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Abstract. We prove existence results for a class of semilinear elliptic differential equations
in RN (N > 3). The nonlinearities contain sub- and supercritical exponents, and the
assumptions for the coeflicients are rather general. Moreover, we state some conditions so
that the solutions decay exponentially.

1. Introduction and presentation of the results. In the present paper, we
consider the nonlinear eigenvalue problem

—Au — q(z)]u|"u + r(z)|u]"u = du  in RY, (1.1)

where N > 3,0 <0y <4/(N —2) and 09 > 4/(N - 2).

The nontrivial solutions of equation (1.1) supply standing waves for nonlinear
Klein-Gordon and Schrodinger equations. In the case that g and r are positive
constants, this equation has been studied by W.A. Strauss [11] (see Example 2)
and by H. Berestycki and P.-L. Lions [3] (see also Example 2). These authors were
motivated by a paper of D. Anderson [1] who considered the case N = 3, g, = 2
and o9 = 4.

In the following, we require that the functions ¢ and r satisfy the conditions
(4)-(D) or (A,)-(D,).

(A) The functions ¢, r: RY — R are measurable and r satisfies r(z) > ry almost
everywhere in RY | where ry is a positive constant.

(B) There exist an open ball B C RY with B # 0 and 0 ¢ B and a sequence of
real numbers (f;) satisfying

1=t <to< o <tp <tpyr <...
and ¢ — oo (k — o0), so that
q(z) > f(2)]z[(M/D=D=2 holds for almost all z € B,
where B = |J;_, Bk, Brx = ;B and f: B — [0,00) is a measurable function satis-
fying

Ve = efgél:ff(x) — oo (k— o0).
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Furthermore, we assume that there exists a constant K such that
/ r(z)dz < Kt,]cv_2+az((N/2)_1)
By

holds for all .

(C) The functions q_ and r satisfy q_, r € L]

loc*

(D) The function g4 can be written as g4 = g1 + g2, where
(D1) 0 < ¢; € L™ and ¢;(z) tends uniformly to zero as |z| — oo
(D2) and 0 < g € LP° holds for a constant

Po € (2N/(4 — 01(N — 2)),00).
Then we will prove the following theorem (see Lemma 3.1-Lemma 3.8):

Theorem 1.1. Suppose that the functions q and r satisfy the assumptions (A)-(D).
Then there exists a sequence (uy) of pairwise distinct functions u, € H' N L=\ {0}
and a sequence of real numbers (A(n)) such that u, > 0 and equation (1.1) holds
in the generalized sense if u = +u, and A = A(n).

When the constant pg in condition (D2) satisfies po > 2, the functions u,, vanish
at Infinity.

The conditions (A,)-(D,) read as follows:

(A,) The functions ¢ and r are radially symmetric and satisfy condition (A).

(B,.) There exists an annulus A = {z : a1 < |z| < a2}, with 0 < a3 < az < oo,
and a sequence of real numbers (t;) satisfying 1 =¢; <ty < -+ <t < tgy1 < ...
and t; — oo (k — 0o) so that

q(z) > f(z)|z|"PND=D=2 }olds for almost all z € A,

where A = |Jgo, Ak, Ax = txA and f: A — [0,00) is a measurable function
satisfying
Vo = esz/ianff(x) — o0 (k— o0).
TE€EAL

Moreover, we assume that there exists a constant K such that
/ r(z)dz < Kt,]:/_2+"2((N/2)_1)
Ag

holds for all .
(C,) Is the same as (C).
(D,) The function ¢4 can be written as

9+ =@ +g2+qs,
where
(D;1) 0 < q1 € L™,
(D;2) ¢ satisfies (D2)
(D,3) and the function gs satisfies
0 < gs(z) < g(2)]z|]* ™ =D/2 ae in RY,

where g € L* is a nonnegative function that vanishes at infinity.
Then, we will show that the following theorem holds true (see Lemmas 3.1-3.7).
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Theorem 1.2. Suppose that the functions q and r satisfy the assumptions (A, )-
(D). Then there exists a sequence (ury) of pairwise distinct functions u, €
H! N L*\ {0} and a sequence of real numbers (\.(n)) such that u,, > 0 and
equation (1.1) holds in the generalized sense if u = tu,, and A = A\.(n).

Remark 1.1. From inequality (2.2), it follows that the functions u,, satisfy
Ura(@) = 0|21 =M72) (J2] = o0).

Corollary 1.1. a) Suppose that the functions q and r satisfy the assumptions (A)-
(D) or (A,)—(Dr). Moreover, we assume tht g_, r € L} holds for some p > N/2.
Then the functions u, and u,, are positive and locally Holder continuous.

b) Suppose that the functions q and r satisfy the assumptions (A)—(D) or (A,)-
(D,). Moreover, we assume that the functions q and r are locally Hélder continuous.

Then, it follows that
U, Upn € C?® holds for some & € (0,1)
and equation (1.1) holds in the classical sense, provided that
u=Hu, (resp.u==u,,)andX=2>X(n) (resp. A = A.(n)).

¢) Suppose that the functions ¢ and r are continuous and satisfy the conditions
(A,;)—~(D;). Then it follows that u,, € C? and equation (1.1) holds in the classical
sense if u = *u, , and A = A.(n).

Corollary 1.2. Suppose that the functions q and r satisfy the conditions (A)—(D).
Furthermore, we assume that py > 2 and that there is a constant Ry > 0 such that
q+ € L=({z : |z| > Ro}). Then if \(n) < 0 holds for some n, for each c € (0, —\(n))
we can find a constant A, such that

lun(2)] € Ac exp(—(=A(n) — ¢)*/*|z])

holds almost everywhere in RY.

Corollary 1.3. Suppose that the functions q and r satisfy the conditions (A, )-
(D). Furthermore, we assume that there is a constant Ry > 0 and a function
h € L*({z : |z| > Ro}), vanishing at infinity, so that gs(x) < h(z)|z|7*(N-1)/2
holds almost everywhere in {y : |y| > Ro}. Then if \.(n) < 0 holds for some n, for
each ¢ € (0,—A.(n)) we can find a constant A. so that

lrn(2)] < Acexp(—(=A(n) — ¢)"/?|z])

holds almost everywhere in RV,

Corollary 1.2 and Corollary 1.3 show that it is an interesting problem to find
conditions for the functions ¢ and r so that A(n) < 0 (resp. A.(n) < 0) holds
for some n. In the following, we will present some of them. We start with the
introduction of the assumptions (E) and (E,).

(E) The functions g and r are differentiable almost everywhere in RY and there
exists a constant € € (0,1) such that

la(02) — q(@)Il0 = 1|77 < fi(2) + foo(2)
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and
[r(8z) — r(2)[10 = 17" < fi(z) + foo(2)
hold for all # € (1 — ¢,1 + €) and almost all z € RY, where f; € L' and f., € L.

(E,) The functions q and r are differentiable almost everywhere in R” and there
exists a constant € € (0,1) such that

la(0z) — q(2)||6 ~ 17" < fi(z) + foola) + M (2)
and

[r(0z) = r(2)]|0 — 1|77 < f1(2) + foo(2) + ha(2)
hold for all § € (1 —¢€,1+ ¢€) and almost all z € RY, where f; € L}, fo € L™ and
hi( )] - |7 0=M72 e Lo (i =1,2).

Example 1.1. Suppose that the functions ¢ and r are continuously differentiable
in RY \ {0}. Furthermore, we assume that there exist constants C > 0 and x €
[1, N + 1) so that

IVa(@)l, [Vr(z)] < Clz|™ + Clz|™"
holds for all z # 0. Then, by the mean value theorem, it is not difficult to verify
that (E) holds true.

Example 1.2. Suppose again that the functions ¢ and r are continuously differen-
tiable in RY \ {0}. Moreover, we assume that there exist constants C > 0 and &,
ko € [1, N + 1) so that

Vg(z)] < Cla| V=D 4 Cla|
and
|Vr(2)] < Cla|(N=D=22 4 Clz| 72
hold for all z # 0. Then it follows that (E,) is satisfied.
In §4, we will prove the following theorem:
Theorem 1.3. Suppose that the functions q and r satisfy the conditions (A)-(E
pp

or (A,)—(E.). Moreover, we assume that one of the following two conditions Is
fulfilled:

a) ((01/N)(N=2)~2)q(x) < Vg(a)-z and ((o2/N)(N—2)=2)r(z) 2 Vr(z)-a
hold almost everywhere in RY and one of these inequalities is strict;
b) 0 < Vg(z)-z and ((02/N)(N —2) — 2)r(z) > Vr(z) -  hold almost every-
where in RY.
Then it follows that A(n) < 0 and A.(n) < 0 hold for all n.

Using a device that we found in [2] (scc Lemma 13), we will prove the following
two theorems:

Theorem 1.4. Suppose that N = 3 and that the functions q and r satisfy the
conditions (A)-(D). Furthermore, we assume that there exist constants Ry > 1,
Teo > 0 and p > 3/2 such that

r€ LP({z : |z| < Ro})

and g(z) > 0 and r(z) < ro hold for almost all |x| > Ry. Then we have A(n) < 0
for all n.
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Theorem 1.5. Suppose that N = 3 and that the functions ¢ and r satisfy the
conditions (A,)-(D,). Moreover, we suppose that there exist constants Ry > 1,
Teo > 0, p > 3/2 and 0 € [4/3,05] such that r € LP({z : |2| < Ro}) and g(z) > 0
and r(z) < 7oo|2|(?2=) hold for almost all |z| > Ry. Then it follows that \.(n) < 0
holds for all n.

2. Some preliminaries. In the present paper, we only consider realvalued
functions. By L? = LP(RY) and L, = L? (R") (1 < p < co) we denote the usual
Lebesgue spaces and || - ||, is the norm on LP. If 1 < p < oo, the dual index p’ is
defined by p’ = p/(p — 1). Furthermore, Wk? = WkP(RY) (k =1,2and 1 < p <
o0) is the usual Sobolev space and H' = W2, By H}, we denote the subspace of
the radially symmetric functions in H'. Finally, C§ = C}(R¥) is the space of all
continuously differentiable functions with compact support and C§° = C§°(R") is
the set of all functions ¢ € C{ that have derivatives of any order.

The positive part wy and the negative part ¢_ of a function ¢ are defined
by ¢4+ = max(p,0) and ¢ = min(p,0). By 2* we denote the constant 2* =
2N/(N — 2). Then, from the Sobolev inequality, it follows that there is a constant
Co so that

I

9+ < Cp||Vulla  holds for all u € H'. (2.1)
Each function v € H} can be identified with a continuous function on RV \ {0},

still denoted by u, such that
()] < 2feon) 2 lly |Vl | =072 (2.2)

holds for all z # 0 (see [6, p. 317] and [9, p. 416]). Here wy is the surface area of the
unit sphere in RY. A function u € H! is called a generalized solution of equation
(1.1) if and only if

/Vquod;c—-/q[u|”1u<pdx+/r|u|02u<,odx = /\/ugoda:

holds for all ¢ € C§°. When the domain of integration is not indicated, the inte-
gration extends over all of RY.

Proposition 2.1. Suppose that p € (1,00), ko is a positive constant, h € L? and
u is a tempered distribution such that

—Au+ kou=~h holds in ’D'(RN).

Then it follows that u € W27,
Proof. See Proposition 27 in [4, p. 635].

3. Proof of the existence and regularity results. In the following, we
consider the cases where the functions ¢ and r satisfy the conditions (A)—(D) or
(A.)-(D,) simultaneously.
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Lemma 3.1. Suppose that the functions q and r satisfy (A)-(D) (resp. (A,)-

(D;).Then there exist positive constants o and 3 and, for each € > 0, a constant
K, such that

(2+01)7" f9+ [uf**7* dz < e(|lullztar + IVull3) + Ke(llulls + llull?)

holds for all u € H' (resp. u € H}).

Proof. We start with the case that ¢ and r satisfy (A)-(D). Since 2 < 2+ 07 <
2 4 09, we can find a constant v € (0,1) so that 2 + oy = v(2 + 02) + (1 — v)2.
Hence, by Hélder’s inequality, we obtain

Jatupt do <l [ 1Pt a0)"( [1a) ™. @)

Since 2 < (24 o1)py < 2* < 2 + 04, there exists a constant 7 € (0,1) such that
(24 01)py = 7(2+ 02) + (1 — 7)2. Now, we see that

2 ¢ 1-7)2/p;
[ a2 do < gl llls " 7205, (32)

Since g3 > 4/(N —2) > 0y and py > 2N/(4 — 01(N — 2)), it follows that 7/py < 1.
Then, by (3.1), (3.2) and Young’s inequality, we get the assertion.

Next, we assume that the functions ¢ and r satisfy the conditions (A,)-(D,).
Then, from assumption (D,.3) and (2.2), we conclude that

[ astu*erda < @/on) PglFulg Hully
holds for all u € H}. Now, using the fact that 0y < 4, from Young’s inequality and

from what has already been proved, we again obtain the assertion. O

In the following, we always assume, without stating it explicitly each time, that
the functions g and r satisfy the assumptions (A)-(D) (resp. (A,)-(D)).
The nonlinear functional £ may be defined by

E(u) = %]|Vu|2 dz — (24 01)7"! jc‘;|tat|2“""1 dz+ (24 02)7! fr|u|2+“° dz;
and by S, (1 > 0) we denote the set

8= {u EH': /|q..| [u]**7 dz < m,j?'|1£|2+°’ dz < 0o and |ulf2 < p}.
Furthermore, S, , is defined by S, , = {u € H} : u € S,}. Since r(z) > 19 > 0

holds almost everywhere in R¥ | it follows from Lemma 3.1 that £ is well defined on
S, (resp. on S, ) and that

I(“J=uié‘sf,‘5(“) and In(p)= inf &(u)

LT

are well defined real numbers.
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Lemma 3.2. There exists a sequence (i) (resp. (itrn)) of real numbers such that

1§u1<,u2<-~<,un<un+1<...

(resp. 1 < pir1 < pro <+ < plrn < fhrng1 < ...)
and

0> I(p1) > I(p2) > - > I(pn) > I(ptng1) > ...
(resp. 0 > In(pra) > In{pr) > -+ > Ln(prn) > ...).

Proof. We only consider the case where the functions ¢ and r satisfy the conditions
(A)—(D). The proof for the radial case is nearly the same.
The ball B and the sequence (t;) may be defined as in condition (B). Further-

more, the function ¢ € C§° may be chosen so that supp ¢ C B and ||¢||2 = 1. For

1-(N/2)¢(

k € N, we define gi(z) =t t;lm). Then we see that ||¢k]|2 = tx and

1 —o1((N/2)— - =51
I(ty) <éler) = 5190l - =27V 4 1) /B a(tx)lp(x) P de
O ko) [ el da

1
<3Vl = (2 400 [ el D () g
B
+ (24 02) Kl 2

Since 7, — 0o as k — 0o, we obtain the assertion.

Lemma 3.3. For n € N, the constants ., (resp. yi, ) may be chosen as in Lemma
3.2. Then, for eachn, there exists a function u,, € S, ,\{0} (resp. u;» € S, ,, . \{0})
50 that Un, Urn > 0, Un F Um (TeSP. Urp F# Urm) 0 # m and E(un) = I{pn)
(resp. £(krn) = Ir(tir,n))-

Proof. Let n € N be fixed. Then, for the sake of convenience, we set u = y, (resp.
Hr = prn). The sequence (vy,) C S, (resp. (vm) C Sy, ) may be chosen so that

E(vm) — I(p) (resp. £(vm) — I(pr)) as m — oo. Since I(p) < 0 (resp. I.(p,) < 0),
and ||V|v||2 = || Vv|l2 holds for all v € H*, we may assume without restriction that
&(vm) < 0 and v, > 0 holds for all m. Then, by Lemma 3.1 and the fact that
r(z) > ro > 0 holds almost everywhere in RY, we can find a constant C so that

1 _ o
IVl + @+ o) [ lacllon ot da

1 (3.3)
+ 5@+ 0n) ™ [rlon P do < CQu® + 1) (resp. < Ol + 1)

holds for all m. Since (v,,) is bounded in H? (resp. in H}), we can find a subsequence
of (vy), still denoted by (v,,), and a u € H! (resp. u, € H}) such that v,,—u in

H! (resp. vm—u, in H}) and vy, (z) — u(z) (resp. vm(z) — u.{z)) for almost all
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z € RY. Hence, we obtain from Fatou’s lemma, the uniform boundedness principle
and (3.3) that ||lullz < g, ||Vu||} < liminf ||Vv.,||3,

/]q_| [u|*t91 dz < liminf/ lg—| [vm |t dz < 00

and
/r|u|2+‘72 dz < 1iminf/r|vm|2+“2 dz < oo.

Furthermore, we see that the corresponding estimates for the function u, hold true.
Since (2 + o1)ph < 2*, the imbedding H'(G) — L2917 (G) is compact for all
bounded balls G. Then, proceeding as in [8, p. 570] (resp. [9, p. 419-421]), it
follows that

/Q+|Um]2+a1 dr — /'q-f-lu!Q-‘-(71 dz

(resp. / T o / g | P71 da)

and &(u) = I(p) (resp. £(u) = I(p)). Since I(p) < 0 (resp. I.(1) < 0), we see that
u Z 0 (resp. u, # 0).

Now we define u, = u (resp. u,, = u,). If n # m, it follows that &(u,) =
I(4tn) # L(jim) = (i) (re5p. E(ttrn) = Ln(firn) 2 Ir(inym) = E(ttrm)). Hence, we
see that u, # un, (resp. Urp # U m ).

Lemma 3.4. For each n, equation (1.1) holds in the generalized sense provided
that u = tu, (resp. v = tu,,,) and A = A\(n) (resp. A\ = A\.(n)). Here the constants
A(n) and A.(n) are defined by

Am) = ualls? (I90 = [ gl dot [ sfuaf?* da]

and

A () = Furalls 2 [Vl = [ alurn 72" da [ rlus oo o],

Proof. First we consider the case where the functions ¢ and r satisfy the assump-
tions (A)-(D). Then, for each ¢ € C§ and n € N, there exists a positive constant
€0 = €, n) so that ||u, + €p|l2 > 0 holds for all € € (—€g,€g). For these €, we
define ®(e) = &(JJunll2||un + €@ll3 ' (un + €p)). By Hblder’s inequality, Lemma 3.1
and the fact that u,, € S, _, it follows that

/|q| l¢] Jun|' T dz < oo and /r|<,o| [, |' T2 da < o0, (3.4)
From (3.4), it is not difficult to conclude that ®(-) is differcntiable at € = 0. But
d®(e)/de |C=0: 0 implies

/VunV@dx—/q[un[‘”un@d:c-k/r|un|”2un99d:c = )\(n)/uncpdw. (3.5)
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Finally, we assume that ¢ and r satisfy the conditions (A,)—(D,). Then, proceed-
ing as above, we see that (3.5) holds for all radially symmetric functions ¢ € C}
when u, is replaced by u,, and A(n) is replaced by A.(n). If ¢ € C§° is a general
function, not necessarily radially symmetric, we define

Pe@) =wit [ pllel)do(:).

|z|=1

Then Py is radially symmetric and satisfies Py € C{. Inserting Py in (3.5) and
using the fact that u,,, ¢ and r are radially symmetric, we see that +u,, solve
equation (1.1) in the generalized sense if A = A.(n).

Lemma 3.5. For each n, the function u, (resp. u, ) and the constant A\(n) (resp.
Ar(n)) may be defined as in Lemma 3.4. Then, for all nonnegative functionsv € H?,
we have

/Vuandx < )‘(”)/Unvdw-*-/(nu}f”‘vdx

and
/Vur,"Vv dz < /\r(n)/ur,nv dm+/q+ul"','flvdm.

Proof. Clearly, the assertions hold true for all nonnegative functions v € C§°.
Now let v be a nonnegative function satisfying v € H!. Then, via regularization
and truncation, one can find a sequence (v) of nonnegative functions vy € C§° so
that v, — v in H'. From condition (D) (resp. (D)), one casily concludes that

/q.,.u,lf”lvk dz — /q+ui+”‘vd:z
and

/q+u11:;”111k dzr — /q+u1";alv dx.
Hence, we obtain the assertion.

Lemma 3.6. For each n and all p € [2,00), we have u,, u,, € L.

Proof. In the following, we will use an iteration technique which was introduced by
J. Moser [7]. Let n be fixed, u = u, and A = A(n). The constant py may be chosen as
in (D2). Then there exists a positive constant €g such that 1/py = (2+0; +2¢5)/2*.
For all k € NU {0}, we define 7, = 2*(1 — €)* and

sk = (rk/py) — 1 — oy.
Now suppose that u € L™ holds for some k. Then, using the fact that
145k, 140145k, po(l+or+se) €[2,7%],

we conclude that

/uH’s’“ dr < oo and /q+u1+s’°+"1 dz < oo.
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For t > 0, we define vy, = min(u, t). Since s > 1, it follows that
vi* € H'NL® and Ot = spvf* 10w, (i=1,...,N).

Then, from Lemma 3.5, we conclude that
sk/Vqutvf’“_l dr < |)\|/uvf'° dx+/q+u1+"‘vts" dz.

Since Vv, = Vu holds almost everywhere in {z : u(z) < ¢} and Vv; = 0 holds
almost everywhere in {z : u(z) > t}, we see that

dsp(sk + 1)_2/|V1}§Sk+1)/2]2 de < |/\[/u1+s" dr + /q+ul+"1+s’° dz. (3.6)

Hence, by (2.1), it follows that Ugs"H)/Z € L¥ and that the norm ]|v§s’”+1)/2]|2‘
can be estimated by the right hand side of (3.6) which is independent of ¢. Letting
t — oo, we obtain by Fatou’s lemma that u € L2 (s¥+1)/2_Since r, > 2*, we see
that

2°(sk + 1)/2=re(2+ 01 4+ 2€60)/2 — (2701/2) > r(1 + €0) = Tkey1-

Hence, by induction, it follows that u € L™ holds for all k. Furthermore, preceding
as above and making some obvious changes, one can show that u, , € L? holds for
all p € [2,00).

Lemma 3.7. For each n we have u,, urn, € L™

Proof. In this proof, we use techniques which were developed by G. Stampacchia
(see [10]). First we assume that the functions ¢ and r satisfy the assumptions (A)-
(D). For the sake of convenience, we define u = u,, and A = A(n). For each k > 0,
the set A(k) and the function Uy may be defined by A(k) = {« : u(z) > k} and
Uk = (u — k)4. Then it is well known (see Lemma 1.1 in [10] and Theorem 7.8 in
[5]) that U € H*, 8;Uy = d;u holds on A(k) and 8;Uy = 0 holds on R™ \ A(k).

Hence, it follows from Lemma 3.5 that
/VuVUk dz < |A] u? dz +/ geu*tor da. (3.7
A(K) A(K)

The constant p, may be defined as in (D2) and by p; we denote the constant
p1 = 2N/(4— o1(N —2)). Since py > p1, we can find a constant ps € (1, 00) so that
1/pg - 1/p5 = 1/p}. Thus, inequality (3.7) implies

1/ 1 ’
/[VUk|2 dz < |A|[/u2’" dac] ’ ( meas A(k))'/7

1/P1 ’
+ lla1lloo [/u(2+o‘1)m da:] (‘meas A(k))1/%

]1/(176;02)

+ ”(h”po [/U(2+01)p:’p2 dx ( meas A(k))l/P'l.
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Hence, there exists a constant C, independent of k, such that
. 2/2" .
[/ (u— k)2 dr] < C( meas A(k))!/7. (3.8)
A(k)

Moreover, for each h > k > 0, it follows that

. 127 .17 .
[/ (u—k)? d:v] > [/ (u—k)? dm} > (h — k)*( meas A(h))Y/%".
A(k) A(h)
(3.9)
Combining (3.8) and (3.9), we see that
meas A(h) < C*/?(h —k)™% (meas A(k))zt/(zp/l)

holds for all A > k > 0. Since 2*/(2p}) = 1+ (01/2) > 1, we conclude from part i)
of Lemma 4.1 in [10, p. 212] that u is essentially bounded.

In the case where the functions ¢ and r satisfy (A,)-(D..), we conclude from (2.2)
that

1/ /
[ i do < [ [apraroom as] ™ meas (k)
A(K)

1/ ,
<c| [ ad " (meas ag),

where C = (2/wN)"1/2||g||ooHur,n”glﬂ||Vu,~,n||gl/2. Then, proceeding as above, we
see that u, , is essentially bounded.

Lemma 3.8. Suppose that the constant pg in condition (D2) satisfies po > 2.
Then, for each n, the function u,, vanishes at infinity.

Proof. Let n be fixed and define v = u,, and A = A(n). Then, from Lemma 3.5,
we conclude that

/Vqudx+/uwdx < (|)\|+1)/uwda:+/q+ul+a‘wdx (3.10)

holds for all nonnegative functions w € H!. The linear functional L: H! — R may
be defined by

L(w) = (A +1) / wwda + / Gt de.

Since u € L? holds for all p € [2, 0], one easily verifies that L is continuous. Hence,
there exists a function v € H! so that

/VUVU) dz + /Uw dz = L(w) (3.11)

holds for all w € H'. Since po > 2, it follows that

(IA] + Du 4 qpu'tr € LP,
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Now, from (3.11) and Proposition 2.1, we conclude that v € W%Po. Since py >
(N/2), by the Sobolev imbedding theorem it follows that the imbedding W2Po —
L is continuous. Now let (px) C C§° be a sequence so that ¢ — v in W2Po,
Then we see that ¢, — v in L. But this shows that v is a continuous function
that vanishes at infinity. From (3.10) and (3.11), we conclude that

/V(u —v)Vwdz + /(u —v)wdz <0 (3.12)

holds for all nonnegative functions w € H'. Inserting w = (u—v)4 in (3.12) implies
that u < v holds almost everywhere in RY. Since u is nonnegative, we obtain the
assertion.

Proof of Corollary 1.1 (part (a)). Let n be fixed, u = u, (resp. u = u,,) and
A= A(n) (resp. A = A.(n)). Then it follows from Lemma 3.4 that —Au+c(z)u =0
holds in the generalized sense, where c(z) = —g(z)u(z) + r(z)u??(z) — A. Since
po > N/2 and u € L™, we see that ¢ € L! | where p; = min(po,p) > N/2. Now

loc?
the assertions follow from Theorem 7.1 and Corollary 8.1 in [10].

Proof of Corollary 1.1 (part (b)). From part (a),it follows that u, and u,,
are locally Holder continuous. Hence, the distributions Au, and Awu,, can be
represented by a locally Hélder continuous function. Now the assertion follows by
a well known result from the regularity theory of elliptic differential equations.

Proof of Corollary 1.1 (part (c)). From the assumptions and part (a), it follows
that the distribution Awu,, can be represented by a continuous function. Now the
assertion follows from Proposition 7 in [4, p. 287].

Proof of Corollary 1.2. Suppose that A(n) < 0 holds for some n and that c €
(0,=A(n)). Then, since g4 € L®({z : |z| > Ro}) and u, vanishes at infinity (see
Lemma 3.8), we can find a constant R, > Ry so that

g+(z)|un(2)|”* < cholds a.e. in {z : |z| > R.}. (3.13)
The function ¥ may be defined by

Y(z) = Acexp(=(=A(n) = ¢)/)|z]) (z € RY),
where the constant A, is chosen so that

¥Y(z) > un(x) holds a.e. in {2 : |z] < R, + 1}. (3.14)
Then, it is well known that ¢ € H' and that
A = (=X(n) = ) = (N = 1)(=A(n) — ) /2a] 1y

holds in the generalized sense. Hence, we obtain from Lemma 3.5, (3.13) and (3.14),

19 = 0141 = [l = 9) Tt = ) do

< An) / wn(un = ¥)4 dz + / tn (i ~ ) 4z — (A(n) + ) /¢(un — ¥)pda
= (An) + ¢)|lun — )1 113
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Since A(n) + ¢ < 0, we obtain the assertion.

Proof of Corollary 1.3. Suppose that A.(n) < 0 holds for some n and that
c € (0,—Ar(n)). Then, from (2.2) and the assumptions, one easily concludes that
there is a constant R, > Ry such that

g+(z)|urn(2)|?* < cholds a.e. in {z : |z| > R.}.
Then, proceeding as in the proof of Corollary 1.2, we obtain the assertion.

4. Sufficient conditions for A(n) < 0 and A.(n) < 0. In this paragraph, we
will prove Theorem 1.3-Theorem 1.5.

Proof of Theorem 1.3. In the following, we consider n as fixed and define u = u,,
(resp. u = Upp), A = A(n) (resp. A = Ap(n)) and p = p, (resp. p = pirn). The
constant € may be chosen as in condition (E) (resp. (E,)). Then, according to
Lemma 3.6, Lemma 3.7, (2.2) and (E) (resp. (E;)), it follows that

[l jut@Pr ds < oo

holds for all 8 € (1 — ¢,1 + €). Hence, by the change of variable theorem, we see
that

/|q(x)| (0~ 2)|?+91 da < 0. (4.1)

Quite similarly, one can show that
/r(x)|u(9_lx)|2+”2 dz < co. (4.2)

The function vy may be defined by vg(z) = ~V/2u(0~1z). Since ||vgllz = |ull2 < p,
we conclude from (4.1) and (4.2) that vg € S, holds for all # € (1—¢€,1+¢). Hence,
we obtain that

I() S‘-"“%lIVUII% — 9= N2(2 4 5yt /q(()z)lu(x)|2+“1 di
(4.3)
+07 N2 (2 4 o) / r(8z)|u(z)|?*+2 dz.

Then, by the dominated convergence theorem, it follows that the right hand side
of (4.3) defines a function that is differentiable at 6 = 1. But d€(vg)/dé |0:1= 0
implies

0= = IVl + @)/ (22 + 1)) [ lul*"" da
~@ta)” /VQ(:E) - z|uft da (4.4)

— (02N)/(2(2 + ‘72))/T|U|2+02 dz+ (2+ 09)7! /Vr(x) -zful*to? da.
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From Lemma 3.4 and (4.4), it follows that

Mall =2+ 1) [[(01/2)N = 2) = 2)g() - Va(o) - alfuf** do
(4.5)
+ @407 [19r(@) 2 = (2/DN = 2) = 2@l da

Hence, we obtain the assertion of part a).
Finally, we suppose that the assumptions of part b) are fulfilled. Then, from
(4.5), it follows that

Mulld < 2 +01)7H(01/2)(N = 2) - 2) /QIU|2+U‘ dx. (4.6)
Since &(u) = I{p) < 0, we see that

/q|u|2+01 dz > 0. (4.7)

But (4.6), (4.7) and the fact that oy < 4/(N — 2) imply the assertion.

Proof of Theorem 1.4. We again assume that n is fixed, that v = u, and
A = A(n). Then it follows from the assumptions that u is positive and continuous
in R* (see Corollary 1.1).

Now suppose that A > 0. Then, from Lemma 3.4 and the assumptions, it follows
that

/VUVU dz +re /ul""”v dx >0 (4.8)

holds for all nonnegative functions v € Hy*({z : |z| > Ry}). The function 3 may
be defined by

Y(a) = Cle| % (z #0),

where C is a positive constant such that

C < (3/4r5)V7? and

¥(z) < u(x) holds for all z satisfying Ry < |z| < Ro + 1. (49)
Then, for = # 0, we obtain
—AY(x) 4 1T (2) = —(3C/4)|x| T2 + 1o C1HO |z | 3 H02)/2,
Since 03 > 4/3 and Ry > 1, we see that
CAG(@) + roet o (2) <0 (4.10)

holds for all z satisfying |z| > Ry. The fact that o5 is positive implies that

oo e L2({z x| > Ro}).
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Furthermore, we have |Vy| € L?({z : |z| > Ro}). Hence, by (4.10), we obtain that
/Vz/JVU dz + 14 /1/)“”’1} dz <0 (4.11)

holds for all nonnegative functions v € Hy*({z : |z| > Ro}).

The function { € C§° may be chosen so that 0 < ( < 1, { = 1 on the unit ball
and ((z) = 0 holds for |z| > 2. Moreover, for k € N, we define the function (; by
Ck(2) = ¢((k'z). For all = satisfying |z| > Ry and all k € N, we set

vk(z) = (¥ — u)y(2)Ck(@)-

Then, according to (4.9), we see that vy € Hy*({z : |z| > Ro}). Inserting vy in
(4.8) and in (4.11) yields

/ V(=0 Pledotree [ (@ =l = ) Geda
|z]> Ro

|z|>Ro
<- / V(i —u)(¢ — u)4 V(e dx
|z|>Ro

1 1/2
IV = Olatotomap IVl [ ]

Ro<|z|<2k

<CUm V() = w)llz2(qa: fo1> R | VC ok ™ Tog! /2 (2K)
holds for all k > Ry/2. Letting k — oo, we see that
¥(z) < u(z) holds for all z satisfying |z| > Rp. (4.12)
But (4.12) contradicts u € L.

Proof of Theorem 1.5. As in the proof of Theorem 1.4, we assume that A > 0.
Then, from Lemma 3.4, (2.2) and the assumptions, we conclude that

/VUVU dx > —Roo/uH"’vdx

holds for all nonnegative functions v € Hy”({z : |z| > Ro}), where R is defined
by
Roo = [(2m) 7! lull2| Vul|2] 2~ 2ree.

Since o > 4/3, we can precede as in the proof of Theorem 1.4 to get a contradiction.
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