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Various nonlinear (J models on symmetric spaces are investigated in zero and one 
dimensional lattice systems. In the large N limit of such matrix models, the third order phase 
transitions are obtained for the compact case. Noncompact case has no third order transition 
in this limit. The renormalization group ;3-functions for one dimensional cases are evaluated. 

§ 1. Introduction 

Recently, the nonlinear (J models on symmetric spaces have been studied in 
renormalization group 1),2) and in lattice calculation. 3

),4) The large N·limit of 
O(N)/O(N-1) nonlinear (J model is known as a solvable model. The Grass
mannian or chiral nonlinear (J model, which has the matrix form, has not been 
solved in the large N limit except for a special case. Gross and Witten 5

) have 
shown that there exists a third order phase transition in the large N limit of two 
dimensional lattice U(N) gauge theory which becomes equivalent to one 
dimensional chiral nonlinear (J model of N = =. 

In this paper, we investigate various lattice nonlinear (J models defined on 
symmetric spaces, which are coset spaces C/H where C is the Lie group and H 
is its maximum compact subgroup. We consider explicitly relevant invariant 
measure of our symmetric spaces. We consider the system in zero and one space 
dimension and calculate the energy and correlation function. It will be shown 
that the large N limit of these models has third order phase transition for the 
compact case. It will be also shown that for anisotropic Grassmannian model 
like CpN

-
1 model, there exists a phase transition which has a discontinuity of 

specific heat in the large N limit. These zero and one dimensional studies may 
give basis of further investigations in higher dimensions. 

This article will be divided as follows: In § 2, we express the action by the 
angle variables and determine the Haar measure for various symmetric spaces. 
In § 3, we calculate energy of the one link and we discuss the large N behavior. 
In § 4, we consider CPN-l and RpN-l model as anisotropic large N cases. In § 5, 
two point correlation function in one dimension is considered. In § 6, S-func
tion is derived. Section 7 is devoted to discussion. In the Appendix, we present 
the large N calculation for d-dimensional lattice RpN-l model. 
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Nonlinear (J' Models on Symmetric Spaces and Large N Limit 1039 

§ 2_ Angle variable representations of the nonlinear (J models 
on symmetric spaces 

The symmetric space is a coset space G/H, where G is a Lie group and H is 
its maximum compact subgroup. We consider orthogonal D(N), unitary U(N) 

and symplectic Sp( N) Lie groups. We have various symmetric spaces G/H and 
we present them in Table 1. 

The Haar measure of the group G is noted by df1(g) and it is given by 

df1(g)=I1 w a
, (2-1) 

a 

where wa is defined by the generator A a of the group G as 

gEG. (2-2) 

When a and a' belong to the group H, and f and /' are given by the following 
relation, 

f=a/' a', (2-3) 

Table 1. The group G represents orthogonal, unitary and symplectic group. These cases are repre
sented by a parameter a. The value of a becomes one, two and four for orthogonal, unitary and 
symplectic case, respectively. For the Grassmannian model, we assume n:s;, m for convenience. 
Gauss's notation [N/2] represents the maximum integer I which is I :s;,N/2. 

symmetric 

space G/H 

G(n+m) 
G(n)x G(m) 

G(n, m) 
G(n)x G(m) 

O(N) 

UrN) 

Sp(N) 

U(N)/O(N) 

U(2N)/Sp(N) 

O(2N)/U(N) 

Sp(N)/U(N) 

action density 

1 n 
~ ~ cos 2 8, t i=1 

1 n 
-~~ cosh28, 

t i=1 

41N/21 
~ ~ cos 8, t i=1 

1 N 
~~ cos 8, t i=1 

4 N 

t,~ cos 8, 

1 N 
~~ cos 28, t i=1 

2 N 
~ ~ cos 28,. t i=l 

4 N 
~~ cos 28, t i=1 

1 N 
~~ cos 28, 
t '~l 

measure ] ( 8) 

II [sine 8, - 8j )sin( 8, + 8j )]a IT (sin 8,)a(m-n) IT (sin 28,)a-l 
l~i<j;5;.n i=1 i=1 

II sm ~~ sm ~~ II sm2 -
IN/21(. 8, - 8j • 8, + 8j )2(IN/2!. 8,)e 

, 2 2 , 2 

( _ 8,-8-)2 ,1], sm~2~J 

N 

II sin(8,-8j ) 
i<j 

N 

II sin4
( 8, - 8j ) 

i<i 

.0=1 if N is odd 

.0=0 if N is even 

[NI2] [NI2] [N12) n [sin(8,-8j )sin(8,+8j )]4 II (sin 28,) II (sin 8ye 
Z<J i i 

.0=1 if N is odd, .0=0 if N is even 

II [sin(8,-8j )sin(8,+8j ))2 II(sin 28') 
i<i i 

, 
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1040 S. Hikami and T. Maskawa 

we have an equivalent relation between I and I'. This leads to the classifica· 
tion. If we take k as representative of C/ ~, the element g of the group C is 
expressed by 

g = aka' , (2·4 ) 

where a belongs to H/Ho and a' belongs to H. Ho is called as centralizer, 

Ho={a: aka- 1 =k, aEH}. (2·5) 

The Haar measure of the group C is written as 

(2·6) 

where df.L( k) is a measure of a set C/ ~. If we integrate df.LH( a'), we obtain 

(2·7) 

The C invariant action on coset space C/H becomes independent of Ho. We 
neglect the difference between df.LHIHo and df.LH. 

The C-invariant action on a coset C/H is not uniquely determined. We 
consider here the simplest form of the action which is derived on the basis of 
fundamental representation. According to this derivation, the action density 
is given in Table I. Here we discuss the Grassmannian nonlinear (J model 
U(n+m)/U(n)X U(m) as an example. The Grassmannian nonlinear (J 

model is described by a projection matrix p,l) 

where 

_{Oii' 7Jij -
0, 

P=g7Jg* , 

Is i, jsn 

n<i,jsn+m 

and g is the group element. The projection matrix P satisfies 

p 2 =P. 

We consider the following one dimensional action with length L 

We take the link variable II as 

The action of (2·9) becomes 

(2·8) 

(2·9) 

(2-10) 

(2-11) 
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Nonlinear (j Models on Symmetric Spaces and Large N Limit 1041 

The group element II is expressed as 

(2 0 13) 

where 11 and 11' are elements of U( m), /z and 1/ are elements of U( n) matrix. 
The matrix ()( l) is given by 

n 

From (2°12), we have 

(2 0 14) 

The change of variable from gl to II does not effect the measure, 

II dJ.l(gd=II dJ.l(fd. 
I I 

(2°15) 

For the noncompact U( n, m)/U( n) X U( m) model, we write the group element I 
as 

(2 0 16) 

The action defined by (2 on) is 

(2 0 17) 

Other nonlinear (J models are not described by the projection matrix. However, 
similar representations to (2 013) are possible for all elements of symmetric 
spaces. For the invariant action of the chiral model U(N), we have a following 
expression, 

1 N L 

=t ~ l~ cos ()i( n, (2 0 18) 

(fo( l)E U(N» (2 0 19) 
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1042 S. Hikami and T. Maskawa 

B( l) = (2·20) 

The derivation of the measure J(B) in Table I will be discussed in detail by a 
separate 'article. 

§ 3. Calculation of energy and large N -limit 

Using the measure J(B) in Table I, we are able to evaluate the thermo
dynamic quantities, the partition function and the energy. For the one-link 
integration, it is easy to perform the high temperature expansion or the low 
temperature expansion, For example, the high temperature expansion of the 
partition function for the compact U(2N)/U(N) X U(N) model becomes in the 
case of one link (zero dimension) as 

1 ( 1 )4 3N2(N 2 -2) ] +4T 2t (4N 2 -1)(4N2 -9) + .... (3·1) 

This expression is generalized to the orthogonal O(2N)/O(N) X O(N) and the 
symplectic Sp{2N)/Sp(N)XSp(N) cases with a parameter a, which takes one, 
two and four for orthogonal, unitary and symplectic cases, respectively as 

Z - N/2t{l+ 1 ( 1 )2 N
2 

} -ce 2! 2t 2aN 2 +(2-a)N-1 + .... (3·2) 

Although these expansions are not written by a simple function, it is possible to 
be expressed by Vandermonde's determinant. For U(2N)/U(N) X U(N) case, 
the partition function becomes 

Jo JI"'JN-I 

=N! ~l J2"'JN 

(3·3) 

(3·4) 
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Nonlinear (J' Models on Symmetric Spaces and Large N Limit 1043 

where 

(3·5) 

It is shown that in the low temperature region, Z is given as 

Nit 
Z= C ~N2 [1 + G(e-(Ilt»]. (3·7) 

In a general case, the dominant term in the low temperature region is given by 

(3·8) 

The large N limit of two dimensional lattice gauge theory5)-7) and one 
dimensional matrix 1>4 modelS) have been studied. In lattice gauge theory, 
interesting third order phase transition has been obtained. We consider the large 
N limit of our various nonlinear (J models. For one·link problem, the partition 
function is obtained in the closed form in the large N limit. For the appropriate 
large N limit, we assume the coupling constant t as a quantity of order l/N. We 
note t by g/N. The partition function for the U(2N)/U(N) X U(N) model is 
written by the change of variable y'=l-y in (3·3) as 

A=ceNlt11···jnJYi-Yj)2e-(Ilt):EYi II dYi. 
o l.<J 

(3·9) 

By exponentiating the integrand of (3·9), we have 

(3·10) 

The saddle point equation in the large N limit becomes 

(3·11) 

In the large N limit, the summation becomes the integral as 

1 11 dx' -;;=2 0 y(x)-y(x') . (3·12) 

Introducing the density of eigenvalue p(j3) as 
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1044 S. Hikami and T. Maskawa 

dx'=p(y)dy, (3·13) 

we have 

~=2£a p((3) d(3 
g Jo a-(3 (3·14) 

with conditions O~a~a, O~(3~a and a~1. The integral in (3·14) is singular, 
therefore, the principal part is taken. The density of eigenvalue p((3) is nor
malized as 

The integral equation (3·14) is satisfied by 

_ 1 j(i=-jj 
p ((3) - 2 tfg V ------s--(3-

and the normalization condition becomes 

1
a 

a 11fEl--x a p((3)d(3=-2 - --dx =~4 =1. 
o tfg 0 X g 

(3·15) 

(3·16) 

(3·17) 

The condition a. ~ 1 is satisfied for g> +. However for g < +, the normalization 
condition contradicts with a ~ 1. Therefore at g = + the phase transition occurs. 
For g > +, the density of eigenvalue becomes different as 

1 [ 1 J~ 1 [ 1 JfEl--(3 p((3)=- 1-~ --+- 1+~ --. 
7f 4g 1 - (3 7r 4g (3 (3·18) 

This p((3) satisfies the normalization condition, 

(3·19) 

With these two different expressions for the density of state, the free energy 
becomes 

1 lIla 1 aft lim N 2 In Z=--- p(a)ada+ p(a)p((3)lnla-(3ldad(3. 
N-oo g goo 

(3·20) 

By the integration of the saddle point equation, we have 

a l a 
-= 2 p((3)[lnla - (31-ln (3]d(3 . 
g 0 

(3· 21) 

With this expression, the free energy (3·20) is given by 

1 lIla l a 
lim N 2 In Z=--~2 p(a)ada+ p((3)ln (3d(3. 
N-oo g goo 

(3·22) 
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Nonlinear (j Models on Symmetric Spaces and Large N Limit 1045 

The energy E becomes 

(3·23) 

(3·24) 

It can be seen that the energy is continuous, and the specific heat shows a kink at 
9 = +. This leads to the third order phase transition. For other Grassmannian 
nonlinear (J models, the density of eigenvalue becomes similar to (4·8) and (4 ·10) 
and the energy is evaluated (a = 1, 2 and 4 for orthogonal, unitary and symplec
tic cases, respectively) as 

={ -1 + ~ g, 

Ell 
-----

2 8ag' 

1 
g<2{i' 

1 g>-
2a 

(3·25) 

and the third order phase transition occurs at gc = (1/2a). These transitions are 
different from the usual critical phenomena which have infinite correlation length 
at transition point. 

These results of compact Grassmannian models are almost identical with two 
dimensional lattice gauge theory which has been discussed by Gross and Witten. 
The chiral U(N) model, which becomes equivalent to two dimensional U(N) 
lattice gauge theory, has the following saddle point equation: 

.l.-11 dy 
9 - 0 cos 8(y)-cos 8(x) (3·26) 

and using the density of eigenvalue p«(3), we write 

'±'=plap
«(3) d(3. 

9 0 a-(3 
(3· 27) 

Following a similar procedure to (3·14)~(3·22), we have the following expres-
sion for the energy: 

g>l, 
(3·28) 

g<1. 

Other symmetric space models have the same third order phase transitions. 
For example, Sp(N)/U(N) model has the following expression for the energy, 
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1046 S. Hikami and T Maskawa 

E={ 
1 1 

4g , g>2' 

1 
(3-29) 

-1+g, g<2· 

In the large N limit, all models which we consider in this paper (Table I) become 
very similar. Previously, one of the authors discussed the universal behavior of 
p'-function in two dimensions in the large N limit. 2

) The universal nature seems 
to persist in higher dimensions. 

For the noncompact model, these third order transitions disappear. We 
consider here U (N, N) I U (N) x U (N) model for example. U sing the measure 
in Table I, we have the following saddle point equation similar to the compact 
case (t = giN), 

l=21
a 

pCP') dp' . 
9 0 a-p' (3-30) 

For the noncompact case, the variable takes 0 to = and the normalization 
condition corresponding to (3 -15) becomes 

1~ dx= l ap (P')dP'=I. (3-31) 

Thus the value of a takes 0 to = and no phase transition occurs. The energy 
becomes 

E=~I-g . (3- 32) 

For the unitary Grassmannian case, the integration for finite N can be performed 
exactly and it is shown that the expression is identical to the compact case in the 
low temperature phase except for the sign of g. 

§ 4_ CPN-l and RPN-l models 

In the previous section, we have considered the large N limits of nonlinear (J 

models defined on symmetric spaces. For the Grassmannian case, we have 
investigated G(2N)IG(N) X G(N) model. However, the large N limit of an
isotropic Grassmann model U(N + M)IU(N) X U(M) for fixed value of M (M 
<f:;N) may become different. In this section, we consider CPN-l and RPN-l 
models in the large N limit as a typical anisotropic case. 

For the CPN-l model, we have (Table I) the following partition function for 

one-link problem, 

1"/2 . . { 1 } Z = 0 (sm 8)2(N-2)(sm 28)exp t cos2 8 d8. ( 4-1) 
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Nonlinear (J' Models on Symmetric Spaces and Large N Limit 1047 

In the large N limit (t = g/N), we have the following saddle point equation as 

cos e[_.l __ l sin e] =0. 
sm e 9 

(4·2) 

The solution of this equation is 

cos e=o or (4·3) 

Since sin e is less than one, the solution of (4·2) becomes cos e = ° when 9 

becomes greater than one. The free energy becomes 

lim·
N
1 In z=lcos2 e+2In(sin e) 

N~= 9 

{
o, 

- 1 
-1 +g+ln g, 

g>l 

g<l 
(4·4) 

and the energy becomes (g = kT/J, k is the Boltzmann factor, T is temperature 
and J is interaction) 

{
O, 

- -l+g, 
g>l, 

g<l. 
(4·5) 

The specific heat becomes discontinuous at 9 = 1, and this behavior is differ
ent from the third order phase transition discussed in the previous section. In the 
Appendix, we solve the large N limit of RPN-l model in d-dimensions. The 
result is essentially the same as zero dimensional CPN-l model. The specific 
heat shows discontinuity and the energy becomes zero for high temperature 
phase. 

§ 5. Two point correlation function in one dimension 

The two point correlation function. X is defined by 

(5·1) 

where gl EO C/Hand the suffices a and b represent the sites on a line. As 
discussed in (2·11), we make a change of variable from gl to the link variable jl 
for the diagonalization of the action. Using this link variable jl, the two point 
correlation function of U(2N)/U(N) X U(N) model becomes 

x= iI} df.1.(fa)Tr(r;ja+1···jbT/jb*···jd+l) 
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1048 s. Hikami and T Maskawa 

By the representation of Il as (2 ·13), and using the following identity, 

1 . 
= N[7}ad7}cb +(l-7) )ad(l-7} )Cb] (5·3) 

we have 

_N[ (C-S)LJ x--1+ ~-
2 N (5·4) 

with 

N 

C=<:E cos2 hi> , 
i=l 

(5·5) 

N 

S=<~ sin2 hi>=N-C. 
i=l 

(5·6) 

We have defined X as (5·1). For the proper correlation function, which becomes 
zero at I a - bl--> 00 in disordered phase, we redefine as 

From (5·4), i is shown to be factorized. This factorization is common to 
all one dimensional models. 

§ 6. Renormalization group /3 function 

The renormalization group fJ function is derived from the expression for 
the two point function i. Various models show the exponential decay as 

(6·1) 

where a is a lattice constant and aL is the length between two points. When the 
mass m is fixed, the fJ-function is obtained from the change of the coupling con
stant g according to the change of the lattice constant a. The fJ-function is 
defined as 

fJ( g) = - a ~~ . (6·2) 

For the Grassmannian model of U(2N)/U(N) X U(N), the two point func-
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Nonlinear 0' Models on Symmetric Spaces and Large N Limit 1049 

tion i is evaluated explicitly in the large N limit by the following expression, 

{ 

1-2g 

(C-S)/N= _1 ' 

8g , 

The ;3-function becomes 

{ 

~ (1-2g)In(1-2g), 
;3(g)= 

-8g2 In(8g) , 

(6·3) 

(6·4) 

We see that the ;3-function has a kink at g = 1- and two solutions in (6·4) are 
completely different from each other. For finite N, ;3- function is smooth and 
no third order transition occurs. The large N behaviors of the .a-functions of the 
compact symmetric spaces are almost identical with each other and they are 
equivalent to the result of two dimensional lattice gauge theory studied by Gross 
and Witten. S

) 

For the noncompact case, the two point correlation function i is described 
by the power law of the following quantity, 

C+S =1+2g 
N ' 

(6·5) 

(6·6) 

From the expression for C(3·33), we obtain 

1 
;3(g) = -2(1 +2g )In(1 +2g). (6·7) 

This expression shows that there is no phase transition. We notice that this 
result becomes the same as the expression (6·4) for the compact case in the 
small coupling region when we interchange the sign of g. 

§ 7. Discussion 

We have investigated various nonlinear (J models and we have found that the 
third order phase transition takes place in the large N limit. For CPN-l and 
RPN-l models, the large N behavior leads to the phase transition which has a 
discontinuity in the specific heat. In the Appendix, we evaluate the energy of 
RPN-l model in the large N limit in d-dimension by using the saddle point 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/67/4/1038/1842675 by guest on 21 August 2022



1050 S. Hikami and T. Maskawa 

method. The behavior is similar to the result which we have derived for one-link 
problem. 

Recently, Monte Carlo calculation has been performed for CPN-1 and RPN-1 
models4

),9) and it has been suggested that there exists a first order phase transition 
for N >3. By employing a mean field approximation we are able to show that a 
first order phase transition occurs for CPN-1 model or U(N + M)IU(N) X U(M) 
(N ~M) model. The mean field results are easily obtained by our angle variable 
representation. These results and the relation between mean field solution and 
the third order transition in the large N limit will be discussed in a separate 
article. 

The applications of the nonlinear (J models on symmetric spaces to the 
critical phenomena are interesting. Recently, noncompact Grassmannian models 
are considered for Anderson localization problem. 10),11) For one dimensional 
case, we notice that a similar p-function to (6-7) has been discussed in the 
problem of electron conduction in impurity potential. l2

) 

Appendix 

We discuss the large N limit of a real projection matrix RPN-1 model which 
is defined on O( N) IO( 1) X O( N -1) symmetric space. The large N limit of this 
model gives a different behavior from the case of O(2N)/O(N) X O(N) model. 
We consider N -component vector spin S i = ( (Ji (1 ), "', (Ji (N» where i represents 
the space coordinate. The length of spin Si is fixed as N. 

The partition function becomes 

(A-l) 

where Kij is JlkT for the nearest neighbor coupling (J is interaction and k is the 
Boltzmann constant, T is temperature). We introduce two parameters Aij and ti 
and we write the partition function as 

1 l a
+

ioo j j Z= (2 ')M . IT dti IT d).ijexp(-K ~ A~j 
JrZ a-lOO <l~> 

N 

+2 L: AijKij L: (Ji( m)(JA m)+ N ~ tj-~ tj(J/( m»IT d(Jj( m), (A -2) 
<i,j> m=! 

where M is the number of sites. 
We take Aij = pijN and K = KIN. In the large N limit we apply the saddle 

point method by choosing tj and Aij as 

and (A-3) 

The partition function becomes 
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Nonlinear .(5" Models on Symmetric Spaces and Large N Limit 1051 

Z= fn dtJn dj.texp(-2dKj.t 2NM+NMt+Nlnj) (A-4) 

with 

1 -
In j= c-Z ~ In[t-2j.tK(q)], 

K(q)=2K[cos ql+"'+cos qd]. (A-5) 

In (A-4) and (A-S), d is a space dimensionality. The saddle point equations for 
variables j.t and t are obtained as 

(A-6) 

-.L ~ ~t=l cos qi d 
M q u-sj.tKL]1=1 cos qi fJ. . 

(A-?) 

From (A-6) and (A-7), we have 

- I + 2t = 8 dKj.t2 . (A-S) 

The saddle point values t and j.t are obtained as the solution of (A -6) and (A-7). 
Expanding small j.t in (A -6), we have the following equation, 

(A-g) 

Therefore, in comparison with (A -8), we obtain the critical value Kc as 

(A-10) 

For K> 1-, we have nonvanishing solution for p. For K < 1-, the value of j.t 
becomes zero. The energy is obtained as 

(A-ll) 

where we put K= J/kT. The e!1ergy becomes zero for K < 1- and the specific 
heat becomes discontinuous at Kc. For the sufficient low temperature region, j.t 
is almost one and the solution is the same as the usual spherical model. We note 
this phase transition is a similar one which we have discussed in the zero 
dimensional case in (4-5). 
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