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Nonlinear robust approaches to study stability and

post-critical behaviour of an aeroelastic plant
Andrea Iannelli, Andrés Marcos, Member, CSS, and Mark Lowenberg

Abstract—Two approaches to tackle the nonlinear robust
stability problem of an aerospace system are compared. The first
employs a combination of the Describing Function method and
µ analysis, while the second makes use of Integral Quadratic
Constraints. The model analyzed consists of an open-loop wing’s
airfoil subject to freeplay and LTI parametric uncertainties. The
key steps entailed by the application of the two methodologies
and their main features are critically discussed. Emphasis is put
on the available insight on the nonlinear post-critical behaviour
known as Limit Cycle Oscillation. It is proposed a strategy to
apply IQCs, typically used to find absolute stability certificates, in
this scenario, based on a restricted sector bound condition for the
nonlinearity. Another contribution of the study is to understand
how the conservatism usually associated with the IQCs multipli-
ers selection can be overcome by using information coming from
the first approach. Nonlinear time-domain simulations showcase
the prowess of these approaches in estimating qualitative trends
and quantitative response’s features.

Index Terms—Robust stability, nonlinear uncertain systems,
integral quadratic constraints (IQCs), describing functions (DF).

I. INTRODUCTION

IN the last two decades great effort has been devoted in

the control community to develop methodologies able to

handle uncertainties and nonlinearities in a unified framework.

One of the main results of this effort is represented by Integral

Quadratic Constraints (IQCs) [1], a powerful tool to assess

the robust stability and performance of nonlinear systems. The

focal idea is to recast the system as a feedback interconnection

of a Linear Time Invariant (LTI) plant G with an operator ∆
that gathers nonlinearities and uncertainties, and then describe

the latter in terms of constraints on its input and output

channels by means of so-called multipliers. IQC can in fact

be viewed as a comprehensive framework reconciling small

gain techniques [2] for the study of uncertain systems on the

one side, and positivity/passivity techniques for nonlinearities

(Lur’e problem) on the other [3].

It is possible to deal with the study of the nonlinear

robust problem within a less general framework than IQC by

tackling the uncertainties and nonlinearities of the system by

means of distinct tools for each. When the focus is only on

LTI parameters or dynamic uncertainties, a well-established

technique, which specializes the small gain theorem to the

case of a structured ∆, is the structured singular value (s.s.v.)

or µ analysis [2], [4]. Once the problem is recast in a Linear

Fractional Transformation (LFT) fashion, a worst-case stability
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and performance analysis of the system can be pursued. And

when the focus is the nonlinearities, a way to introduce them

in the frequency domain framework is represented by the

Describing Function (DF) method [5]. This technique allows,

once the input signal form is specified, to substitute the

nonlinear operator with a quasi-linear one whose output is

a function of some input signal features.

The combination of µ and DF was originally presented in [6]

and then furthered by [7]. While in these foundational works

the theoretical bases of this unified approach were established,

this paper gives novel interpretations of the results available

within the framework, and proposes a methodology to obtain

them in a systematic way. Although in this work its application

to the design of aerospace systems is proposed, the approach

is general and applicable to other engineering fields where is

relevant the study of the post-critical behaviour of the plant.

A modern trend in the aeronautical industry is to design

lightweight aircraft configurations to reduce fuel consumption

and operating costs. Among the most dangerous phenomena

exacerbated by wing flexibility we find flutter, a self-excited

instability in which aerodynamic forces acting on a flexible

body couple with its natural structural vibration modes. This

problem is traditionally tackled in industry with linear nominal

techniques [8], assessing the stability of the system by looking

at the eigenvalues of the system.

However, the increase in flexibility and the demand for a more

realistic description of the system, compel to consider cases

where these hypotheses no longer hold. The aerospace indus-

try, for example, has recently shown interest in research aimed

at evaluating the effect of the uncertainties on instabilities

prompted by the control surface freeplay [9], [10]. Among the

practical goals of these studies, primary is the detection and

characterization of Limit Cycle Oscillations (LCOs) [11]. In

fact, the presence of nonlinearities leads to limited amplitude

flutter, whose investigation is of well-ascertained interest in

order to accomplish a satisfactory design [12]. A well-known

case of an LCO problem is that of the Tornado aircraft

that required redesign of its Spin Prevention and Incidence

Limiting System (SPILS) due to large amplitude rate-limited

oscillations [13].

The contribution of this work is twofold. On the one hand,

it shows how the considered techniques can provide invaluable

insight on the post-critical behaviour of nonlinear systems

affected by uncertainties. The IQC framework, commonly

employed to study the conditions leading to the loss of

absolute stability, is applied to this scenario by adopting a

restricted sector bound condition for the nonlinearity. DF

method has been employed for the prediction of LCOs in
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aeroservoelastic problems [14], [15], with the latter showing its

application, in conjunction with µ analysis, to a plant affected

by uncertainties, but no detailed study of the effect of the

uncertainties in terms of nonlinear response was provided.

This work presents a methodology to quantitatively assess

the nonlinear robust aeroelastic behaviour by introducing the

concept of worst-case LCO curve, which allows the highest

level of oscillations exhibited by the system in the face of

perturbations in the values of the parameters to be estimated.

On the other hand, the article systematically discusses the

modeling and analysis steps needed to pursue a fruitful ap-

plication of these algorithms. The LFT paradigm allows the

formulation of a common starting point for both approaches,

and to provide a model for the plant in an efficient way

(in terms of size of ∆) and reconciling sophisticated repre-

sentation techniques [16] with physical understanding. The

rationale underpinning each technique for the representation

of parametric uncertainties and freeplay nonlinearity will be

discussed, prior to verifying their effects on the results. In

the IQC approach, conservatism of the analyses due to the

multipliers’ selection is investigated and some heuristics are

discussed in view of its acknowledged effect on the accuracy

of the results [17]–[19]. Preliminary results of the studies

discussed in this work were presented in [20].

The layout of the article is as follows. Section II presents

the theoretical problem and introduces the fundamentals of the

tools. Section III describes the aeroelastic system considered

in the work and show in detail how uncertainties and nonlin-

earities are modelled in the adopted frameworks. Section IV

is dedicated to the discussion of the results obtained via DF-

µ approach, whereas Section V reports on the IQC analyses.

Section VI finally proposes a validation of the obtained results

via nonlinear time-domain simulations.

II. THEORETICAL BACKGROUND

This Section presents the theoretical background. Common

notation is adopted [1], [2].

The goal of the work is to study the feedback interconnection

shown in Fig. 1, where G is an LTI system and ∆ : Ln
2e[0,∞]

→ Lm
2e[0,∞] is a causal and bounded operator. The intercon-

nection of G and ∆ is well-posed if for each r ∈ Lm
2e[0,∞]

and f ∈ Ln
2e[0,∞] (exogenous inputs) there exist unique

w̄ ∈ Lm
2e[0,∞] and v ∈ Ln

2e[0,∞] such that the mapping from

(r, f) to (w̄, v) is causal. This is equivalent to require that

(I−G∆) is causally invertible. The interconnection of G and

∆ is absolute stable if it is well-posed and if the mapping from

(r, f) to (w̄, v) has finite L2 gain.This work will investigate the

stability of the interconnection, and its post-critical behaviour

when ∆ holds nonlinearities.

Fig. 1. Feedback interconnection.

A. LFT modeling and µ analysis

The LFT framework [2] provides a formal description of

the feedback interconnection depicted in Fig. 1. Let M ∈
C

(n+p)×(m+q) be partitioned as M = [M11 M12; M21 M22]
and ∆ ∈ C

m×n. The upper LFT [2] with respect to ∆ is:

Fu(M,∆) = M22 +M21∆(I −M11∆)−1M12 (1)

A crucial feature apparent in (1) is that the LFT is well posed

if and only if the inverse of (I−M11∆) exists. If the operator

∆ contains structured LTI uncertainties (we will indicate this

by writing ∆ = ∆u), a robust stability (RS) certificate can

then be obtained applying µ analysis.

The structured singular value [4] µ∆u
(M11) of the complex-

valued matrix M11 with respect to the set ∆u is:

µ =

(

min
∆u

(κ : det(I − κM11∆u) = 0; σ̄(∆u) ≤ 1

)

−1

(2)

where κ is a real positive scalar. The result can then be

interpreted as follows: if µ∆u
(M11) ≤ 1 then there is no

perturbation matrix inside the allowable set ∆u such that

the determinant condition is satisfied, that is, the associated

plant is robustly stable. On the contrary, if µ∆u
(M11) ≥ 1

a candidate (i.e. belonging to the allowed set) perturbation

matrix exists which violates the well-posedness. µ∆(M) is in

general an NP-hard problem, thus all µ algorithms work by

searching for upper bounds µUB and lower bounds µLB [4].

B. Describing Function

The Describing Function method [5] aims to provide an

analogous concept of frequency response for nonlinear sys-

tems. This is pursued by means of a quasi-linearization of

the nonlinear operator φ, after the input signal form has

been specified. In this work we focus on sinusoidal-input

describing functions (SIDF), later abbreviated DF. The interest

in periodic signals is mainly dictated by the presence of steady

oscillations in nonlinear systems, also known as LCOs [11],

which are defined as isolated periodic orbits occurring in

unforced dissipative systems.

The key hypothesis of the DF method is that only the

fundamental harmonic component has to be retained from the

generical periodic output at the nonlinearity. This approxima-

tion relies on the assumption that the linear element filters out

the higher harmonics (filter hypothesis). The DF of a nonlinear

element with output w is the complex fundamental harmonic

gain N(B,ω) of a nonlinearity in the presence of a driving

sinusoid v of amplitude B and frequency ω:

N(B,ω) =
Dej(ωt+θ)

Bej(ωt)
=

D

B
ejθ =

b1 + ja1
B

with D(B,ω) =
√

a21 + b21; θ(B,ω) = arctan(
a1
b1

)

v = B sin(ωt); w ⋍ a1(B,ω) cos(ωt) + b1(B,ω) sin(ωt)
(3)

where a1 and b1 are the Fourier coefficients of the first

harmonic of w. This method treats the nonlinear operator of

Fig. 1 (∆ = φ when it only gathers nonlinearities) in the

presence of sinusoid inputs as if it were a linear element with

a frequency response N(B,ω). Linear theory is then applied

to the quasi-linearized system, searching for points of neutral

stability interpreted as LCOs in the nonlinear system.
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C. Integral Quadratic Constraints

IQC is a well established technique to deal with stability

and performance analysis of nonlinear and uncertain systems

[1] in a unified framework. Let Π : jR → C
(n+m)×(n+m)

be a measurable Hermitian-valued function, named multiplier.

Two signals v ∈ Ln
2 [0,∞] and w ∈ Lm

2 [0,∞] (with Fourier

transforms v̂ and ŵ) satisfy the IQC defined by Π if:

∫ +∞

−∞

[

v̂(jω)

ŵ(jω)

]

∗

Π(jω)

[

v̂(jω)

ŵ(jω)

]

dω ≥ 0 (4)

A bounded and causal operator ∆ is said to satisfy the IQC

defined by Π if the signals v and w = ∆(v) satisfy (4) for all

v. The next theorem [1] provides a condition for the absolute

stability of the interconnection of G and ∆.

Theorem 1: Let G ∈ RH∞ and ∆ be a causal bounded

operator. Assume for all τ ∈ [0, 1]:

1) the interconnection of G and τ∆ is well-posed.

2) τ∆ satisfies the IQC defined by Π.

3) ∃ ǫ such that
[

G(jω)

I

]

∗

Π(jω)

[

G(jω)

I

]

dω ≤ −ǫI ∀ω ∈ R (5)

Then the feedback interconnection of G and ∆ is stable.

In order to facilitate the numerical solution of this problem,

it is common practice to factorize a multiplier Π as Ψ∼ S Ψ
where S = ST is a real matrix variable and Ψ is a transfer

matrix constructed from pre-selected basis transfer functions.

The search for stability certificates can then be recast via

KYP Lemma [1], [17] into a Linear Matrix Inequality (LMI)

problem. In particular, stability is guaranteed if there exists a

matrix P = PT such that:
[

ǍTP + PǍ PB̌

B̌TP 0

]

+

[

ČT

ĎT

]

S
[

Č Ď
]

< 0 (6)

with [Ǎ, B̌, Č, Ď] obtained from the state-space realizations

of G and Ψ. This represents the standard way to solve IQC

problems, and IQCβ toolbox [21] will be employed here.

The core effort is then to find suitable multipliers Πi describing

the input/output relation of the operator ∆, since most of the

conservatism associated with the results is related to this.

III. PROBLEM STATEMENT

In the past two decades it has been clearly asserted the

need to take into account the effects of uncertainties [22]

and nonlinearities [12] when studying aeroelastic phenomena.

In particular, LCOs, introduced in Section II-B, must be

avoided in mechanical systems since they are likely to degrade

fatigue life and provoke critical damages. Aircraft design

requirements formulate constraints on LCO accelerations in

prescribed points of the airframe [9]. These quantities can be

estimated provided that a characterization of the LCO in terms

of amplitude and frequency is available, hence motivating the

focus of this work.

The considered test case is the benchmark study of an airfoil

affected by control surface (or flap) freeplay, which has been

investigated by means of different approaches: experimen-

tal [23], analytical [24], harmonic-balance method [25], con-

tinuation methods [14] and DF-µ analysis [15]. These works

contributed to characterize the nonlinear flutter behaviour of

the test bed, with only the last one including the effects of

uncertainties in the model. In this Section the modeling steps

required for the analyses are discussed.

A. Aeroelastic model

The system is shown in Fig. 2. It consists of a rigid airfoil

with lumped springs simulating the 3 degrees of freedom

(DOFs): plunge h, pitch α and trailing edge flap β. The

position of elastic axis (EA), center of gravity (CG) and

aerodynamic center (AC) is marked in Fig. 2. The parameters

in the model are: Kh, Kα and Kβ –respectively the bending,

torsional and control surface stiffness; half chord distance b;
dimensionless distances a, c (from the mid-chord to respec-

tively the elastic axis and the hinge location), and xα and xβ

(from elastic axis to airfoil center of gravity and from hinge

location to control surface center of gravity); wing mass per

unit span ms; moment of inertia of the section about the elastic

axis Iα; and the moment of inertia of the control surface about

the hinge Iβ .

Fig. 2. Airfoil section sketch.

Theodorsen’s unsteady formulation is employed to model the

aerodynamics [26]. If X = [h α β]T and L = [−Lh Mα Mβ ]
T

are defined as the vectors of the degrees of freedom and aero-

dynamic loads respectively, the aerodynamic model provides,

in the Laplace domain s, the relation:

L(s) = q
[

Ag(s̄)
]

X(s) (7)

where the dimensionless variable s̄ (=s b
V

with V the airspeed)

and the dynamic pressure q (= 1
2ρ∞V 2 with ρ∞ the air density)

are introduced. Ag(s̄) is called the generalized Aerodynamic

Influence Coefficient (AIC) matrix, and is composed of generic

terms Ag(ij) representing the transfer function from the degree

of freedom j in X to the aerodynamic load component i in L.

The AIC matrix has a non-rational dependence on the Laplace

variable s, thus the final aeroelastic equilibrium is inherently

expressed in frequency-domain and is given by:
[

[

Ms

]

s2 +
[

Cs

]

s+
[

Ks

]

]

X = q
[

Ag(s̄)
]

X (8)
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where Ms, Cs and Ks are respectively the structural mass,

damping and stiffness matrices. In this work the Minimum

State (MS) method [26] is employed to find a rational approx-

imation of Ag(s̄), which enables the state-space description of

the system to be obtained:

ẋ =

[

ẋs

ẋa

]

=

[

Ass Asa

Aas Aaa

][

xs

xa

]

= Ax (9)

where A is the state-matrix, x is the vector of states and xs

and xa are respectively the structural and aerodynamic states,

the latter needed for the rational approximation of the unsteady

operator. The reason why MS method was selected is that it

ensures the lowest size for xa compared to other approxima-

tion algorithms– a desired feature, in terms of state-matrix

size, for IQC applications. The interested reader is referred

to [27] for further discussions about different aerodynamic

approximations and their impact on robust flutter analysis. The

total size of the plant n in our example is 9 (6 structural and

3 aerodynamic states). The parameters defining the model are

provided in [24], and a detailed definition of the state-matrix

A is presented in Appendix A with the aim to allow the reader

to reproduce all the results presented in the paper.

It is finally remarked that the system is an open-loop plant, but

both the approaches considered in the article can be applied

to a closed-loop one, once the state-space description in (9) is

opportunely redefined. This could enable the improvements in

the nonlinear dynamic response of the system achieved thanks

to the adoption of a feedback control law to be estimated in

both nominal and uncertain conditions.

1) Linear nominal flutter analysis: Nominal flutter analysis

evaluates the largest speed Vf , named flutter speed, below

which the dynamic aeroelastic plant is guaranteed to be stable.

The stability of the system studied here is related to the

spectrum of the state-matrix defined in (9). The nonlinearity,

which will be examined later in Section III-C, affects the

diagonal term Kβ of the stiffness matrix corresponding to the

control surface rotation. If this term is taken equal to KL
β (the

linear control surface stiffness, i.e. with no freeplay) and all the

other parameters hold their nominal values, a linear nominal

analysis of the system can be performed.

In Fig. 3 the eigenvalues corresponding to the structural modes

of the system as the airspeed increases from 1 m
s

(square

marker) to 30 m
s

are depicted. The system exhibits flutter at

Vf = 24 m
s

and ωf = 38 rad
s

(pure imaginary eigenvalue

highlighted with the circle marker) with the plunge mode

going unstable.

2) Relevance to high-fidelity aeroelastic models: This Sec-

tion has presented the aeroelastic model employed for the

analyses in the rest of the article. Equation (8) is prototypical

of current industrial state-of-practice models used for linear

flutter analysis, where the structural matrices Ms, Cs, and Ks

are usually provided by Finite Element Method (FEM) codes

and the AIC matrix Ag is obtained by means of a panel method

solver. This motivates the adoption of the typical section to

showcase the application of the methodologies presented in

this article to the nonlinear flutter problem (see [10], [27] for

a more detailed discussion on these aspects).
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Fig. 3. Linear nominal analysis: poles location as a function of airspeed.

However, when employing them for real aircraft applications,

it is expected that practical issues would arise in the LFT

modeling phase. Among these, the increase in the size of the

problem can be identified as one of the most compelling. A

solution consists in applying a modal decomposition to the

original large-scale equations and considering only the reduced

set for modeling and analysis. Typically for aircraft flutter

predictions only the first 5-6 modes are retained as significant

for the instability mechanism [8]. A more sophisticated two-

step procedure, consisting in firstly reducing the reference

models with advanced methods and then building the LFT

model by means of polynomial interpolation, was discussed

in [28] and is particularly suited for the control system design

and analysis applications.

In this regard a strong point of the two approaches presented

here is that they pivot on LFT models. This enables powerful

techniques available within this framework [2], [16] to address

the modeling of complex systems to be exploited. In addition,

methods to derive LFT models of nonlinear systems have

been recently proposed [29] (also specifically for aerospace

applications [30]) and can be used for the present purpose.

B. Model uncertainties

Parametric uncertainties are used to describe parameters

whose values are not known with a satisfactory level of

confidence. Considering a generic uncertain parameter d, with

λd indicating the uncertainty level with respect to a nominal

value d0, a general uncertainty representation is given by:

d = d0 + λdδd (10)

where ‖δd‖ ≤ 1. This study will take into account a 10%

uncertainty in the following parameters: Kh, and Kα (bending

and torsional stiffness); static moment of the airfoil Sα; Iα,

and Iβ (airfoil and flap moment of inertia). As explained

in Sec. III-C, the control surface stiffness Kβ , affected by

freeplay nonlinearity uncertainty, will also be handled within

the LFT framework.

The LFT paradigm enables the nominal system to be manip-

ulated by simply introducing the expression (10), specialized

for each uncertain parameter, into the state-matrix (9) and us-

ing well-established realization techniques (e.g. LFR toolbox

[16]) to obtain the corresponding upper LFT (1). See [27] for

a detailed presentation of LFT modeling applied to aeroelastic
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systems. Here it is just remarked that a plant described through

its state-space realization and affected by uncertainties can be

seen as an LFT with two blocks in the feedback channels:

∆u containing the uncertain perturbations affecting the state-

space matrices, and 1
s
In with n the number of states. The

coefficient matrix M , obtained through the process outlined

before, is partitioned correspondingly, as depicted in Fig. 4.

Fig. 4. LFT of an uncertain state-space model.

Particularly relevant, the upper left block of M in Fig. 4

represents the state-space realization of the transfer matrix

M11(s) from the signal w to v:

M11(s) = CG(sIn −AG)
−1BG +DG (11)

where AG = A from (9). The subscript G is to remark that

M11 coincides with the plant G in Fig. 1. This mathematical

representation of the uncertain plant is the starting point for

the study of the robust stability of the system with either µ or

IQC analysis.

µ analysis can be straightforwardly applied to evaluate the

robustness of the system. Once the LFT is built up, calculating

the matrix M11 in (2) basically amounts to evaluating (11) at

s = jω, where ω belongs to the set of discrete frequencies

employed in the analyses. The Robust Control Toolbox (RCT)

in MATLAB [4] will be adopted in this work. The calculation

(2) can then be performed (e.g. with the routine mussv) simply

providing M11 and specifying the real or complex nature of the

uncertainties (in this study always real) and their repetitions.

IQC analysis requires to characterize ∆u in terms of a

multiplier Π satisfying (4). It is well-known that for the case

of constant real scalar uncertainties a candidate is:

ΠR =

[

X(jω) Y (jω)

Y (jω)∗ −X(jω)

]

(12)

where X(jω) = X(jω)∗ ≥ 0 and Y (jω) = –Y (jω)∗ are

generic bounded and measurable matrix functions (named D-

G scalings in robust control theory) [1]. The multiplier in

(12) is usually parameterized assuming as basis functions

of Ψ combinations of first order low-pass filters. The IQCβ
toolbox allows the problem to be formulated by declaring the

connections among the signals of the system by linking them

through appropriate sub-functions. Recalling the feedback

interconnection in Fig. 1 (with r = f = 0), the relation

from w to v is given by state-space realization in (11).

The relation from v to w can instead be defined by means

of the sub-function iqc_ltigain, which implements the

parametrization of the multiplier (12), once the poles af of

the filters are chosen (this will be detailed in Section V).

In the end, G and Ψ are defined by means of their state-

space realizations, the former provided by the analyst through

LFT modeling and the latter directly implemented in the IQC

solver, thus the LMI problem in (6) can be solved.

This Section has considered the formulation of the linear ro-

bust stability problem when µ analysis and IQC are employed.

It is a known fact [1], [17] that the RS calculation build in both

cases on the same theoretical premise. However, an important

difference is that thanks to the KYP lemma the LMI test in (6)

does not rely on a discretization of the frequency range, which

for numerical reasons is usually done in µ implementation

[4] (i.e. recall the gridding needed to evaluate M11). A worth

mentioning exception to this common practice in s.s.v. analysis

is represented by a recently developed µ library [31] which

guarantees the maximum value of µUB and µLB over a

continuum range of frequencies.

In conclusion, the stability certificate obtained with IQC is

granted on the whole frequency spectrum. However, this

valuable property is penalized by the need to parameterize Π
with a finite basis of rational functions and hence the feasibility

of the LMI problem is only a sufficient condition on the

stability of the system (i.e. nothing can be said if the test fails).

These considerations motivate some of the analyses performed

in Section V and will be reflected in the results shown therein.

C. Freeplay nonlinearity

Freeplay, also called dead-zone or threshold, often arises in

mechanical and electrical systems where the first part of the

input is needed to overcome an initial opposition at the output,

as schematically depicted in Fig. 5. The freeplay nonlinearity

for the system is concentrated in the control surface stiffness

Kβ . The mathematical expression for the elastic moment ME
β

can be written as:

ME
β =

{

KL
β (β − δ̄); |β| > δ̄

0; |β| < δ̄
(13)

where δ̄ is defined as the (positive) freeplay size and KL
β is

the flap stiffness in the linear case (δ̄=0). It is worth noting

some important properties of this nonlinearity, which will be

later exploited: it is odd (i.e. the relation is symmetric about

the origin), memoryless (i.e. only one output is possible for

any given value of the input), and static (i.e. no dependence

upon the input derivatives). In order to recast the problem in

the framework of Fig. 1 via LFT, the control surface stiffness

Kβ is handled as discussed in Section III-B for uncertain

parameters (see details later).

Fig. 5. Freeplay nonlinearity.
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1) Description via DF: The DF function NF associated

with freeplay can be obtained analytically [5] through Fourier

integrals applying the definition in (3):







0; βs < δ̄

k
π

[

π − 2 sin−1( δ̄
βs
)− 2( δ̄

βs
)
√

1− ( δ̄
βs
)2
]

; βs > δ̄

(14)

where βs is the amplitude of the sinusoidal motion of the

control surface. Due to the aforementioned properties held by

this nonlinearity, its describing function is a pure real gain (i.e.

θ = 0) not depending on frequency, but only on the amplitude

of the input signal B (here specified as βs), in particular on

its ratio with δ̄.

The application of DF enables an expression for the elastic

moment ME
β in (13) to be given:

ME
β = KQL

β β

KQL
β = NF (βs)K

L
β

(15)

where KQL
β is the quasi-linear flap stiffness and NF is taken

from (14) with k = 1 (note that 0 < NF < 1). In other

words, the nonlinear flap stiffness Kβ is replaced by the

quasi-linear stiffness KQL
β (βs), which is a function of the flap

rotation amplitude βs. The flutter speed Vf , obtained from an

eigenvalue problem equivalent to the one in Fig. 3 but with

Kβ = KQL
β , is thus associated with an LCO of amplitude βs

and frequency ωs equal to the imaginary part of the unstable

eigenvalue. As mentioned early, the knowledge of amplitude

and frequency of the nonlinear oscillations is instrumental in

order to assess if the constraints prescribed on the airframe’s

accelerations are met.

2) Description via IQC: If IQC analysis is pursued, a

characterization of ∆, here coinciding with the nonlinear

operator φ (i.e. w(t) = ∆(v(t)) = φ(v(t), t))), is required.

In order to reduce the conservatism of the analyses, a set of

multipliers, reflecting different properties of the nonlinearity,

is adopted. For example, freeplay can be generically defined

as a memoryless sector nonlinearity with bounds [α, η]:

αv2 ≤ φ(v(t), t)v ≤ ηv2 ∀v ∈ R, t ≥ 0 (16)

The associated multiplier ΠS is:

ΠS =

[

−2αη α+ η

α+ η −2

]

(17)

In the IQCβ toolbox this multiplier can be assigned to the

nonlinear channel of the system by invoking the sub-function

iqc_sector. Since this is a static IQC, no parametrization

is required and the only options to be specified are the sector

bounds. A global description of the relation in (13) is obtained

specifying α = 0 and η = KL
β . Section V will investigate and

motivate possible alternative definitions of the sector bound.

In order to capture the time invariance of the freeplay, the

Popov multiplier can be used:

ΠP = Λ

[

0 jω

−jω 0

]

(18)

where Λ is a decision variables. Due to the unboundedness of

ΠP on the imaginary axis, a loop transformation ∆1 = ∆◦ 1
s+1

is typically employed (due to this, ΠP can be employed only if

the plant G is strictly proper). This multiplier can be assigned

with the sub-function iqc_popov_vect and, since it does

not require any dynamic parametrization, it is defined simply

by specifying the sign of Λ (in this work left unconstrained).

A further refinement of the IQC description can be obtained

observing that the freeplay is a monotonic and odd function,

and thus a slope restriction in the sector [α1, η1] holds. These

properties lead to the Zames-Falb IQC [1] (here reported for

α1 = 0 and η1 = 1):

ΠZF =

[

0 1 +H(jω)

1 +H(jω)∗ −2− 2Re(H(jω))

]

(19)

where H ∈ RL∞ is arbitrary except that the L1-norm of its

impulse response must be smaller than one. This multiplier can

be selected in IQCβ with the sub-function iqc_slope_odd,

which requires, other than the sector bounds, also the length

NH and the pole location aH of the expansion that defines H:

H(s) ⋍

NH
∑

k=0

xk

(s+ aH)k+1
(20)

where xk are the associated decision variables. More than one

pole can be imposed by invoking i times iqc_slope_odd

and specifying NHi
and aHi

.

To conclude the IQC description of freeplay, it is proposed

here to compute the plant G by building an LFT of the

nonlinear stiffness Kβ , that is, treating it as if it was an

uncertain parameter. Once the sector bound [α, η] is specified,

a range of variation Kβ−1 < Kβ < Kβ−2 is defined, with

Kβ−1 = 2α − η and Kβ−2 = η. In this way, after the

range normalization ‖δKβ
‖ ≤ 1, the sector [0,1] automatically

holds for ΠS (note that with such a definition Kβ = α
when δKβ

= 0 and Kβ = η when δKβ
= 1). With

this implementation, the nonlinear uncertain system can be

manipulated efficiently within a unified framework.
D. LFT models

As stressed in Sections III-B and III-C, both the approaches

rely on descriptions of the plant G formulated as LFTs. The

operator ∆ will gather the uncertain parameters ∆u and/or

the control surface freeplay φ depending on the considered

problem. Table I gives a recapitulation of the three LFTs

adopted in this work in terms of included parameters and total

dimension of ∆.

TABLE I
LFT MODELS EMPLOYED

Parameters ∈ ∆ ∆ size

LFT 1 Kβ 1

LFT 2 Kh, Kα, Sα, Iα, Iβ 7

LFT 3 Kh, Kα, Sα, Iα, Iβ , Kβ 8

LFT 1 represents a nonlinear nominal problem, since only the

freeplay is included (∆ = φ); LFT 2 describes a linear robust

problem with stiffness and mass uncertain parameters (∆ =

∆u); LFT 3 consider the nonlinear robust problem featured

by structural uncertainties and nonlinearity (∆ = diag(∆u,φ)).
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IV. QUASILINEAR ROBUST ANALYSIS WITH DF

This Section shows the results obtained from the application

of the DF-µ approach to the study of LCOs in the wing section

affected by freeplay and uncertainties.

After a fundamental harmonic solution for the flap rotation

β = βs sin(ωt) is assumed, the corresponding value of NF

(and KQL
β ) fixes the term associated with φ in the ∆ block

of the considered LFT. If no uncertainties are included in the

model (as in LFT 1), the flutter properties in terms of speed

and frequency can be directly obtained through an eigenvalue

analysis (as shown in Section III-A for the linear case).

Fig. 6 showcases the values of flutter speed Vf and associated

frequency ωs corresponding to a variation of flap stiffness

between 0 and the linear value KL
β (that is, as the associated

describing function NF varies from 0 and 1). The results are

in good agreement with others from the literature [23], [24]

(the latter reference provides also experimental results).

An interesting feature detectable in Fig. 6 is the existence,

depending on the value of KQL
β , of a low (LF ) and high (HF )

flutter frequency (dashed line) associated with the instability.

The physical reason for this is that two distinct modes,

respectively the plunge and pitch one, go unstable (i.e. are

associated with the smallest unstable speed Vf ) as KQL
β varies.
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Fig. 6. Flutter speed and frequency vs. flap stiffness for LFT 1.

Due to the existing relation between KQL
β and βs (15),

these results can be shown in a plot airspeed vs. oscilla-

tion amplitude, see Fig. 7. This figure serves to emphasize

the LCO phenomenon. The DF method is instrumental in

guaranteeing this connection and enabling to transfer the

information coming from multiple linear flutter analyses to an

LCO characterization. For the interested reader, this aspect is

further addressed in [32]. Stable and unstable oscillations are

depicted respectively with solid and dashed lines, according

to the criterion in [33]. It is worth stressing that the latter are

not physically meaningful because they represent a dynamic

response not occurring in reality (the system will exhibit only

the stable LCO branches).

Four regions can be identified in Fig. 7 as the airspeed

increases: (i) V <V0(= 3.8m
s
), where the system is stable;

(ii) V0<V <V1(= 9m
s
), where the system undergoes LCOs

associated with the plunge instability (with amplitude given

by the upper stable branch); (iii) V1<V <V2(= 23.2m
s
) where

the LCO switches to the pitch instability (the frequency

correspondingly changes, as in Fig. 6) and the amplitude

visibly increases; and (iv), for speeds greater than V2 where

there is an asymptote in the LCO amplitude corresponding to

a sizable growth of the airfoil oscillations.
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Fig. 7. Flap rotation LCO amplitude
βs

δ̄
against airspeed for LFT 1.

If the nonlinear system is also affected by uncertainties

(LFT 3), it is of interest to describe how the stability properties

(in terms of V0), and the LCO features (represented by

amplitude βs, frequency ωs and the other characteristic speeds)

vary due to the terms in ∆u. This task can be approached as

follows: for a given amplitude βs, the block φ has a fixed

value and the associated LFT 2 can be evaluated; the problem

can then be formulated as a standard RS calculation with µ,

looking at the smallest airspeed at which the system is robustly

unstable (i.e. µ = 1) and at the related peak frequency. As a

first illustrative example, Fig. 8 shows the s.s.v. of the LFT

2 obtained for KQL
β = 1.43 N (NF =0.367, βs

δ̄
= 1.9). The

nominal flutter - (LCO) properties of this plant are highlighted

in Figs. 6 - (7) with a cross marker. This analysis thus enables

the effect of the parametric uncertainties on the LCO taking

place in nominal conditions at an airspeed Vf = 23.2m
s

and a

frequency ωs = 37 rad
s

to be described.

Upper and lower bounds are reported for completeness in

the plot, featuring two distinct peaks. The smaller one takes

place at a low frequency (close to the one of the nominal

case), whereas the peak µUB = 1 has a higher frequency of

approximately 80 rad
s

. The upper bound analysis suggests that

the LCO associated with the amplitude of βs

δ̄
= 1.9 drastically

changes with respect to the nominal case in that it takes place

at a considerably smaller airspeed (V = 10.3 m
s

) and at a

different frequency (pointing at a different mode prompting

the nonlinear response). Although no definitive conclusions

can be drawn from Fig. 8, due to the gap in the bounds around

the highest peak, this result suggests the need for further

investigations.

Adding to the issue of the mismatch in bounds, a conclu-

sive analysis should take into account the whole range of

quasilinear stiffness KQL
β in order to depict what is named

here as the worst-case LCO curve, i.e. the equivalent of Fig.

7 where a measure of the LCO properties degradation in

the face of the uncertainties is provided. To this end, a flap
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Fig. 8. µ analysis of LFT 2 at V = 10.3 m
s

and K
QL
β

= 1.43 N.

stiffness gridding is calculated and, at each point, a bisection-

like algorithm searching for the airspeed V which attains first

the RS violation condition (as in Fig. 8) is implemented. In

particular, two curves are presented: one for the condition

µUB = 1 and one for µLB = 1. The results are shown in

Fig. 9, which depicts the two corresponding LCO curves as

well as the nominal for comparison purposes.

0 5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

Airspeed [m/s]

N
o

n
d

im
e

n
s
io

n
a

l 
fl
a

p
 r

o
ta

ti
o

n
 a

m
p

lit
u

d
e

 

 

V
0

N
V

1

N
V

2

N

Nominal

UB=1

LB=1

Fig. 9. LCO amplitude
βs

δ̄
against airspeed– the worst-case LCO curve.

This plot can be interpreted as a worst-case analysis of

the nonlinear flutter problem in terms of LCO onset and

amplitude. In fact, it assesses how the properties discussed

before (with reference to Fig. 7) degrade. The first information

that can be inferred is the smallest airspeed for which the

system experiences LCO. The assumed set of uncertainties

slightly decreases this value from V0 = 3.8m
s

to V N
0 = 3.6m

s
.

As the airspeed is increased, the regions highlighted in Fig. 7

are still detectable but V1 and V2 are shifted towards smaller

values (V N
1 and V N

2 ). Furthermore, the plot also allows a

significant deterioration in amplitude in the third region to

be clearly appreciated. This trend was somehow foreseen in

Fig. 8, but finds here a rigorous confirmation (note that the two

dashed curves are very close meaning good agreement between

the bounds). Although not reported in the plot, at each LCO

point it is also possible to associate the oscillation frequency

(corresponding to the peak value of µ). This information can

provide physical insights into the problem. In this case, for

example, it suggests (recall Fig. 8) that the drastic increase

in amplitude (with the gap nominal-robust becoming large)

can be ascribed to the high frequency (pitch) LCO which is

responsible for shifting towards left the asymptote (vertical

branch).

In conclusion, this analysis provides a robust characteriza-

tion of the stability of the nonlinear system and its post-critical

behaviour in terms of both amplitude and frequency which, as

motivated, are highly relevant engineering parameters.

V. NONLINEAR ROBUST ANALYSIS WITH IQCS

This Section presents the application of IQC analysis to

the studied test case. The power of this technique lies in

the capability to handle uncertainties and nonlinearities in

the same framework. However, it is acknowledged that a

possible drawback lies in the conservatism associated with the

results. This can be ascribed to various causes, and this work

investigates two aspects: the selection of the multipliers and

the local/global validity of the results.

A. Sensitivity of results to the multipliers

The first analysis employs LFT 1 and aims to give a stability

certificate for the nominal airfoil affected by freeplay. Once the

IQC description of the nonlinearity is provided as documented

in Sec. III-C2, the airspeed is increased until the LMI problem

in (6) becomes unfeasible (the first airspeed for which this

happens is referred to as Vunf ). In these first analyses it is

assumed that the nonlinearity is defined in the sector [0,KL
β ],

i.e. α = α1 = 0 and η = η1 = KL
β as shown in Fig. 10.

Fig. 10. Sector constraint for stability analyses.

In Tab. II the analyses performed are shown reporting for each

test the multiplier (with corresponding options), the size of the

LMI problem in terms of decision variables and computation

time (performed on a 3.6 GHz desktop PC), and the airspeed

Vunf .

TABLE II
IQC ANALYSIS OF LFT 1 (ONLY FREEPLAY)

Multiplier & Options Size Time Vunf

ΠS 47 1 s –

ΠS , ΠP 48 1 s 3.81 m
s

ΠS , ΠP ,ΠZF ([1,1 rad
s

]) 80 1 s 3.82 m
s

When only the memoryless sector bounded condition is en-

forced, no feasible solution is achieved. The Popov multiplier

ΠP , encompassing the time invariance of the freeplay, is then
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added and this enables to find Vunf = 3.8m
s

, confirmed

also via ΠZF . This value is the same as the airspeed V0

detected in Fig. 7. If the analyses depicted in Figs. 6-7 are

recalled, this indicates that the approach of considering the

entire sector is equivalent, from a DF perspective, to look for

the smallest airspeed such that the system experiences an LCO.

The adoption of the entire sector can thus be interpreted as a

search for asymptotic stability certificates.

Note also that, due to the good agreement, this analysis may

be seen as a (more general) validation of the application of DF

to this particular test case (recall the simplifying hypotheses

underpinning DF).

The analyses reported in Tab. III investigate the linear robust

stability of the LFT 2. In order to draw a parallel with the

analyses in Fig. 8 (showing that µUB=1 at V = 10.3 m
s

), the

same value of Kβ is used.

TABLE III
IQC ANALYSIS OF LFT 2 (ONLY UNCERTAINTIES)

Multiplier & Options Size Time Vunf

ΠR (1 rad
s

) 330 9 s 8.6 m
s

ΠR (80 rad
s

) 330 9 s 8.9 m
s

ΠR (1 rad
s

, 80 rad
s

) 800 70 s 10.3 m
s

When only one filter is employed in the multiplier parametriza-

tion, the minimum airspeed at which the problem becomes

unfeasible (i.e. the aeroelastic system loses its stability) is

still lower than what was obtained with µ analysis. However,

changing the pole from the default value (i.e. 1 rad
s

) to one

which is closer to the expected flutter frequency (about 80 rad
s

from the analyses in Fig. 8) increases the estimation of Vunf .

The addition of another filter aids to considerably improve

the prediction, in particular it yields the same airspeed for

which µUB = 1 in Fig. 8. This results represents an important

confirmation of what was shown in Fig. 8, since it holds on the

frequency continuum (i.e. not relying as µ generally does on

the frequency gridding as it was discussed in Section III-B).

This first set of tests concludes with a nonlinear robust

analysis applied to LFT 3, reported in Tab. IV. It is clear

from the results that when only one filter is used for ΠR the

algorithm is not able to find a feasible solution (regardless

of the description provided for ΠZF ). In fact, it is decisive

to increase the number of filters to 3 in order to match the

largest stable airspeed Vunf = 3.6m
s

found in the analyses of

Fig. 9 and therein commented. This IQC description for ΠR is

reflected in an increase of the computation burden, but clearly

improves the LMI feasibility problem solution.

The results presented in this Section confirm the well-known

dependence of IQC predictions on multipliers selection and

parametrization. However, in this study the importance of

having reference results (here provided by the DF-µ approach,

or in general also obtainable with other tools) is stressed.

Firstly, they provide a measure of the conservatism associated

with the infeasibility of the LMI problem and therefore may

point out the need to employ a more refined set of multipliers.

While this is typically accomplished with a frequency sweep

of the filter poles (time-consuming and not always successful),

TABLE IV
IQC ANALYSIS OF LFT 3 (NONLINEAR ROBUST)

Multiplier & Options Size Time Vunf

ΠR (40 rad
s

) , ΠS ,ΠP , ΠZF ([1,40 rad
s

]) 390 19 s -

ΠR (80 rad
s

) , 450 40 s -

ΠS ,ΠP , ΠZF ([1,40 rad
s

],[1,80 rad
s

])

ΠR (40 rad
s

, 80 rad
s

) 890 105 s 3.1 m
s

ΠS ,ΠP , ΠZF ([1,40 rad
s

])

ΠR (40 rad
s

, 80 rad
s

) , 980 170 s 3.1 m
s

ΠS ,ΠP , ΠZF ([1,40 rad
s

],[1,80 rad
s

])

ΠR (1 rad
s

, 40 rad
s

, 80 rad
s

) , 1590 530 s 3.6 m
s

ΠS , ΠP , ΠZF ([1,40 rad
s

])

ΠR (1 rad
s

, 40 rad
s

, 80 rad
s

) , 1700 790 s 3.6 m
s

ΠS , ΠP , ΠZF ([1,40 rad
s

],[1,80 rad
s

])

the availability of auxiliary reference results can also inform

the improvement of the parametrization for the multipliers:

characterizing the sensitivity of the instability to the blocks

∆i and therefore focusing only on the refinement of the

associated multipliers Πi; highlighting critical frequencies of

the systems. As for the latter aspect, the values of the filter

poles are selected here considering the expected unstable

frequencies of the systems, obtained by DF-nominal analysis

(Fig. 6) or DF-µ approach (Fig. 8), whereas for the former

one sensitivity analyses as the ones shown in [32] might also

provide invaluable aid.

B. Post-critical analysis with IQC

1) Reduced sector condition: The certificates found with

the approach presented so far guarantee asymptotic stability

of the system. In fact, only the largest airspeed at which the

system settles down to the original equilibrium when subject

to any vanishing perturbation can be inferred from the results.

This is ascribed to the selection of the standard (global)

sector for the freeplay nonlinearity (Fig. 10). It is indeed well

understood in the literature [1], [17], [19] that results that

hold locally can enrich the contents of the analyses performed

via IQC and reduce their conservatism. This work proposes

an alternative definition of the sector condition, aimed at

obtaining certificates concerning not only stability properties

(as classically done) but also post-critical response features.

With this line of reasoning, the sector sketched in Fig. 11 is

proposed.

Fig. 11. Local sector constraint for post-critical analyses.

The premise of this relaxation is that the DF method provides,

for a given freeplay size δ̄, a relation between the amplitude

of the nonlinear response βs and the equivalent stiffness
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associated with the freeplay KQL
β (15). If a lower bound on

βs is assumed, then KQL
β (βs) can be taken as the lower limit

of the sector Ks
β (dashed-dotted line). The bound on βs can be

interpreted as an oscillation level that can be withstood by the

structure, and thus it is tolerated as post-critical response. IQC

will then allow for the determination of the largest airspeed

Vunf such that the system does not experience any oscillatory

motion of amplitude greater than βs. Put it differently, the

local characteristic of the analyses prescribes to detect only

unstable responses featured by a minimum level of amplitude.

In view of the importance of this characterization for the

design of aerospace structures (as remarked in the previous

sections), this is believed to be a useful tool for nonlinear

flutter analysis. Although IQC-based control synthesis is a

non-convex problem and thus still an active area of research

[34], this description of the freeplay nonlinearity could also be

exploited for the design of feedback control laws addressing

active reduction of the LCO amplitudes.

2) Results: Table V shows the results obtained applying

this approach to LFT 1 and 3. The upper sector limit η = η1
is fixed at KL

β as in the previous analyses. A different lower

limit for the sector α = α1 = Ks
β , with an associated smallest

amplitude βs

δ̄
, is instead selected for each test and the smallest

unfeasible airspeeds (namely V 1
unf for LFT 1 and V 3

unf for

LFT 3) are reported. This analysis, repeated on a grid of

values of Ks
β , can be interpreted as a nominal and robust

characterization of the nonlinear response of the system in

that it provides the highest airspeed at which the system can

be operated if oscillations below a certain threshold (given by

the corresponding βs

δ̄
) are tolerated. The parametrization of

the multipliers, analyzed and discussed in Sec. V-A, is such

so as to provide a reliable IQC description of the problem.

It is remarked here that, especially for LFT 3, the multipliers

had to be modified with respect to what was reported in the

last case of Tab. IV in order to improve the accuracy in the

estimation of V 3
unf . In fact, af in ΠR, as well as NHi

and aHi

in ΠZF proved again to have a tangible influence on the final

results and had to be tailored to each single case making use

of the heuristic strategy illustrated early. The LMI decision

variables were however kept below 2000.

TABLE V
LOCAL IQC ANALYSIS OF LFT 1 AND 3

Ks
β
[N ] βs

δ̄
V 1

unf
[m
s
] V 3

unf
[m
s
]

0.01 1.02 3.8 3.6

0.18 1.13 3.8 3.6

0.32 1.21 5.9 4.3

0.86 1.5 9.0 8.45

1.15 1.69 12.2 9.2

1.39 1.9 23.05 10.3

1.72 2.2 23.5 12.3

2.00 2.5 23.6 15.7

Looking at Tab. V it can be seen that the first two values of

V 1
unf and V 3

unf match with the predictions obtained using the

global sector condition, reported in Tabs. II-IV respectively. If

Figs. 7-9 are recalled, it can be observed that both the LCO

amplitudes βs

δ̄
= 1.02 and βs

δ̄
= 1.13 are smaller than the one

associated with the smallest LCO speed V0 (or V N
0 for the

LFT 3) in the previous figures– recall that at these airspeeds

the system will exhibit an LCO of amplitude βs

δ̄
≃ 1.16).

Consistent with the given interpretation of the local sector

condition, the analysis returns therefore the corresponding

airspeed value (either V0 or V N
0 ). As βs

δ̄
is increased, it

becomes evident the advantage of using the sector condition

in Fig. 11 since different unfeasible speeds are predicted for

each lower sector bound. For βs

δ̄
≤1.5, the degradation due

to the uncertainties, measured by the difference between V 1
unf

and V 3
unf , is not remarkable. As the amplitude is increased

(note that a bold line is employed in Tab. V to emphasize the

two regions), it is evident a greater effect of the uncertainties

in worsening the response. For example, assume a nominal

analysis cleared the system to operate at V=16m
s

(because

it was able to withstand an oscillation of amplitude 1.9δ̄).

The latter amplitude corresponds to a Ks
β=1.39N in Tab. V

and takes place at V 1
unf=23.05m

s
. The proposed analysis

then reveals that in the face of uncertainties the system could

exhibit an LCO greater than 2.5δ̄ (last row of Tab. V) at

V 3
unf = 15.7m

s
, which is actually slightly less than the cleared

nominal airspeed- with the risks this represents.

The trend in Tab. V is in good agreement both qualitatively and

quantitatively with the worst-case LCO curve in Fig. 9. The

intersections of horizontal lines (drawn for different values of

the ordinate βs

δ̄
) with the nominal and robust curves give points

having as x coordinate approximately the corresponding values

of V 1
unf and V 3

unf . Two curves were provided for the uncertain

system, one for µUB = 1 and another for µLB = 1. The

values of V 3
unf are typically closer to the intersections with

the curve µUB = 1, which is expected since they both give

only a sufficient condition for the stability violation. However,

the two curves are very close as stressed before.

Finally, note that, for a given value of βs

δ̄
, the LCO

amplitude βs experienced by the system is a function of the

freeplay size δ̄. Thus this methodology provides, as physically

intuitively as possible, an outcome which depends also on this

parameter. On the contrary, by looking at Fig. 10, it is apparent

that the freeplay size δ̄ has no role in the IQC definition, and

therefore will not influence the outcome of the analyses, when

the standard approach is employed.

VI. VALIDATION

This Section aims at providing a preliminary validation of

the results showcased in Sec. IV-V.

The predictions obtained with the DF approach pivots on

the applicability of the filter hypothesis. This is thoroughly

addressed for the (nominal) test case in [25], where the

Harmonic Balance, a refinement of DF method retaining also

higher harmonics than the fundamental one, is employed. Two

cases are studied, with respectively 1 harmonic, leading to

equivalent results to the DF method, and 3 harmonics. When

only the first harmonic is considered, some discrepancy in the

predicted amplitude of the LCO branch in Fig. 7 corresponding

to the low frequency instability is detected, as opposed to the

case with 3 harmonics which almost perfectly match the results

obtained through nonlinear time-marching.
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In [23] experimental tests are carried out, which confirm

the good qualitative agreement with DF and time-marching

simulations, although it registers differences even with the

latter in the aforementioned speed range. These are ascribed

to more complex nonlinear responses exhibiting features such

as quasiperiodicity and chaos. Refined time-integration tech-

niques [35], tailored for the simulation of piecewise linear

systems, proves to overcome some of these issues and are

able to better capture the behaviour shown in the experiments.

In this article the validation is pursued by means of time-

domain simulations of the nonlinear system, which in contrast

to the aforementioned studies, is also subject to uncertainties.

The tool presented in [36], allowing to simulate LFR objects

[16] in Simulink c©, is employed.

In Fig. 12 a comparison, based on the normalized oscillation

amplitude βs

δ̄
, between the results given by the two proposed

approaches and the nonlinear simulations is presented. As for

the former, in view of the good agreement discussed in Sec.

V between the two set of results, only the ones from the DF-

µUB are reported (recall Fig. 9) for the case with uncertainties.

This is compared with the worst-case predictions obtained via

a Monte Carlo/vertex approach, where all the possible combi-

nations of the extreme values of the 5 uncertain parameters are

simulated, and the largest amplitude of oscillation is reported.

The 32 tested cases are deemed to provide a sufficiently good

estimation of the worst-case amplitude because the uncertainty

set is a polytope [2].
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Fig. 12. LCO amplitude
βs

δ̄
against airspeed– validation via simulation.

First, the nominal analyses are discussed (i.e. the solid lines in

Fig. 12). It is apparent a good agreement in terms of smallest

LCO speed V0 and amplitudes, featuring a mismatch of less

than 5 %, except in a limited airspeed range, the same detected

in [23], where the response is nonperiodic.

When the scenario with uncertainties is considered, it is noted

that all the conclusions drawn in the previous sections are

confirmed: little effect on V0; sizeable growth in amplitude

for V >V1; drastic decrease in the asymptote speed V2. The

predictions are in good agreement also quantitatively, except

for the branch in the speed range 5.5m
s
<V <9m

s
.

To better interpret these results, the worst-case (i.e. featur-

ing the maximum amplitude) time-domain responses at two

different speeds are considered. The plot in Fig. 13 shows

the behaviour of the system at V=6m
s

for different initial

conditions (all the states are set to zero except β, whose

initial value is reported in the legend). The main features

apparent from the plots are nonperiodicity and sensitivity

to the initial conditions, hinting at a chaotic behaviour of

the system in this range, which was also found in [23]

for the nominal case. It is thus inferred here that adverse

combinations of the uncertainties are able to exacerbate this

feature of the system, which cannot be accurately captured

with the approaches proposed in the present work. In fact, the

accuracy of the nonlinear simulations itself is not ascertained

in these conditions when standard time-marching algorithms

are employed [35].
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Fig. 13. Worst-case response at V = 6m
s

for different initial conditions.

Fig. 14 shows the case at V = 10.3m
s

, where a Limit Cycle

can be clearly detected. It has an amplitude βs=0.074 rad (i.e.
βs

δ̄
=2) and a period T = 0.077s. This is in good agreement

with the analyses in Fig. 8, where the worst-case detected by

µ featured a frequency of approximately 80 rad
s

and a value of

KQL
β = 1.43 N which corresponds, using the relations in (15)

and (14), to βs

δ̄
=1.9.
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.

This Section is concluded with a brief discussion upon the

applicability of the approaches presented in this work. Based
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on the validation campaign performed, it can be affirmed that

when the hypotheses underlying DF theory (mentioned in Sec.

II-B and further commented in [5], [32]) to the particular

system examined are fulfilled, the DF method leads to accurate

quantitative predictions of the LCO phenomenon, and its use in

conjunction with µ can give important indications on the effect

of the uncertainties. IQC, on the other hand, can guarantee the

absolute stability of the system without the same assumptions

on the nature of the signal. However, when this is used to study

the post-critical behaviour of the system as proposed in this

article, its accuracy is inherently linked to the DF applicability.

This is a consequence of the definition of the restricted sector

condition in Fig. 11, which uses NF to formulate a lower

bound on the sector. However, the core idea presented here

of redefining the IQC multipliers based on some features of

the system nonlinear response can in principle inspire other

solutions which are not affected by this limitation.

VII. CONCLUSION

This paper focused on the study of stability and post-critical

behaviour of an airfoil subject to freeplay and parametric un-

certainties. Two approaches were presented, the first featured

by a combination of Describing Function and µ analysis, and

the second based on Integral Quadratic Constraints. The mod-

eling aspects of each technique with respect to uncertainties

and nonlinearities were detailed in order to stress the known

connections and new interpretations. When the DF-µ approach

was adopted, the conditions at which the system lost stability

could be determined, and changes in the nonlinear response

with respect to the nominal case, estimated. In particular, it

was proposed a representation of the results through a worst-

case LCO curve depicting the worst-case degradation in the

response of the system (in terms of oscillation amplitude) due

to the uncertainties.

In showcasing the results obtained with the IQC approach,

emphasis was put on the conservatism of the analyses. In a

first step, this was ascribed to the selection and parametrization

of the multipliers and a sensitivity study of the results was

performed, proving convergence to the ones obtained with the

first approach. Then, a strategy allowing IQC to study the

post-critical response of the plant was proposed, based on

a restricted sector bound condition aimed at detecting only

nonlinear responses featuring a minimum level of amplitude.

The results obtained with this description, believed to have

practical consequences for analysis and potentially also control

synthesis, were compared with the outcomes of the DF-µ
approach, showing a very good agreement.

Finally, a validation of the proposed frameworks, based on

nonlinear time-marching simulations, was performed. This

suggests that both the approaches are able to cope with the

nonlinear uncertain problem examined in the article. Quali-

tative trends are well captured, and quantitative estimations

are reliable except in limited cases when the hypotheses

underpinning the approaches are violated.

APPENDIX A

AIRFOIL MODEL

The state-matrix A in (9) can be written as:

A =







0 I 0

−M̄−1K̄ −M̄−1C̄ −M̄−1D

0 E R






(21)

with M̄ = Ms −
1
2ρ∞b2A2, C̄ = Cs −

1
2ρ∞bV A1, and K̄ =

Ks−
1
2ρ∞V 2A0. M̄ , C̄ and K̄ are respectively the aeroelastic

inertial, damping and stiffness matrices [27].

The operators involved in the definition of A are:

A0 =







0 −1.5959 −0.9719

0 0 −0.0419

0 −0.0023 −0.0038







A1 =







−6.3765 −1.6061 −0.3212

−0.0037 −0.1001 −0.0328

−0.0093 −0.0128 −0.0043







A2 =







−6.254 −0.3996 −0.0338

−0.3988 −0.0394 −0.0041

−0.0319 −0.0037 −0.0006







D =
1

2
ρ∞V 2







2.9931 3.0064 3.0642

0.0029 −0.0112 −0.0889

0.0045 0.0035 −0.0038







E =







−0.0948 0.1523 0.0968

−0.3913 0.0281 0.0409

0.0282 0.0234 0.0093







R =
V

b







−0.1 0 0

0 −0.4 0

0 0 −0.7







Ms =







3.3843 Sα 0.00395

Sα Iα Iβ + 0.000502

0.00395 Iβ + 0.000502 Iβ







Cs =







2.2223 0.0222 0.0002

0.0222 0.0208 0.0011

0.0002 0.0011 0.0008







Ks =







Kh 0 0

0 Kα 0

0 0 Kβ







The dependence of the operators on the airspeed V and on

the parameters subject to nonlinearity and uncertainty is left

explicit. The corresponding linear/nominal values are given in

Tab. VI.
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