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Nonlinear Saturation of Toroidal Alfv6n Eigenmodes 

via Ion Compton Scattering 

T.S. Hahm 

Princeton University, Princeton Plasma Physics Laboratory, P. 0. Box 451, Princeton, NJ OS543 

Liu Chen 

Department of Physics, University of California, Irvine, California 9271 7. 

The nonlinear interactions of high mode number Toroidal AlfvCn Eigen- 

modes (TAE), mediated via Compton scattering off the bulk ions, are investi- 

gated. It is shown that nonlinear J l  x B l  ponderomotive force produced by 

TAE's interaction drives sound wave like density fluctuation with low phase 

velocity which can resonantly interact with the bulk ion parallel motion. Con- 

sequently¶ fluctuation energy of TAE's is transferred to lower frequency and 

eventually absorbed by linearly stable TAE's near the lower shear-AlfvCn con- 

tinuum¶ leading to nonlinear saturation. Explicit expression for the saturated 

magnetic amplitude is derived. 

PACS Numbers: 5 2 . 3 5 . M ~ ~  52.35.BjY 52.25.Gj 
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Since the importance of the toroidicity-induced Alfvin eigenmode (TAE) [l] in present 

and future generation tokamak devices has been indicated, significant progress has been 

made in experimental identification [2-51 and detailed predictions on the linear stability [6,7]. 

High-N (toroidal mode number) TAE’s have higher linear growth rates and it is important 

to know their amplitudes at nonlinear saturation and the implications on the ensuing alpha 

( a )  particle loss. Previous studies [8-111 on the nonlinear interaction of high-N shear Alfvin 

fluctuations are based on a working paradigm of kinetic Alfvh wave (KAW). We note 

that TAE’s are qualitatively different from KAW’s in their mode structure and dispersion 

characteristics. Nonlinear behavior of TAE’s, on the other hand, has been theoretically 

studied only for low-N modes in the context of single wave trapping, profile modification 

[12-141, and magnetohydrodynamic (MHD) mode coupling [15,16]. In this letter, we consider 

a different nonlinear mechanism which is relevant to high-N TAE’s saturation. As well- 

known, the linear coupling of different poloidal harmonics due to  the toroidal magnetic field 

variation on a given flux surface induces the formation of a TAE. A TAE typically contains a 

few dominant poloidal harmonics and its eigenfrequency is most sensitive to  the equilibrium 

parameters at the amplitude peak. Therefore, there exist many (O(Nq) ,  here q is the safety 

factor) high-N TAE modes with the same toroidal mode number, and they differ by their 

radial locations and eigenfrequencies. We investigate, as a candidate for the saturation 

mechanism, the nonlinear interactions among them mediated via Compton scattering off 

thermal ions. Specifically, we show that nonlinear J l  x Bl ponderomotive force produced 

by TAE’s interaction drives sound-wave-like density fluctuation which in turn induces the 

spectral transfer of fluctuation energy toward lower-frequency TAE’s. The fluctuation energy 

is eventually absorbed by linearly stable TAE’s near the lower shear Alfvin continuum. The 
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fluctuation level at nonlinear saturation is then predicted to be 

where E = 2(r,/R,+A’) is the effective local inverse aspect ratio which quantifies the strength 

of the toroidal coupling 1171. A‘ is the radial derivative of the Shafranov shift, W A  = v A / 2 & ) ,  

v i  = B;/47rp, and 7~ is the spectrum average value of the linear growth rates (Eq. (16)). 

We perform a third order nonlinear perturbation theory. To the first order, linear evolu- 

tion of a test TAE (wave number k) is described by the ideal MHD equation which consists 

of the following frozen-in-flux constraint and vorticity equation: 

and 

where q5k and $k are the perturbed electrostatic potential and parallel vector potential 

respectively, and n = Bo/&. In this work, we shall focus exclusively on the nonlinear 

interactions and refer the reader to the literature for details of the linear theory. With this 

approach in mind, no explicit expressions for the linear drive and damping will be given 

which, in any case, have little effects on the mode structure and the nonlinear interactions. 

To the second order, the interaction of counter propagating components of two TAE’s 

modes produces S JL x 6BI n ponderomotive force which drives sound wave like density per- 

turbation with low phase velocity. Here, it is crucial to recall that each poloidal harmonics of 

a given TAE has a different radially varying lcll, although they share the same eigenfrequency. 

Each poloidal harmonics can propagate either parallel or anti-parallel to the magnetic field 
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depending on the radial location. A particular combination of two TAE components which 

produces low phase velocity density perturbation is (Wk, N ,  m) and (Wk', N ,  m + l), because 

they have the opposite signs of (i.e., a back scattering) at the gap position. Here, m is 

the poloidal mode number. The phase velocity of a beat wave is 

at the gap position where the amplitude is significant. We also note that the radial overlap 

of the amplitude is most easily achieved for the interaction of TAE modes sharing the same 

toroidal mode number. The production of low frequency density fluctuation is described by 

the nonlinear ion drift kinetic equation [MI: 

where ZIE  = ( n x V 4 ) / B o ,  fo and Sf are the equilibrium distribution function and the per- 

turbed distribution function respectively, and b = n + SB/& is the unit vector along the 

total magnetic field. Since a test TAE and the background TAE's (wave number k') are both 

high frequency (w >> w*, = (cT,/e&)kO/L,) fluctuations, we have Sfk/fO << e$k/Te, and 

6 fkl/  f0 << e4kl/Te, and the nonlinear terms on the right hand side (RHS) are negligible. 

Then, the evolution equation for bfkll (sound wave like beat wave) simplifies to  

where k" = k - k'. Since a V g / d t  = vpol x Bo/M;, the first term on the RHS is proportional 

to (6BI x vpol - n)kll. Noting that the perturbed perpendicular current is carried by the ion 
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polarization drift, we can write this term as 

1 
-(SBLb x SJlk l  + "B',k x SJ,') - n 
no14 

which clearly indicates that  it is the ponderomotive force produced by nonlinear interaction 

of two high frequency TAE' ( I C  and k'). This nonlinearity has been studied within MHD 

fluid description in a straight ambient Bo [19,20]. In Eq. (4), we have not kept the nonlin- 

earity due to the E x B convection of the magnetic flux (WE - V$ = SB - V$/Bo) assuming 

(k lp i )2  << w/Qz,.. In the opposite limit which corresponds to  the short wavelength KAW's, 

that nonlinearity has been shown to be important [8]. Finally, w" << W ,  w' makes the induc- 

tion field contribution (&,bkI1/&) to  the RHS of Eq. (4) insignificant. A standard Fourier 

decomposition and straightforward vector algebra lead to 

The corresponding density perturbation is 

where 

is the ion linear susceptibility at IC". Since the electron nonlinearity is negligible due to 

smaller mass, the shielding potential 4Ell can be obtained via the following quasi-neutrality 

condition 

Here, 
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is the electron linear susceptibility. The partial shielding contribution reduces the nonlinear 

density perturbation to, from Eq. ( 6 ) ,  

In this work, we shall concentrate on the resonant (imaginary) part of Eq. (7) which is 

responsible for the ion Compton scattering leading to  the spectral transfer of fluctuation 

energy to  lower frequency region. This restricts the applicability regime of our theory t o  low 

pi (pi < c2). For higher value of pi, the nonlinear shift of real frequency caused by the real 

part of Eq. (7) must be considered. Noting 

We then have, in Eq. (7) ,  

To the third order, the nonlinear evolution equation of a test TAE in the presence of the 

turbulent bath of other TAE's (b') and the low frequency density perturbartion (b") is de- 

rived. Since the frozen-in-flux constraint is not affected by 6nE),, it suffices to study vorticity 

equation. Noting that the polarization current, 6.71 = (l/Bo)n x p ( d v ~ / d t )  depends on the 

ion number density, we obtain the following modified vorticity equation: 

Here, we note that the nonlinearities due to field-line-bending V+kt x n - VV2,+b and 

E x B convection of vorticity (V@,I x n . VV2,9,) are subdominant to  the last term [19]. 

Using the linear dispersion relation and the fact that kr) >> k i )  >> k;l'), we can greatly 
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simplify the nonlinear term of Eq. (8). By multiplying flk to d(Eq. (8))at and taking the 

imaginary part of the spatial average, we finally arrive at the following wave-kinetic equation 

for Ik E< IVl$kI2 >, 

where 

At nonlinear saturation, the RHS must vanish. The mode summation over various nonlin- 

ear interaction channels can be approximated by an integral (the continuum approximation), 

if there exist many TAE’s within the strong nonlinear interaction range v ~ i / q R  - ,L3i/2~~. 

Since eigenfrequencies of TAE’s separated by AT differ by WA/LAAT (LA1 = Id In W A / ~ T ~ ) ,  

the adjacent TAE’s frequency difference is given by Aw N T ~ w A / ( N ~ S I L A ) ,  ( S I  is the mag- 

netic shear). Therefore, the continuum approximation is justified for ,L3:l2 >> l/NqSI, taking 

LA N TO. Now, denoting TAE’s with their eigenfrequencies, the nonlinear saturation condi- 

tion becomes 

where c k ’  I k d ( d  - wkl) has been replaced by its continuum version I(w’) .  

Noting that ( I cp~ ’ /w )  - (k;,w/w’) N k;, at the gap position (kll = -k;, N 1/2qR, Iw-LJll 5 

(ro/R)w), we can write M,,,‘ = w’V(w’’), where V(w”)  ( M i / 2 B i ) ~ : I m ~ i / l ~ j  +xJ. Then, 

Eq. (10) can be converted to a differential equation if E > because the kernel V(w”)  

varies faster than w‘I(w’) as a function of w’. Using w’I(w’) N wI(w)  - w”b’(wI)/dw, we 

obtain 
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YL(W) = J & w I V ( W / I )  { WI - w”a(wI)/aw}.  (11) 

The higher frequency modes tend to  be TAE’s excited near the plasma center (recall that 

W A  = vA/2qRo, q(r) is typically an increasing function of r )  where the hot particle pressure 

gradient peaks, they are more unstable. The lower frequency TAE’s tend to  be in a region 

where the hot particle drive is weaker. Furthermore, if a TAE frequency is close enough 

to the lower continuum, TAE is linearly stable due to  strong continuum damping [21,22]. 

With this in mind, we can specify the integral limits of Eq. (11). The upper limit is given 

by W M ,  the highest frequency of linearly unstable TAE’s, and the lower limit is given by 

wl,  the lowest frequency with I ( w )  2 0. We note that w1 corresponds to a linearly stable 

TAE because the downward spectral transfer due to ion Compton scattering can nonlinearly 

excite a linearly stable mode. Since both w, and w1 are within a gap, W M  - w1 5 EW,~. 

Changing the integration variable to w”, we obtain 

where Uo(w) J,“:’ dw”V(w”) and Ul(w)  = Jz::Lf &w”w”V(w”). 

Although it is possible to  write the formal solution of Eq. (12) in terms of integrals of 

the error function, we simply present a more illuminating approximate solution. For w - w1, 

wM - w 2 vTi/qR, Uo(w) becomes exponentially small because V(w”)  is an odd function. 

Then, approximating U l ( w )  by 

we can integrate Eq. (12) to obtain 
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Now let us estimate I(wM). For w very close to W M ( W ~  - w << vTi/qR), 

Thus, the first term on the right hand side of Eq. (12) is larger than the second term. Using 

We obtain I(wM) N ~ L ( w M ) / w &  from Eq. (13). Then Eq. (13) can be written as 

As a consequence of the ion Compton scattering induced downward spectral transfer, the 

spectral intensity peaks at a frequency lower than that with maximum linear growth rate. 

Integrating the intensity over the fluctuation population zone, we obtain 

Since & ( w ~  - w l ) / o 1  = O(E/@'~) ,  we keep only the second term of Eq. (15). The corre- 

sponding magnetic fluctuation level at nonlinear saturation, which can be obtained by using 

the frozen-in-flux constraint, then becomes 

For a rough estimation, we take ~ L ( w )  N TL,  and expand the final expression in teff G 

1 - wl /wM,  to  get 

where (ke/k,)2 = c2 has been used. For CyL/w~ 5 

Eq. (17) yields SB,/Bo 5 

E,E N E - and Te/T; 5 1, 



Since 5 E ,  the saturation level is a strong (- c4) function of the inverse aspect ratio, 

and independent of pi . The strong E dependence originates from the radial localization 

of each poloidal component of TAE ( I C ,  21 I ~ o / E ) ,  and the proportionality of the fluctuation 

population range ( w ~  - w l )  to E .  The &scaling which appears in Compton scattering 

cross-section (- Imxi) for each pair (k,k’) of back scattering goes away after the mode 

summation because the nonlinear interaction range is given by Iw - w’I 5 vTi/qR. As a 

result, the effective “convective velocity” u1 in w-space (see Eq. (13), and the saturation 

level is independent of pi in the low pi regime (pi < e2) considered in this work. Finally, the 

temperature ratio appears due to  the partial shielding by @E!, . 
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