclude that our model likewise provides a physically

realistic description of the same phenomena. However, in

shear, the weaknesses of our small-mode constitutive model

are more apparent. Whereas the detailed model of [26] quan-

titatively matched the same data over the entire range of

shear rate, the RDP model tends to overpredict shear stresses

at the highest shear rates considered in the experimental data

presented here. Here, we interpret the success of the detailed

model of Read (and the failure of RDP) in terms of

shear thinning physics that emerge only in a full chain consti-

tutive model. Specifically, stretch relaxation in the full chain

model pulls the outer chain sections into the more oriented

tube segments surrounding the chain center; this is an addi-

tional alignment mechanism which produces greater shear

thinning. Note also that other authors [41–44] have found it

necessary to include an orientation dependent friction coeffi-

cient in fast elongational flow, which could also be used here

to better model the transition to steady state elongational

flow. The only data here which reliably shows a steady state

extensional flow is that in Fig. 7(b), which was taken using

the filament stretching rheometer of the Hassager group

[35,45].

5. Note on the CCR parameter βCCR

In the original paper presenting the Rolie-Poly model

[10], the CCR parameter βCCR was conceptually introduced

as a universal constant for the rheology of linear entangled

polymers, independent of chemistry and molecular weight. It

was found that βCCR ¼ 1 was the smallest possible value that

would prevent excessive shear thinning (i.e., shear banding)

for all possible polymers at all possible shear rates.

Therefore, the authors recommended βCCR ¼ 1 as a default

value of the parameter. At the same time, however, the

authors recognized that for the purposes of quantitative com-

parisons to experimental data at modest entanglement

numbers, Z ≏ 20, lower values of βCCR lead to better results.

TABLE III. Computed parameters using Eqs. (40) and (43). fL is adjusted

to ~fL for best fit in the linear rheology. The percentage change is shown in

brackets.

PI226_23_20 PI226_23_40 PI483_34_40 PS blend 2

G0
N (kPa) 476 476 476 221

τd,L (s) 0.959 1.49 20.4 3860

τs,L (s) 2:89� 10�2 2:89� 10�2 0.132 422

τd,S (s) 8:14� 10�4 8:14� 10�4 3:13� 10�3 8.84

τs,S (s) 3:10� 10�4 3:10� 10�4 6:40� 10�4 7.42
~fL 0.15 (�25%) 0.3 (�25%) 0.3 (�25%) 0.12 (�17%)

FIG. 8. (a) and (b) Model predictions using βCCR ¼ 0 to be compared with the model predictions in shear of Figs. 4(b) and 5(b), respectively.
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In this regard, there is precedent to treat βCCR as a fitting

parameter rather than a universal rheological constant. In the

context of our blend models, allowing βCCR to vary but

fixing βth ¼ 1 creates a conceptual disconnect with the treat-

ment of CR, but it also offers an indisputably useful handle

for tuning the nonlinear rheological predictions of the model.

In Fig. 8, we present the model predictions using βCCR ¼ 0

for the two sets of nonlinear shear data, Figs. 4(b) and 5(b).

For this particular case, it is evident that using βCCR ¼ 0

instead of βCCR ¼ 1 improves the model predictions at high

shear rates. Note that the βCCR parameter has practically no

influence on the model predictions for elongational flow.

Hence, in Sec. III, focusing on elongational data of poly-

disperse polymer melts, the value we use (βCCR ¼ 1) is

rather unimportant.

III. POLYDISPERSE MELTS: BLEND OF n SPECIES

A. Generalization of the RDP and SRDP models to n

species

We can generalize Eqs. (12)–(15) to a blend of n mono-

disperse entangled linear polymers. The total stress is then

the sum of the stresses coming from each species i, weighted

by their volume fraction, fi, and finite extensibility function

related to their stretch λi

σ ¼ G0
N

X

n

i¼1

fi fE(λi)Ai with λi ¼ (TrAi=3)
1=2: (45)

The conformation tensor Ai accounts for the stresses that

come from the interaction of the species i with itself and the

other (n� 1) species. Hence, we write

Ai ¼
X

n

j¼1

fjAij, (46)

where Aij is the stress conformation tensor on the i-chains

coming from their entanglements with the j-chains.

A
r

ij ¼ �
1

τd,i
Aij � I
� �

�
2(1� λ�1

i )

τs,i
fE(λi)Aij

� Aij � I
� � βth

τd, j
þ βCCR

2(1� λ�1
j )

τs,j
fE(λj)λ

2δ
i

 !

: (47)

Equations (45)–(47) constitute the polydisperse RDP model.

Similarly, Eqs. (45), (46), and (48) define the corresponding

polydisperse SRDP model:

Given that these two polydisperse models are also in quanti-

tative agreement for the predictions that follow, we focus

again on the RDP model results. To compute rheological pre-

dictions from the model, we only require information about

the molecular weight distribution and the tube model parame-

ters (Me, τe, and G0
N) of the material, from which we can

obtain the volume fractions fi and reptation and stretch

relaxation times, τd,i and τs,i, respectively.

For the case of bidisperse blends, as discussed in Sec. II D 3,

the qualitative features of the data were well predicted by

simple estimates of the relaxation times and volume frac-

tion of long chains [see dashed lines in Figs. 4(b)–7(b)].

However, quantitatively matching the data (especially, the

linear rheology) required more detailed calculation, and

was significantly improved by treating the volume fraction
~fL as an adjustable parameter (though constrained to a

physically meaningful range ~fL , fL). Similar consider-

ations apply for polydisperse blends. As we will show

below, it is again possible to capture the qualitative features

of the data via simple estimates of relaxation times and

weight of each fraction: If the goal of the modeling exercise

is to investigate these qualitative effects of polydispersity

then this is sufficient. However, quantitative predictions of

experimental data require more work in order to obtain the

relaxation times and contribution to the modulus of each

component in the polydisperse mixture. We have found

that the broad distribution of relaxation times in truly poly-

disperse mixtures means that a double reptation approxima-

tion can result in successful quantitative predictions, provided

care is taken in computing the appropriate CLF corrections

for each τd,i, as we discuss in the Appendix. In Sec. III B, we

present the RDP model predictions with and, for comparison,

without the CLF corrections presented in Subsection 2 of the

Appendix.

B. Comparison with experimental data

We compare our RDP model predictions with elongational

viscosity data of three sets of polydisperse polystyrene (PS)

melts from [46–48]. If the molecular weight distribution con-

tains short unentangled chains, we renormalize each volume

fraction using Eq. (A1), and the literature values of the entan-

glement molecular weight, entanglement relaxation time, and

plateau modulus using Eqs. (A2)–(A4), respectively. The

stretch relaxation times are calculated as τs,i ¼ Z2
i τe. There are

then two options: (i) we may use the “naïve” relation τd ¼

A
r

ij ¼ �
1

τd,i
Aij � I
� �

�
1

2

2(1� λ�1
i )

τs,i
fE(λi)þ

2(1� λ�1
j )

τs,j
fE(λj)

 !

Aij

� Aij � I
� � βth

τd, j
þ
1

2
βCCR

2(1� λ�1
i )

τs,i
fE(λi)λ

2δ
i þ

2(1� λ�1
j )

τs,j
fE(λj)λ

2δ
j

 ! !

: (48)
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3Z3τe to calculate the τd,i or (ii) we make predictions of the

reptation relaxation times using the “recipe” suggested in Eqs.

(A5)–(A7) and include the CLF corrections to the modulus;

this involves calculating an effective dilution factor fdil for the

dominant CLF mode of each component. These two options

result in the dashed and solid lines, respectively, in Figs. 10,

12(a), and 13.

We remind the reader that the polydisperse RDP model,

Eqs. (45)–(47), has no free fitting parameters to predict the

linear and nonlinear rheology of polydisperse melts: The

model only requires the volume fractions fi and reptation

and stretch relaxation times, τd,i and τs,i, which can be

obtained from the molecular weight distribution and tube

model parameters (τ0e , Me
0, ~G

0

N) of the material, according to

the Appendix. Note that the same tube model parameters are

used in the model for the three PS samples presented below.

We also note that the polydisperse RDP model with all

the corrections aiming at improving the quantitative model

predictions, as presented in the Appendix, has now been

added to the new version of the free and open source rheol-

ogy software RepTate,3 developed by some of the authors of

this manuscript. Additionally, RepTate software presents a

molecular weight distribution discretization module

(described below) from which the RDP model can predict a

corresponding set of stress relaxation times, as presented in

the Appendix.

1. “PS III and PS IV” of Münstedt

We duplicate the molar mass distribution of two polydis-

perse PS samples, presented in Fig. 1 of [46], using

WebPlotDigitizer,4 a web based tool to extract data from

plots and images. The result are the black lines in Fig. 9. We

discretize the molar mass distributions of these two PS

samples using the “discretize” theory of RepTate.3 The

results of the discretization are the bar plots in Fig. 9, where

(i) The bin edges are equally spaced in log-scale (by default).

(ii) The area of the ith bin (height times width in log-scale)

is equal to the area under the curve delimited by the bin

edges. It represents the volume fraction f0
i used in our

model [see Eq. (A1)].

(iii) The molecular mass, Mi, is the weight-averaged molecu-

lar mass calculated over the bin width. It is represented

by the thick tick mark on the x-axis.

We used 16 discretization bins for both the PS III and PS IV

samples and verified that a higher number (two and four

times more) does not change the subsequent nonlinear rheol-

ogy predictions.

The characteristics of the two PS samples, PS III and PS

IV, are tabulated in Table IV, where

hMki

Mk
;

P

i f
0
iM

k
i

P

i f
0
iMi

� �k
, k 
 2 (49)

are high-order molar mass averages that emphasize the high

molar mass tail of the molar mass distribution. We can

see from Table IV that while the PS III sample has a

higher weight-average molar mass, Mw, than the PS IV

sample, it has a smaller polydispersity, Mw=Mn, and a shorter

high-molar mass tail. All experimental data were collected at

160 �C, and PS literature values for the entanglement param-

eters are τ0e ¼ 3:4� 10�3 s,5 Me
0 ¼ 16:6 kg/mol, and

~G
0

N ¼ 0:2MPa [49].

Figure 10 presents the predicted Hencky stress growth

coefficient (elongational viscosity), for the PS III and PS IV

samples at various elongation rates. We may note that the

linear rheology is not perfectly predicted: The model slightly

over predicts the LVE for the PS IV blend. The discrepancies

in the LVE between the experimental data and the model

FIG. 9. Molar mass distribution of the PS III and PS IV blends of [46] (lines) and discretization (bars) produced by RepTate software. The area of the ith bar

represents fi, and its associated molecular mass, Mi, is the weight-averaged molecular mass of the bar width, represented by the thick tick marks.

Characteristics of these distributions are reported in Table IV, and the discretization method is discussed in the main text.

3Ramirez, J. and V. A. H. Boudara, “RepTate software,” (2018).

Documentation and installation instructions: http://reptate.readthedocs.io/.
4https://automeris.io/WebPlotDigitizer/. 5Material database of RepTate software reptate.com.
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indicates that more work on the prediction of the τd,i is

required for quantitatively accurate predictions of linear rhe-

ology. Our focus, however, is on the nonlinear rheology, and

we can see that despite the relatively small differences

between the molar mass distribution of the PS III and PS IV

samples, cf. Fig. 9 and Table IV, there is an obvious differ-

ence in their response to nonlinear flow. This difference is

captured by our model, especially the elongation hardening

feature, i.e., where the viscosity departs from the LVE, as we

now discuss.

Experimental data of the PS IV sample showed a clear

elongation hardening at the two highest elongation rates,
_ε ¼ {0:07, 0:3} s�1, see Fig. 10, and marginally at
_ε ¼ 0:015 s�1. These features are captured by the RDP

model, which shows elongation hardening occurring at the

two highest elongation rates, _ε ¼ {0:07, 0:3} s�1. In con-

trast, our RDP model predicts that the PS III sample does

not present elongation hardening, even at the highest flow

rate, _γ ¼ 0:07 s�1. These results are in qualitative agree-

ment, for the elongation hardening feature, with experimen-

tal data of Munstedt [46], where the PS III sample does

not present elongation hardening at _ε ¼ 0:07 s�1, while the

stress response of the PS IV sample is above the LVE at

that flow rate. Indeed, it is clear that even when the

“naïve” expression for the τd,i is used [Eq. (41), thin

dashed lines in Fig. 10], then the qualitative features

pertaining to extension hardening are captured, even if the

LVE is not.

2. “Spiked PS” of Minegishi et al.

We compare our RDP model predictions with experimen-

tal data of a polydisperse PS sample (Mw ¼ 4:23� 105 g/mol,

Mw=Mn ¼ 2:36) blended with 1.5 wt. % of ultra-high molec-

ular weight PS (Mw ¼ 3:22� 106 g/mol, Mw=Mn ¼ 1:05)
[47]. The discretization of the molecular weight distribution

of that spiked PS sample can be found in [23]. Note that [23]

makes good predictions of these data using an alternative

nonlinear model. All experimental data were collected at

160 �C, so we use the same PS entanglement parameters as

above.

In Fig. 11, we compare the relaxation times we obtained

using Eq. (A5) to those displayed in Table 1 of [23], which

are calculated orientation and stretch relaxation times for

the theory presented there. The values of τs we obtained

are consistently above those reported in [23]. Moreover,

the values of τd we calculated do not follow a straight line

on the log-log plot as is the case with the values of [23]

[which were obtained using the simple relationship

τd(M) ¼ KM3:4]. This is due to the fact that our calculated

effective dilution, fdil, (see Subsection 2 of the Appendix

for details) does not decrease linearly with increasing chain

molecular weight: The speed-up in relaxation is more

pronounced for the long chains. Note that, rather than the

“continuous” molecular weight distribution (as was the

case for the Münstedt samples above), only the “already-

discretized” set of volume fractions and molecular mass

components was published.

In Fig. 12, we present the model predictions of the elonga-

tional viscosity corresponding to the two sets of relaxation

times presented in Fig. 11. In Fig. 12(a), we use the reptation

and stretch relaxation times calculated using Eq. (A5). In

Fig. 12(b), we use the reptation and stretch relaxation times

directly extracted from Table 1 of [23].

FIG. 10. Logarithm of the elongational viscosity as a function of time

for the two PS blends described in Fig. 9. Top curves: PS III with
_ε ¼ {0:003, 0:015, 0:05, 0:07} s�1. Bottom curves: PS IV with _ε ¼
{0:00075, 0:0031, 0:015, 0:07, 0:3} s�1. Symbols are the experimental

observations. The dashed and solid lines are the RDP model predictions

using, for τd,i, Eq. (41) and the CLF corrections presented in Section 2 of the

Appendix, respectively. Tube model parameters are τ0e ¼ 3:4� 10�3 s,

Me
0 ¼ 16:6 kg/mol, and ~G

0

N ¼ 0:2MPa.

TABLE IV. Characteristics of the two PS melts. “Ref.” and “Discr.” are

values reported in [46] and calculated from the bin representation of Fig. 9

(used to produce the predictions of Fig. 10), respectively.

PS III PS IV

Ref. Discr. Ref. Discr.

Mw (kg/mol) 253 253 219 224

Mw=Mn 1.9 1.56 2.3 2.07

hM2i=M2 1.19 1.17 1.69 1.70

hM3i=M3 1.55 1.51 4.2 4.32

hM4i=M4 2.23 2.09 14.55 15.0

FIG. 11. Orientation and stretch relaxation times used in our simulations.

Symbols are the relaxation times calculated from the molecular weight distri-

bution using Eq. (A5). Dashed lines are the relaxation times given in Table 1

of [23]. The corresponding model predictions of the viscosity are presented

in Figs. 12(a), and 12(b), respectively.
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We note that the LVE is better captured by the relaxation

times used in Fig. 12(b), which were generated using the

empirical relationship τd(M) ¼ KM3:4. However, we note that

the elongation hardening feature is better captured in

Fig. 12(a), i.e., using the RDP model with our calculated

relaxation times rather than the ones from Table 1 of [23]. In

particular, the experimental data show elongation hardening

at all rates, which is clearly captured in Fig. 12(a) for the

three highest elongation rate, and a milder hardening for the

lowest one, whereas, in Fig. 12(b), elongation hardening in

only seen for the two highest elongation rates. This observa-

tion supports our CLF corrections to reptation time

(Appendix) grounded in detailed physics rather than empiri-

cal correlations.

3. “P1” solution of Ye and Sridhar

We compare our RDP model prediction against a 7% sol-

ution of entangled polydisperse PS with an average molecu-

lar weight of 2:65� 106, which Ye and Sridhar [48]

produced by mixing 18 components of nearly monodisperse

PS ranging from 5� 104 to 3� 107 g/mol. We consider each

molecular mass component and their respective weight frac-

tions as input for our model, similarly to the “spiked PS”

case above. Experimental data were collected at 21 �C. We

use τ0e ¼ 5� 10�3 s, Me
0 ¼ 235 kg/mol, and ~G

0

N ¼ 619 Pa

which are the entanglement molecular mass and plateau

modulus of a 7% solution of PS, as reported by [48].

In Fig. 13, we present the experimental viscosity at

various flow rates, both in shear (bottom symbols) and uniax-

ial elongation (top symbols), reported in [48], together with

our RDP model predictions. The RDP model provides a

good quantitative prediction in uniaxial elongation and cap-

tures the onset of elongation hardening. In shear, we observe

that the model predictions are slightly above the LVE and the

steady state viscosity is also slightly over-predicted.

However, the qualitative trend is similar to the experimental

data for both shear rates. The model predictions correspond-

ing to _γ ¼ 2 exhibit a small shoulder at late time. Upon close

inspection of the experimental viscosity data, a nearly unde-

tectable increase in viscosity at very late time can be

observed too.

IV. CONCLUSIONS

In this work, we proposed two simplified tube models for

polydisperse melts of linear polymers which combined the

success of the double reptation approximation [15] in the

linear regime with the success of the Rolie-Poly constitutive

equation [10] in the nonlinear regime. These two models

have different origins: The RDP model is simplified from the

Read et al. model [26], while the SRDP model combines the

same building blocks but in a symmetric fashion for a com-

putational advantage. Overall, however, the RDP and SRDP

model predictions were found to be effectively indistinguish-

able from one another in the cases presented in this work

(and for a wide set of parameters). In the case of bidisperse

blends of long and short chains, we showed that the RDP

model contained the “enhanced stretch relaxation time” that

was observed experimentally [9] and explained theoretically

[26]. Given the quantitative similarity in the predictions for

FIG. 13. Uniaxial elongation ( _ε ¼ {0:1, 1} s�1) and shear ( _γ ¼ {0:05, 2}
s�1) rheology of the P1 sample of [48], top and bottom curves, respectively.

Symbols are the experimental observations. The dashed and solid lines are

the RDP model predictions using, for τd,i, Eq. (41) and the CLF corrections

presented in Section 2 of the Appendix, respectively. Tube model parameters

are τ0e ¼ 5� 10�3 s, Me
0 ¼ 235 kg/mol, and ~G

0

N ¼ 619 Pa [48].

FIG. 12. Extensional viscosity as a function of time for the spiked PS sample for _ε ¼ {0:013, 0:047, 0:097, 0:572} s�1, as indicated in the figure legend. (a)

With relaxation times calculated from the molecular weight distribution using Eq. (A5). (b) Using the relaxation times from Table 1 of [23]. Symbols are the

experimental observations. The dashed and solid lines are the RDP model predictions using, for τd,i, Eq. (41) and the CLF corrections presented in Section 2 of

the Appendix, respectively. Tube model parameters are τ0e ¼ 3:4� 10�3 s, Me
0 ¼ 16:6 kg/mol, and ~G

0

N ¼ 2� 105 Pa.
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the two models, we show only the RDP model predictions

and comparisons with experimental data for the case of bidis-

perse blends, for various materials, in the linear rheology

regime and in both nonlinear shear and uniaxial extension.

The RDP and SRDP models require no fitting parameters for

qualitative purposes, but for quantitative interests we allow a

single fitting parameter, constrained to a narrow interval, to

correct for departures from the double reptation’s binary

view of entanglements in the bidisperse case. It is adjusted

using linear rheology data and the nonlinear rheology predic-

tions are subsequently produced without extra fitting parame-

ters. The model quantitatively matched the experimental data

in elongation at all elongation rates. This means that we are

capturing enhanced stretch relaxation time correctly. In shear,

the model was less successful at predicting the blend’s rheol-

ogy at moderate to high shear rates, where the more detailed

model of Read et al. [26] had no difficulty by comparison.

Here, we found it was possible to improve quantitative agree-

ment with an individual experimental data set by empirically

adjusting the value of the CCR parameter, βCCR, as has previ-

ously been done for matching experimental data in monodis-

perse melts.

Finally, we generalized the RDP and SRDP models to a

blend of n monodisperse entangled linear polymers and

developed a method to account for the CLF effects on the

reptation times. This method, aimed at improving the qualita-

tive fit to data, corrects the naïve “τd ¼ 3Z3τe” estimate and

proved to be robust when we compared the elongational flow

predictions of the RDP model to experimental nonlinear rhe-

ology observation of the polydisperse “PS III” and “PS IV”

of [46], “spiked PS” of [47], and “P1 solution” of [48].

However, we observed that our method for determining

relaxation times and moduli, detailed in the Appendix, has a

general tendency to (slightly) overpredict the LVE.

Considering the PS IV sample, which contained high

molar-mass components, the elongation hardening that was

seen experimentally in [46] could be qualitatively reproduced

using our RDP model: It showed elongation hardening occur-

ring at the same elongation rates as the experimental data. In

contrast, the “PS III” sample, which did not contain high

molar-mass components, did not present the hardening fea-

tures experimentally, and this was also reproduced correctly

by our RDP model. Then, we considered the “spiked PS,” a

polydisperse PS sample blended with a high molecular

weight component [47]. The RDP model captured success-

fully the extension hardening at all rates. Finally, the RDP

model predictions showed qualitative, in shear to quantita-

tive, in elongation, match to the experimental data of the

“P1” polydisperse solution of entangled PS of [48].

Hence, given a molecular mass distribution, the RDP and

SRDP models can successfully predict when, and at which

elongation rate, elongation hardening might occur. We empha-

size that the models do so without any fitting parameter.

We also note that the RDP model, with the static and

dynamic dilution corrections presented in this work, is

readily available in the free and open source RepTate soft-

ware,3 where the user can make predictions of start-up shear

and elongation rheology with the molecular weight distribu-

tion of the polydisperse polymeric material as input.

The work presented here is therefore a step forward to the

possibility of predicting the rheological properties of industri-

ally polydisperse polymer melts accurately and robustly,

which would be a major advance for industries manufactur-

ing textiles, automobiles, aircraft, paints and coatings, cos-

metics and consumer products, oil-field fluids, and others. To

further demonstrate this final assertion, recent CFD flow sim-

ulations using the bidisperse SRDP model will be presented

in a forthcoming paper.
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APPENDIX: STATIC AND DYNAMIC DILUTION

CORRECTIONS

1. Static dilution: Short unentangled chains

In this section, we outline a set of corrections (including

the aforementioned CLF corrections) that reflect our present

understanding of the detailed physics relevant to entangled

polymer blends. Making use of this discussion of detailed

physics, in the main body of the paper, we present a quantita-

tive comparison of our parameter-free model, described by

Eqs. (45)–(47) against experimentally reported findings on

the elongational viscosity of various PS melts [46–48] in

Sec. III B.

A well entangled polymer melt with a broad distribution

of molecular weights will invariably include some fraction of

chains whose molecular weight, M, falls below the entangle-

ment molecular weight Me
0. It is not appropriate to describe

those unentangled chains with the same physics that apply to

the larger, well-entangled chains, so we partition the molecu-

lar weight distribution into entangled (M . 2Me
0) and unen-

tangled (M , 2Me
0) fractions, where, for reasons that will

become evident shortly, we denote the entanglement molecu-

lar weight in the melt state as Me
0. The unentangled fraction,

comprising a total volume fraction fu, is treated as a small-

molecule solvent and is otherwise neglected from the calcula-

tions. We assume that the molecular weight distribution of

the entangled fraction is discretized into components, i, and

renormalize. Specifically, we renormalize (i) the volume frac-

tion of each entangled component so that the total volume

fraction of entangled species is unity, (ii) the entanglement

molecular weight of the entangled components, (iii) the

relaxation time of an entanglement segment, and (iv) the

plateau modulus according to

fi ¼ f0
i =(1� fu), (A1)
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Me ¼ Me
0=(1� fu), (A2)

τe ¼ τ0e=(1� fu)
2, (A3)

G0
N ¼ (1� fu)

2 ~G
0

N , (A4)

with f0
i the volume fraction of species i before renormaliza-

tion, and Me
0, τ0e , and

~G
0

N the literature values for the entan-

glement molecular weight, entanglement relaxation time, and

plateau modulus, respectively. These transformations leave

the stretch relaxation times unchanged but decrease the repta-

tion times by a factor (1� fu). In the following calculations,

and in the main text, we use the renormalized quantities.

2. Dynamic dilution

This section presents the CLF corrections to the RDP

model that one can include in order to gain a more qualitative

description of the data. We advise the reader that it is possi-

ble to ignore these corrections (and return to Sec. III B) by

using Eq. (41) for the reptation time of each molecular

weight component of the system. In that case, the RDP

model produces a good qualitative description of the polydis-

perse data, as shown by the thin dashed lines in Figs. 10,

12(a), and 13.

a. CLF corrections to reptation times

For each molecular mass component, Mi, of the molecular

weight distribution, we approximate the reptation time, τd,i,

and stretch relaxation time τs,i, from the entanglement relaxa-

tion time as

τd,i ¼ 3Z3
i fμ(

~Z i)τe, τs,i ¼ Z2
i τe, (A5)

with Zi ¼ Mi=Me being the entanglement number of the ith

species, fμ(Z) is the CLF correction to reptation as in Eq.

(43) [37], and ~Zi ¼ fdil,iZi is the effective number of entan-

glements on the chain i, assuming a dilution exponent of 1

[29], where fdil,i is the effective dilution to be calculated

below.

Equation (A5) works, broadly, within the “dynamic dilu-

tion” picture of tube dynamics, which considers that the

effective “tube” constraint felt by a given test chain depends

on the time scale of the motion being considered. After relax-

ation of shorter (entangled) chains, they release their entan-

glements on longer chains and so, in some sense, act as

“solvent” for the longer chains. Hence, depending on the

time scale, a test chain may “feel” different tubes, as illus-

trated in Fig. 14, with different tubes representing the dilution

as various short chain species relax.

However, it is pointed out by Read and co-workers

[1,16,26] for the case of binary blends that the relevant tube

depends upon the motion being considered. Reptation motion

along the contour of a smoother “diluted” tube requires the

chain to move a shorter distance, but it involves a larger fric-

tion because each step along the diluted tube requires CR

from the shorter chains. On the other hand, reptation along

the thinnest tube is subject only to the friction from the chain

monomers. In most cases, the fastest reptation motion

remains the low-friction motion along the thinnest tube, and

this is reflected in Eq. (A5) where it is the bare reptation time

for motion along the thin tube (3Z3
i τe) that is modified by

CLF contributions. However, even if reptation is fastest along

the thinner tube, the extra freedom given to the chain by CR

events can permit deeper CLFs commensurate with the

diluted tube, which speeds up the terminal relaxation because

CLF shortens the distance required to reptate [16,26]. This is

reflected in the factor fμ(~Z) of Eq. (A5), but we need to make

a choice as to which diluted tube is appropriate for the CLF

of a given test chain. For a given dilution, fdil, the predicted

CLF time scale is, according to [26], τs=fdil.

For the purposes of the present work, we make the follow-

ing assumptions: (i) The effective dilution at a given time

scale t is fdil(t), which is equal to the sum of the volume

fractions of all chains with relaxation time greater than t; (ii)

CLF makes use of the most diluted tube available at the CLF

time scale. Hence, the dilution fdil used in the formula for

the effective CLF time τeffs ¼ τs=fdil is simply the effective

dilution at that time scale, i.e., fdil(τ
eff
s ). This gives a self-

consistent formula which can be solved to obtain the CLF

time, and appropriate dilution factor for CLF, for a given

chain species. The value of ~Z for that species is then
~Z ¼ fdilZ. This rule allows a prediction to be made for the

relaxation time of each species, and so gives a prediction for

the linear rheology.

In practice, given a set of n molecular mass modes,

{Mi, fi}, to find the value of the dilution factor, fdil,i, for the

species i, we solve

τeffs,i ¼
Z2
i
τe

fdil,i
,

fdil,i ¼
Pn

jmin,i
fj,

(

(A6)

with jmin,i the smallest j such that τeffs,i , τd, j, assuming the

species are ordered: τd,1 , τd,2 , � � � , τd,n, and fj is the

volume fraction of the species j, as in Eq. (45). In case

τeffs,i . τd,n, we set fdil,i ¼ fn.

We solve Eq. (A6) iteratively, starting with the shortest

chains (i.e., i ¼ 1), for which we set fdil,1 ¼ 1 (no dilution),

and the reptation times are computed using Eq. (A5), where

the unknown dilution factors, fdil, are initially set equal to 1.

FIG. 14. Sketch of the different tubes within which the components are con-

fined. The components with the highest molar mass (M) has the fattest tube,

made of entanglements with its own components only. The components with

the smallest molar mass experiences the thinnest tube, made of entangle-

ments with all other components. Intermediate molar mass components are

confined somewhere in between.
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Due to the discretization of the molar mass distribution,

Eq. (A6) gives the same fdil for all species i such that

τd,j�1 , τeffs,i , τd, j and so fdil would follow steps as a func-

tion of i. In practice, we do a linear interpolation to ensure

that the dilution factor is “smoothly” decreasing, i.e., we use

fdil,i ¼ fint,i þ
X

n

jmin,i

fj where

fint,i ¼
τd,jmin,i

� τeffs,i

τd,jmin,i
� τd,jmin,i�1

f jmin,i�1:

(A7)

The interpolated value, fint,i, depends on the “distance”

between τeffs,i and the two neighboring values of τd.

In cases where the dilution factor obtained is such that

Zifdil,i , 1, we conclude that the species i is effectively unen-

tangled so that terminal relaxation is via CR Rouse motion

[1,29,50] rather than reptation: We set τd,i to be a solution of

Zifdil,i(τd,i) ¼ 1, using Eq. (A7) to do the interpolation of fdil,i.

This gives the time when the species i becomes unentangled;

we take this time to be the terminal time of that species.

b. CLF corrections to the modulus

Primitive path fluctuations also reduce the terminal

modulus because of the shortened tube [1,6], therefore, we

correct Eq. (45) by a factor gν [37,38]. The total stress is then

σ ¼ G0
N

X

n

i¼1

gν(~Z i)fi fE(λi)Ai, (A8)

with ~Z i ¼ Zifdil,i and, according to Doi [38] and Likhtman

and McLeish [37]

gν(~Z) ¼ 1�
1:69

~Z
1=2

þ
2:0
~Z

�
1:24

~Z
3=2

: (A9)
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