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Abstract. The Dirac equation of a relativistic free charged particle interacting with one 
quantised mode of the electromagnetic field is solved exactly. Stationary eigenstates and 

the corresponding eigenvalues (the spectrum) are obtained in closed analytical form for 
linear and circular polarisation. The states are parametrised by two quantum numbers, one 
of which, corresponding to the four-momentum, is continuous and the other, roughly 
corresponding to the photon content, discrete. Based on these results, the cross section of 

nonlinear Compton scattering is calculated. It is shown explicitly that the results reduce to 
the semiclassical one in the limit of high intensity and small depletion, while in the large 

(complete) depletion limit they contain a depletion factor which ensures convergence of the 
highly nonlinear processes. 

1. Introduction 

This paper forms the second part of a series devoted to the theoretical description of the 
interaction between a free electron and an arbitrarily intense radiation field mode. In 
the first part (Bergou and Varr6 1981, henceforth referred to as I) we dealt with a model 
where the electron was described by non-relativistic quantum mechanics and the vector 
potential specifying the mode of the radiation field was considered as a quantised field 
quantity. The present work is intended to generalise the results of I to the relativistic 
case, insofar as the electron will be described by relativistic quantum mechanics (Dirac 
equation), and the dipole approximation for the field will never be introduced. In this 
sense our model occupies an intermediate place between semiclassical electrodynamics 
and QED. Namely, we consider the radiation field quantum mechanically and not as a 
classical quantity, but from the beginning we use the one-mode approximation, and 
second quantisation is not introduced for the electron field. This is not merely an 
academic exercise; the range of intensities in which our results give a reasonably good 
approximation is just the one which is of practical importance in the description of the 
laser beam-matter interaction, and we think it useful that accurate theoretical predic- 
tions be accessible without having to carry out full QED analysis. The only feature 
missing from our calculations is pair creation; with optical photons this can almost 
always be neglected. Generalisation of the model to several independent modes is 
straightforward; however, neglecting the mode-mode coupling still remains question- 
able. Nevertheless, the model fills in a gap between QED and semiclassical elec- 
trodynamics, since our calculations may serve as a starting point for intense-field QED 

0305-4470/81/092281+ 23$01.50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ 1981 The Institute of Physics 228 1 



2282 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ Bergou and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS Varrd 

calculations and, in addition, they provide the foundation of semiclassical approxima- 
tions, since in the limit of large initial photon number and small depletion, they reduce 
to the results of the semiclassical theory. 

The starting point of our method is the exact solution to the Dirac equation of the 
system ‘electron zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ quantised electromagnetic mode’. The basic idea is to introduce a 
properly chosen unitary transformation-a so-called displacement transformation-in 
order to eliminate the interaction term and diagonalise the system of equations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
similar transformation was introduced by Bloch and Nordsieck (1937) when they solved 
the problem of elimination of infrared divergences from QED. In 92  we give the 
solution of the eigenvalue problem and stationary states of the system ‘electron+ 
linearly polarised mode’. The first solution to this problem was given by Berson (1969), 
using a special representation for the absorption and emission operators. The main 
advantage of our method is that the results are derived by purely algebraic methods in a 
representation-independent manner. In § 3 we repeat the procedure for a circularly 
polarised mode. The solution in this case was made possible by the use of the projection 
technique (Neville and Rohrlich 1971a, b, Becker and Mitter 1974). Essentially similar 
problems were treated in the mid-sixties (Fried and Eberly 1964, Eberly and Reiss 
1966, Reiss and Eberly 1966, Eberly 1969); however, in these papers attention was 
focused on the direct calculation of the Green function rather than on the determination 
of stationary states of the system. Furthermore, depletion of the mode (i.e. change of 
the photon number) was neglected in the otherwise exact summation of the diagrams 
for the Green function, and thus the method was in fact equivalent to the semiclassical 
calculations. We note that our results in the aforementioned semiclassical limit reduce 
to the Volkov solution (Volkov 1935), and therefore give the generalisation of the 
semiclassical wavefunction. In § 4 we discuss statistical properties of the electron and 
photon subsystems. Special attention is paid to the role of the spin-field interaction. 
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 deals with an application of the results obtained in § §  2 and 3. In a previous 

publication (Bergou and Varr6 1980) we outlined a semiclassical method to deal with 
intense-field problems. The method was based on the use of the exact Volkov solution 
of the electron-external field problem as a basis set for perturbational treatment of 
scattering processes. Here we generalise the method by using the exact solutions of § §  2 
and 3, and calculate the cross sections of Compton scattering and higher harmonics 
generation. The first such calculation based on the use of the Volkov solution was 
performed by Alperin (1944), using the method of transition currents. Later, with the 
development of high-power lasers, the problem was reinvestigated (Goldman 1964, 
Brown and Kibble 1964, Nikishov and Ritus 1964), also on semiclassical grounds. Our 
results reproduce the semiclassical ones in the intense-field limit and give an immediate 
generalisation since they contain depletion terms. Section 6 summarises the main 
results of the paper and discusses their physical implications as well as their connection 
with previous works. 

2. A simple algebraic solution for the eigenvalue equation of the system ‘electron+ 
linearly polarised mode’ 

The Hamiltonian H of the system ‘electron+one mode’ consists of the energy 
operators of the subsystems and their interaction, 

H = cab + pmc2 + hw (a  +a + 1) - eaA ( r ) .  (2.1) 
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Here A( r )  is the vector potential in the Schrodinger picture characterising the trans- 
verse photon with polarisation vector E and wavevector k:  

2Th 
~ ( r )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= c( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a  eikr + a + ke =0 ,  

a and a+ are absorption and emission operators of the given mode satisfying the 
commutation relation 

aa+-u+a = 1 (2.3) 

and V is the quantisation volume. It can easily be shown that the operator of the total 
momentum of the system commutes with the Hamiltonian. As a consequehce, there is a 
system of simultaneous eigenfunctions of the energy and momentum. The present 
section is devoted to the determination of these simultaneous eigenfunctions, i.e. we 
look for the solution $B,p of the equations 

WE,P = E+E,P (2.4) 

[@ + hk(a'a + i ) I $ E , P  = p$E;P* (2.5) 

and 

If we express @$E,p from (2.5) and-taking into account the explicit form of H as given 
by (2,1)-substitute it into (2.4),  we obtain 

{ ca [P  -hk(a+a + $ ) ] + p m c 2  + ~ U ( U + U  +$) 

- e a ~ c ( 2 ~ h / w V ) ~ ' ~ ( a  eikr + U +  e-ikr)}$E,p = E$E,P. (2.6) 

With the help of the unitary transformation exp[-ikr(a+a + i)], one can easily eliminate 
the dependence of the vector potential on space coordinates in (2.6), yielding 

{ c a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[P - hk (a  +a + i ) ]  + pmc + hw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( U  +U + $) - eaec (2.rrhlw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV)' l2(u + u + ) } @ E , P  = E @ E , ~  
(2.7) 

where 

@ E , p  = exp[ikr(a+a + f ) ] $ E , P .  (2.8) 

By using the standard representation for a and /3 (see equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A1.3)) in equation 
(2.7), and introducing upper and lower spinor components-q(r) and ~ ( r )  respec- 
tively-of @)E,P, we obtain the following coupled system of algebraic equations: 

{a[K - ~ ( u ' u  +;)I- c+&g(a + u')},Y(~)+ [ K  -KO+ ko(a+a + $ ) ] p ( r )  =O, ( 2 . 9 ~ )  

{a[K - k(a'a +i ) ] -c+eg(a  + a + ) } c p ( r ) - [ ~  +KO-  ko(a+a + i ) ] x ( r )  = 0, (2 .9b)  

where we have employed the notations 

K = P/h,  KO = E/hc, ko = O / C  (2.10a) 

and 

2 T C  
A =-. (2.10b) 

mc 
h '  w 

K = -  

At first sight, the system of equations ( 2 . 9 ~ )  and (2.9b) might seem rather compli- 
cated, since each component of the functions q ( r )  and X( r )  contains boson operators. If 
we choose the Majorana representation for the matrices a and p, and choose a 
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coordinate system where the polarisation and the wavevector of the electromagnetic 
mode coincide with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and y axis, respectively, then instead of equations (2.9a) and 
(2.96), we obtain a system of equations of considerably simpler structure. We also note 
at this point that, quite similarly to this case, the Dirac equation of the corresponding 
semiclassical problem is easily solvable without invoking the second-order Dirac 
equation (Bergou and Varrd 1980). 

Equation (2.7) reads in the Majorana representation (see ( A 1 . 6 ~ )  and (A1.66)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{ ( ~ ~ [ - K , + g ( a + a + ) ] + ~ [ K , - k ~ ( a + ~ + ~ ) ] - a , K , + ( ~ ~ ~ + k o ( a ’ a + ~ ) } @ ~ , p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

= Ko@!E,P, k, ko. (2.11) 

The upper and lower components cp’(r) and ~ ‘ ( r )  of the transformed state @ L , p  now 
satisfy the equations 

{[-Kx +g(a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ a + ) ] ~ ,  -K,cT, +~~~ , )~ ’ ( r ) - (Ko -K , )cp ’ ( r )=0 ,  (2.12a) 

{[-Kx + g ( a  + a + ) ] ~ ,  - K p 2  +~~,}cp ’ ( r ) - [Ko+K,  -2ko(a+a + ; ) ] ~ ’ ( r )  = 0. 

We can simply express cp’(r) from ( 2 . 1 2 ~ )  as 

(2.126) 

cp’(r) = (Ko-K,)-’{[-K, + g(a + u+)]cT~ - K,u, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ( T , , } X ’ ( ~ ) .  (2.12c) 

Substitution of this expression for cp’(r) into (2.126) yields 

(2.13) 

Equation (2.13) serves as a starting point to the theory to be described in the 
following. We shall solve it by diagonalising the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALHS in the basis of photon-number 
eigenstates. 

In the first step, we eliminate the quadratic expression g2(a2+ at2) with the help of 
the Bogolyubov transformation (Tanabe 1973) 

(2.14) 

where 0 is a real parameter to be determined later. The effect of CO on the boson 
operators a and a+ is the following: 

ColaCO = a cosh 0 -a+  sinh 0, ( 2 . 1 4 ~ )  

Applying these transformation rules, after simple algebraic operations we obtain from 
(2.13) the transformed equation 

{K: +K’, +K:  + K ’ - - K ;  -2gK,(a +a+)  e-@+g2[(a2+aC2) cosh 2 0  

CO = exp[- $(a +’ - a ’11 

CG1afCo = a+ cosh @ - a  sinh 0. 

-2(a+u +$) sinh 20]+[g2+(Ko-Ky)ko][2(a’a +3)  cosh 2 0  

- (a2+ a+’) sinh 20]}CG1x’(r) = 0. (2.15) 

From here one can immediately see that if 0 is taken to satisfy the relationship 

tanh 2 0  = g2/[g2 + (KO -Ky)ko ]  ( 2 . 1 5 ~ )  

then the terms containing ( ~ ’ + a + ~ )  in (2.15) cancel and we are left with the equation 

{K: +K:  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ K Z  + K ’ - K ~  - 2 g ~ , ( u  +a+)  e-’ 

+ 2[g2 + ko(Ko -K,,)](a+a + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) sech 20}CG1x’(r) = 0. (2.16) 
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Elimination of the terms containing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a+'+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa )  can be performed with the help of the 

(2.17) 

well known displacement operator D, 

D, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= exp[r(a + - a ) ]  

having the property (Glauber 1963) 

DZlaD, = a + T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD ;' U +D, = U + + r. ( 2 . 1 7 ~ )  

Here r is a real parameter. If r is chosen to satisfy the relationship 

gK, e-' = T[g2 + ko(Ko - K,)] sech 2 0  (2.18) 

then, applying D, to (2.16), we obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( ~ 2 ,  + K ;  + K S  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK~ - K: + 2[g2 + k o ( ~ o  - K,)] 

x (a'a +i+r2) sech 20}D;1C01~'(r) = 0. (2.19) 

From here it transpires that the solution of (2.13) is of the form 

x'(r) = CoD,/n)xb(r), n =o,  1 , 2 , .  . . , (2.20) 

where In) is a number state of the quantised mode andxb ( r )  is a bispinor independent of 
the photon state. 

The parameters 0 and r of the unitary operators CO and D, defined in (2.14) and 
(2.17) are determined by the relationships ( 2 . 1 5 ~ )  and (2.18). The four-momentum 
K = (KO, K )  satisfies the equation 

(2.21) K ~ = K ; - K ~ =  K + 2 (KO - Ky ) kOgK (n  5 n = 0 , 1 , 2 , .  . . ,  
where 

g K ( n ) ~ [ 1 + g 2 / ( K o - K y ) k o ] ( n  + i - T 2 )  sech20.  (2.21a) 

Determination of KO directly from (2.21) would still be rather difficult since gK(n) 
contains KO also through the parameter 0. This difficulty, however, can easily be 
overcome if we introduce the four-vector Q as 

(2.21b) 

Since Qo-Q, =KO-& and Q, = K,, we have gK(n) = ga(n) from equations (2.21b), 
(2.19) and ( 2 . 2 1 ~ ) .  By using the definition (2.21b), from (2.21) one can easily see that 
Q is already on the free mass-shell, 

Q (KO-  kogK (n ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKx, K,  - kogK (n) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKz) = K - gK ( n  )k. 

Q2 = K', (2.22) 

and the four-momentum K of the system can be derived directly from 

K = Q + kgo(n). (2.23) 

The solution of the eigenvalue equation (2.4) reads now, in the Majorana represen- 
tation, 

$k,p= $b = exp[-ikr(a+a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+:)I 

( 2 . 2 4 ~ )  

Quite similarly to $E,p, $lE,p is also an eigenstate of the total momentum of the system; 
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therefore it satisfies equation (2 .5 ) .  Substitution into (2 .5 )  of $&,p as given by ( 2 . 2 4 ~ )  
leads to the equation 

(2 .246)  bxb ( r )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Pxb ( r ) ,  

the solution of which is 

xb ( r )  = xb exp[(i/h)Prl. ( 2 . 2 4 ~ )  

In order to determine the form of the state ( 2 . 2 4 ~ )  in standard representation, we 
Here xb is an arbitrary bispinor. 

notice that the bispinor 

satisfies the transformed eigenvalue equation 

( - ~ ~ ~ Q X + P Q ~ - ~ ~ , Q , + ( Y ~ K ) U ~ = Q O U ~  

( 2 . 2 5 ~ )  

(2 .256)  

which is the eigenvalue equation for a free particle. Taking into account the definition 
( 2 . 1 5 ~ )  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAub, we may now write the bispinor amplitude of the solution ( 2 . 2 4 ~ )  as 

( 2 . 2 5 ~ )  

1 (Qo- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQy) - l [ -Qx~x  - Qzuz + ~u~ + g ( a  + a+)uxlxb 
Xb 

= [ I  + ( I  + P ) a x g ( a  +a ' ) /2 (Qo-Qy) lub .  

[ 

This becomes in standard representation 

[ 1 - ( 1  +ay)axg(a +a+) /2 (Qo-QY) lUa.  (2 .25d)  

uQ satisfies the eigenvalue equation of a free particle in standard representation: 

(aQ + P K ) U Q  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQOUQ. (2 .26)  

We also note that (2 .25d)  is a special case of the bispinor amplitude 

[ I  + g ( k 2 / 2 Q k ) ( a  + U + ) ] ~ Q  (2 .27)  

written in a covariant manner (for the notation see appendix 1). The final form of +E,p 

can be given as 

The physical meaning of the quantum numbers Q and n which appear in the solution 
will be discussed in § 4. Roughly speaking, Q can be identified with the expectation 
value of the four-momentum of the electron, whereas n can be identified with the 
expectation value of the number of photons in the mode. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. A simple algebraic solution for the eigenvalue equation of the system 'electron+ 
circularly polarised mode' 

The Hamiltonian form of the equation of motion of the system 'electron+quantised 
mode' is 

ih ,"/at = [cab + pmc2 + hw (a  +U + i) - eaA (r)]Yr (3.1) 
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where now zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A(r )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= c ( 2 ~ h / w V ) ” ~ ( ~ a  eikr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+&*a+ e-ikr), kE = O .  ( 3 . 1 ~ )  

In the case of circular polarisation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE is a complex unit vector (* denotes complex 
conjugation), which is defined for the right circular polarisation (+) and left circular 
polarisation (-) as 

E = E+ = 2-1’2(e1 +iE2), E = ~ - = 2 -  (E1-ie2), E1 -I- EZ,  (3 . lb)  

& L & * L O ,  E & *  = 1. ( 3 . 1 ~ )  

1/2 

In the previous section on the example of the interaction with linearly polarised 
photons, we demonstrated that the stationary solutions of the equation of motion of the 
type (3.1) can be obtained by a relatively simple method. The two main steps were the 
application of the Bogolyubov transformation C@ and the application of the displace- 
ment transformation D,. In the case of circularly polarised photons we shall use a 
similar elimination technique. 

For the sake of brevity and clarity we first bring equation (3.1) to covariant form. 
Let us introduce the state (I/ with the definition 

Substituting this into (3.1), we obtain the equation of motion for 4 as 

[ ia -  g(gu e-ikx +e*a+ eikx) - K ] +  = 0. (3.3) 

For the notation see appendix 1. Here g is the coupling constant defined by equation 
(2.10b) with wavenumber dimension, K is the Compton wavenumber and we have 
introduced the polarisation vector E = { E  ”} = (0, E ) .  As a first step to the solution of 
equation (3.3), we eliminate the space- and time-dependent phasefactors e*ikx of the 
vector potential with the help of the unitary transformation 

Then 

4 = exp[ikx(a’a +I)]@. 

[iB-K(a+a +i) -g(gu + ~ * u + ) - K ] @  = 0. 

We look for the solution of this equation in the form of a plane wave: 

= @ p  (3.6) 

and for @, we obtain 

Here p is a four-vector to be determined later. 

(3.7) with the ansatz 
Quite similarly to equation (2.27) of the previous section, we look for the solution of 

@p = [1+ ( g K / 2 p k ) ( m  +kf*a+)]Xp. (3.8) 

Multiplying equation (3.7) by the expression [ l -  (gK/2pk)(ga +g*a’)] = 
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[1+ (gX/2pk)($a +$*a+)]-' from the left, we obtain 

(3.9) 

In this step we have achieved that all boson operators have a common matrix coefficient, 
and the diagonalisation of the boson part can now be carried out. At this point we 
should mention that in the previous section we reached the bispinor amplitudes (2.25d) 
and (2.27) in a straightforward manner, without introducing any ansatz. Though it is 
true that the ansatze (2.27) and (3.8) can be guessed from the form of the corresponding 
semiclassical wavefunction (Volkov state, see e.g. Bergou and Varr6 (1980)), we still 
f d t  it necessary to prove that the solution can be only of this form. 

If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE is a real polarisation unit vector, then the boson part of (3.9) can be diagonalised 
in a way completely analogous to that of the previous section (details of this procedure 
will not be repeated here). In the case of circular polarisation, diagonalisation can be 
carried out in one step, since the (a2+ a'2) term is missing due to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= E * ~  = 0. Let us 
define the displacement operator 

D, = exp((+a+-a*a) (3.10) 

having the (displacement) properties 

D i ' a D ,  = a + (+, D,la+D, = a++(+*. (3.10a) 

Application of the D, thus defined to (3.9) yields 

p s  * P E  PE* 
Pk Pk Pk 

2 [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp - ( 1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5) (a  +a + 1 + 1(+12 + (+a + + (+*a + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(" (+ + - (+*) + g( pk a + - a +) ] 

If now ( 1  + g2/pk)(+ = -g (ps* /pk )  then 

(3.11 b )  

The solution of this equation is 

Di lxp  = win), n = 0 , 1 , 2  , . . . ,  ( 3 . 1 1 ~ )  

where In) is a number state of the EM mode and w is a constant bispinor satisfying the 
equation 

[p-k" (1+g2/pk)(n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+~- ia i2 )+(g2 /2pk)2(d$* -d*d)~-~ ]w = 0. (3.11d) 

This equation can be solved with the help of the projection method (Becker and Mitter 
1974). As is proved in appendix 2 (see the relations (A2.9)-(A2.13)), 

k* -e*dXw = -xw. (3.11e) 

With the help of this relation equation (3.11d) can be written as 

( @ - K ) W  = o  ( 3 . 1 2 ~ )  
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where 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= P - kfp(n) 
and 

(3.12b) 

f p ( n ) =  (1  +g’/pk)(n +t-jm/’)+g2/2pk. (3.1212) 

Since pk = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqk and PE = q~ we have f P ( n )  =f,(n),  i.e. 

P =q+f,(nM. (3.13) 

Equation ( 3 . 1 2 ~ )  is the well known free electron bispinor equation for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,  the solution of 
which is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w = U,. (3.14) 

With the help of equations (3.4), (3.8), (3.11c), (3.13) and (3.14), we obtain finally for 
the solution of (3.3) 

9 = exp[ikx(a+a +; ) ] [ I  +(gK/2qk)(t.’a + ~ * a + ) I u , ~ , l n )  exp{-i[q + kf,(n)IxI. (3.15) 

The elimination technique outlined in the present and previous sections, and which 
consists of subsequent applications of certain unitary transformations, is of course a 
useful tool for finding the solutions of the corresponding Klein-Gordon equation as 
well. The representation-independent use of the boson operators makes it easy to 
survey the course of the solution. We also note here that the simplicity of our method 
gives the possibility of obtaining the propagators satisfying the corresponding inhomo- 
geneous Klein-Gordon and Dirac equations in a tractable form. We shall leave this 
problem to a subsequent publication. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. Some statistical aspects of the electron-one mode system 

In the preceding sections we determined the stadonary states of the system ‘one 
electron +one quantised EM mode’. For circularly polarised photons, from (3.15) 

where 

p = q + k ( l + g ’ / q k ) ( n  +t-~’ )sech2@.  ( 4 . 2 ~ )  

The total four-momentum of the system can be decomposed in a natural manner into a 
four-momentum q lying on the free mass shell, a four-momentum which is roughly an 
integer multiple of the four-vector k,  and an intensity-dependent shift in the direction of 
k .  Equation (4 . la) ,  for example, can be written as 

(4.3) 

(4.3a) 

p = q + [ n  + t - (1 + g’/qk)/m/’]k + ( ~ ’ v ’ / 2 q k ) k  

v’ = 2~-’g’(n + 1) = 2 a h p ~ - * ,  
where 
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v 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis a dimensionless intensity parameter, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY is the fine structure constant, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (n + 1)/ V 
is the photon density and A is the wavelength of radiation. The intensity parameter Y 

defined in ( 4 . 3 ~ )  is the same as the one introduced by Brown and Kibble (1964) in 
connection with the interpretation of the corresponding semiclassical state (Volkov 
stat e). 

Since the interaction of the electron with the photons is taken into account exactly, 
we cannot say that 4 + ( ~ ’ v * / 2 q k ) k  is the shifted four-momentum of the electron and n 
is the number of photons in the mode. We can merely say that this roughly holds for the 
expectation values of the corresponding quantities. 

Due to the interaction, neither the electron nor the photon can be described by a 
pure state; thus we introduce the density operators of these subsystems defined as a 
partial trace of the total system’s density operator over the other subsystem, i.e. 

(4.4) 

Here Trf (Tr,) denotes partial trace over the Hilbert space of the photons (electrons). In 
this section we shall investigate in more detail the circularly polarised case. 

Taking the partial trace denoted in (4.4), with the help of the concrete wavefunction 
(4.1) we obtain for pe 

where 

(4.5) 

(4.5a) 

The coefficients C I  in ( 4 . 5 ~ )  are defined as 

(4 .5b )  cj+’ = (+I 

cl-’ - (-1 - Cf (4, n)=(llaDuIn). 

C l  (4, fl)=(~la+Dvln), 
= (0) 

C l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfl)=(~lDuld, 

The Fourier transform of (4.5) gives the components of p, in momentum space: 

(4.6) 

Consequently, the momentum distribution is given by Tr M,(q, n) .  Since the system is 
in an eigenstate of the total momentum, the photon-number distribution is also given by 
the same matrix elements Tr Ml(q, n) .  This point will be discussed in more detail later 
on; here we confine ourselves to the qualitative statement that (4.6) describes the 
photon-induced level structure, which can also be derived from the corresponding 
semiclassical wavefunction. As we shall see, the quantities Tr Mt(q, n )  in the case n >> 1 
coincide with the distribution obtained in external field approximation where the 
weighting factors are Bessel functions. 

The coefficients CI  appearing in Ml(q, n )  and defined in (4.5b)-as has already been 
pointed out in I-are proportional to certain generalised Laguerre polynomials 
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The expectation value of the momentum of the electron is the difference between the 
total momentum and the expectation value of the momentum of the mode: 

From equations (4.8) and ( 4 . 1 ~ )  it is clear that the transverse components of q are equal 
to the transverse components of the expectation value of the momentum of the 
electron. The expectation value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a+a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+&) can be obtained by elementary algebra: 

(a+a +$= n +f+ la12+U(pog/qk)crE-ko{(2n + l)/a12 

+ ( 2 g / q k w n  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAicri2) - g 2 / q k i g ~  - (g2 /qk ) (n  + iUi2 + 1))n 

x[po-ko(n$i+lcr l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAii&,KuQ (4 .9a)  

(4.9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 -1 

The quantity 

depends on the helicity of the bispinor U,, and is summarised in table 1 .  

Table 1. The values of E= Li&Xu, for different electron helicities and photon polarisations 
(the three vectors E ~ ,  E~ and k form a right-handed frame). n = q//q1. 

+1 -1 

If we take the average of expression (4.9) for (a+a +;) over the two possible helicity 
states of U,, then the terms proportional to E vanish because the average of E over spin 
states is 0. Thus 

(4 .9b)  

From here we may conclude that in the general case n cannot be identified with the 
expectation value of the number of photons in the mode. In some special cases, 
however, this identification can be carried through. If, for example, the transverse 
components of q are chosen to be zero, then cr = 0 and from either (4.9) or (4 .9b)  we 
obtain the expectation value as 

k o ~ ~ v ~ / 2 q k  
qo+ k o ~ ~ v ~ / 2 q k ‘  

(a+a)=  n +a, S =  (4.9c) 

In the non-relativistic approximation (4n << K ) ,  S - v 2 / ( 2  + v’) and n means the number 
of photons in the mode to order -v  . In the ultrarelativistic case (Iqnl>> K )  S = 1 ,  i.e. 6 
satisfies the inequality 

V 2 / ( V 2 + 2 ) < S < 1 .  (4 .9d)  

2 
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In the case of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 we have D, = 1, and instead of (4.1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC, is given by the much 

IC, = exp[-ikr(u+a +$)][I + (g/2qk)K(ga +g*u+)]u,In) e+‘. (4.10) 

Besides the photon number eigenstate in), the excited states In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 1) also appear in 
the wavefunction, due to the interaction of the electron spin with the electromagnetic 
mode. The spin may play an essential role at high intensities, as can be shown from the 
expectation value of the interaction energy of the electron-photon system: 

simpler expression 

2gcr(q&) + 2g2(n + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA](TI2 + 1) 

Po - ko(n +; + IH2) (Hint) = ch 

-2(qk)laI2 +2g2(n + 1) 

Po - ko(n + t + /ai2> 
= ch * (4.11) 

Here the contribution proportional to 2g2(n + 1 + laI2) arises from the spin. If the 
electron possesses longitudinal momentum only, then the interaction energy originates 
entirely from interaction of the spin with the EM field and is always positive. The 
transverse (perpendicular to k )  motion of the electron gives a negative contribution to 
the interaction energy (see the definition of U in § 3). The sign of (Hint) depends on the 
relative magnitude of these two opposite actions, i.e. the electron-photon interaction 
can be either attractive or repulsive. From (4.11) it can be seen that at high enough 
intensities (2g2(n + 1) = >> 2(qk)laI2) the interaction energy comes almost entirely 
from the spin-radiation field interaction. This statement is further confirmed by the fact 
that in the cross sections of the multiphoton direct and inverse bremsstrahlung 
transitions of a free electron, the contribution arising from the spin part dominates at 
high enough intensities (Bergou and Varr6 1980). 

After this short digression we can easily evaluate the expression (4.8) of the electron 
momentum. From (4.9b) for (T = 0 we have 

(-ihV) = h[q + (K2v2/2qk)k - ~ k ]  (4.12) 

where S is a positive quantity falling between the limits given by (4.9d). Thus the 
expectation value of the electron momentum is a free momentum containing an 
intensity-dependent shift. Let us consider now the other subsystem, i.e. the electro- 
magnetic mode. 

Carrying out the partial trace over the electron variables in the defining equation 
(4.4) of pf yields 

Pro, l ’) = (W‘) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApt(O&, 

where 

~ 4 )  ={q01c!0)12+(g/qk) Re[cI (0 )  C I  (+’* ( k ~ q ~  + q o E ) + c ~  ( 0 )  C I  (-I* ( kOq~* -qoE) l  

+(~og2/qk) lc~+) I2} [po-  ko(n +:+lai2)I-’. (4.13) 

Here E is defined according to ( 4 . 9 ~ )  and the coefficients cia’, cl+), ci-’ are in 
accordance with (4.5b). In the following we shall use the average of ,of(/) over the 
helicity directions. We evaluate pr(l) in the two limiting cases n >> 1 and n = 0. 

In the case of n >> 1, from the definitions (4.5b) it is easy to derive the relations 

cj+) = (4, + U*)Ci”’, ci-’ = (Jn+a)cjo). ( 4 . 1 3 ~ )  
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Using this and the definition of cr in the expression for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp f ( l ) ,  we obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Pf(0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ic1o)l2, n >>1. (4.13b) 

Besides (4.13a), the above approximation involves neglecting d = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Re (q&) / (qo  - n4)lv 
(if qE1 = 0 then d = 0). The result (4.13b) can be obtained formally from (4.13) by 
omitting the spin contributions, and one could then say that this contradicts the previous 
statement about the essential role played by the spin at high intensities. However, the 
conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAId1 << 1 and n >> 1 are in contradiction only at Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB 1, i.e. at extremely high 
intensities. Substituting from equation (4.7) into (4.13b), the photon-number 
distribution can be expressed in terms of generalised Laguerre polynomials as 

(4.14) 
\crI2("-')(~!/n ! ) [~ j"-"(1cr1~)]~ exp(-lcr12), 1<n,  

l > n .  P f ( 0  = [ lcr12(1-n) (n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA! / I  ! ) [ ~ ~ - ~ ) ( l c r ~ ~ ) ] ~  exp(-lalz), 

The mean value of the photon number is 

( I )  = n + ]vi2. ( 4 . 1 4 ~ )  

The IcrI2 contribution is usually negligible with respect to n. However, this is not the 
case with the mean-square deviation in the photon number, since it is proportional to 
both n and cr: 

(4.14b) 

As was pointed out in I, the distribution (4.14) can be replaced by the following 
symmetric distribution in the vicinity of n : 

Pf(0 =J2,-r(z), n > > I ,  In--ll<<n, (4.15) 

( 1 2 )  - ( 1 ) 2  = (2n + 1)lcr[2. 

where 

z = 2lcrIJi. ( 4 . 1 5 ~ )  

We mention at this point that the same distribution (4.15) can be obtained from the 
Volkov solution to the Dirac equation containing a classical vector potential with 
amplitude 

A0 = 2g&/(1 + g 2 / q k ) .  

The expectation value of the photon number is now n instead of n + / ( + I 2  of the 
asymmetric distribution (4.14). Besides the special case n >> 1, we can obtain an equally 
easy to interpret result for p t ( l )  in the opposite extreme n = 0 as well: 

(4.16) 

( 4 . 1 6 ~ )  

is a Poisson distribution with parameter lcrI2 and cp = arc cr. 

with the substitution 
The expectation value of this distribution can be easily obtained from equation (4.9) 

(4.16b) 
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The fractional expression on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARHS of equation (4.16) is due to the spin-EM field 
interaction. If we neglect this term, we are left with the relativistic counterpart of the 
distribution obtained in I. This coincides with the photon statistics of one quantised 
mode interacting with a Klein-Gordon particle. Thus we see that the photon statistics 
arising from the lowest-energy state of the electron-photon system at fixed electron 
four-momentum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq corresponds to a modified coherent state where the modification 
comes from the spin-mode interaction. Since in the n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 case the state (4.1) is the 
eigenfunction of the system 'electron + self field', the above statement can be formu- 
lated in a slightly different way, namely, that the self field of the electron is slightly 
different from a coherent state due to the spin-mode interaction. 

In the linearly polarised case-as may be guessed from the structure of the factor 
CoDl/n) appearing in the state (4,2)-the photon statistics of the state parametrised by 
n = 0 is essentially different from the Poisson distribution. This difference arises from 
the appearance of the operator Co describing double-photon excitation processes. This 
point, however, will not be discussed any further here. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. Compton scattering 

In this section we shall study the interaction of a free electron with two quantised modes 
of the radiation field. One of the modes will be taken into account exactly, whereas the 
other one will be treated by perturbation theory. This means that we shall consider 
nonlinear Compton scattering when the amount of photons in the mode characterised 
by polarisation vector E and wavevector k may change by an arbitrary number, while 
one photon with polarisation E '  and wavevector k' is being emitted or absorbed. 

Let us consider, for example, the transition amplitude for emission 

Tfi = -ig' d4x &,e!' exp(ik'x)$i 

where 

g' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA('A ' VW1)'l2 

(5.1) 

(5 . la)  

is defined analogously to g. 
In (5.1) t,hf and $i are states of the type (4.1) or (4.2) parametrised by quantum 

numbers q'n' and qn respectively, i.e. the effect of the mode {k, E }  is taken into account 
up to infinite order in them. As we have already seen in the previous section, q arid n 
may be approximately identified with the expectation value of the four-momentum of 
the electron and expectation value of the photon number in the mode {k, E }  respec- 
tively. Thus, the amplitude (5.1) describes a process where n - n' photons are scattered 
by the electron having initially four-momentum q, and the appearing 'new-photon' is 
parametrised by k', E ' .  After performing the integration over the four-space, we obtain 
from (5.1) the result (normalisation factors of the initial and final states are omitted) 

Tfi = - i g ' ( 2 ~ ) ~ 6 ' ~ ' ( p ' +  k ' -p)6ptd@p, (5.2) 

Here @,, and @, are to be taken from equations (3.4)-(3.7). 
The Dirac delta function on the RHS of equation (5.2)-taking into account the form 

of p as given by (4. la)  and ( 4 . 2 ~ )  respectively-expresses the conservation law for the 
linearly polarised mode 

p ' + k ' = p  
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or 

q’+ k ( 1  + g 2 / q ’ k ) ( n ’ + i - ~ ’ 2 )  sech 2 0 ’ +  k ’ =  q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ k ( l  + g 2 / q k ) ( n  +$-T’) sech 2 0  

and for the circularly polarised mode 

p ’ + k ’ = p  

(5 .3 )  

or 

q’+ k [ ( l  + g 2 / q ’ k ) ( n ’  +;- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ C T ’ ) ~ )  + g 2 / 2 q ‘ k ] +  k’ 

= q + k [ ( l + g 2 / q k ) ( n  + i - / c r I2 )+g2 /2qk ] .  (5 .4 )  

The parameters 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT in (5.3) are defined by equations ( 2 . 1 5 ~ )  and (2 .18)  respec- 
tively, and the parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU in (5 .4 )  is defined by ( 3 . 1 1 ~ ) .  The corresponding 
parameters of the final state are denoted by primed quantities. 

Here, for the sake of simplicity, we shall deal only with the detailed evaluation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(5.4). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn the case of an electron which is initially at rest in the average (q = 0, whence 
cr = 0), we obtain the following quadratic equation from (5 .4 )  for the wavenumber kb of 
the emitted photon: 

where 

1 = n - n ’>  0,  v; = (g2 /K2) (n  +i) = ( 2 ~ ) - ~ a p h h : ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.4b) 

8 is the scattering angle (the angle between the wavevectors of the incoming and 
scattered photons), p = (n  +;)/ V is the initial photon density and A c =  h/mc is the 
Compton wavelength. We furthermore introduced the parameter 

(5 .4c)  S = (n  - n ’ ) / n  

which describes the relative depletion. 

kb = [ l ko ( l  -cos e )  +PI *  ~ { [ 1 +  v i ( 1  -cos 8)12 - 4 v 3  sin2 0}1’2 

The solution of equation ( 5 . 4 ~ )  is 

[ 2( @ko( l  -cos e )  + g 2  sin2 

KkO + g2  ( 5 . 5 )  

where 

P K + ( / k o + K v t ) ( l  -COS e).  ( 5 . 5 ~ )  

If v $  = v’, = v2 ,  i.e. if we neglect the change in the intensity parameter and omit the 
terms g2  sin2 8 and g2  in the denominator of ( 5 3 ,  we obtain two values for w ’ =  ckb, 

= wc/(i -COS e )  (5.5b) 
and 

1W 
w ’ =  

1 + [ ( ~ O / ~ J  + v2](1 -COS e) ’ 

We note that U!. gives U :  as a limiting case (Goidman 1964) 

( 5 5 )  

(5 .5d)  
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From the semiclassical description of the very same problem, one can obtain an 

expression in complete analogy with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 . 5 ~ )  (Brown and Kibble 1964). If we neglect the 
second term on the RHS of (5 .4a) ,  then we are left with a linear equation for kb yielding 
the solution for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ’  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ckb 

lw + wcv2s 

1 + [ ( iw/wC) + v2 ] (  1 - COS e) ’ 
= (5.6) 

According to (5 .6 ) ,  if we do not neglect depletion of the mode, then there is a 
contribution proportional to wcv2S in addition to the usual frequency shift. If, for 
example, v2 - 1 and w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi= 10-6wc (optical frequency) and the parameter S of the relative 
depletion is then U ‘ =  (1 + l ) w / [ l  + ( I  x l oF6+ 1 ) ( 1  -cos e ) ] ,  i.e. in the scattering 
process of 1 photons, instead of the lth harmonics ( w ’ = l w )  the next-order (U’= 

( I  + 1 ) w )  harmonic appears. Thus, the effect of depletion can be substantial in certain 
cases. 

After this analysis of the frequency condition of the nonlinear Compton scattering, 
let us proceed now to the evaluation of the transition amplitude. The matrix elements 
(Dp#(Dp appearing in (5.2) have the form 

(5 .7a )  

where 

in the case of a linearly polarised mode { k ,  E }  and 

(5.7c) 

in the case of a circularly polarised mode. 
The transition probability of the scattering process is proportional to the quantity 

l ~ q , s d l u q s / 2 .  The evaluation of this quantity is greatly facilitated if we notice that 
@P,KI@p = 0. From the conservation law (5.4) we have p ’  + k’ = p ,  and using equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(3.7) yields 

5p’KI@p = gP, (p  -pyDp = 0. 

From here it follows that the matrix element 6p&(Dp is invariant under the substitution 
E ’ +  E ”  = E ’  + uk‘ where U is an arbitrary c-number. It is convenient to choose U = 
- (ke ’ /kk ’ )  since then 

kE‘’=O where E”  = E ’ - (kE ’/ kk’) k ’. ( 5 . 8 )  

With the help of this relationship 

(5 .9a)  
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where 

ML zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA06” + ( g /  2q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI k )A 16X6” + (g /  29 k )A i.E”’X6, (5 .9b)  

Ai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=(nlD;lCol (a + a+)’C&.iln) ( i  = 0,  1 )  (5 .9c)  

and 

Mc = Bo6” + (g/2qfk)( i?B- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+d*B+)Xd”+ (g /2qk)d”X(6B-  +d*B+),  (5 .9d )  

BO=((n’lD,:D,In), B- =(n’lDi!aDuIn), B+ = ( ( n ’ J ~ i ! a + ~ , J n ) .  (5 .9e)  

We average over initial and sum over final spin states in the usual manner in the 
expression /zlq,s,Muqs/2, yielding for linearly polarised photons (with the normalisation 
iiu = 1 )  

(5 .10)  

and for circularly polarised photons 

(Re denotes real part). We note that (5.10) is formally identical to the result obtained 
by Nikishov and Ritus (1964) in the semiclassical description of the same problem. 

Equation ( 5 . 1 1 ) ,  which is valid for circularly polarised photons, can be brought to 
the form 

(5.1 l a )  \tfi1:, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC\’+ ( k k ’ / 2 ~ ~ ) 1 D \ ~  

where 

C-(l/K)[qBo-g(&B-+&*B+)]&” (5.11b) 

( 5 . 1 1 ~ )  
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The meaning of the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ and .$ in ( 5 . 1 1 ~ )  is given by 

and 

(5.11e) 

Equations (5,11u)-(5.11d) are formally in complete analogy with the solution of 

the corresponding semiclassical problem (Brown and Kibble 1964). Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus investigate 
now the behaviour of the quantities B defined in equation (5.9e). We assume that the 
electrons are at rest in the average before scattering zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4 = 0 so that (T = 0). Application 
of the Baker-Hausdorff theorem (eg Messiah 1964) leads to 

( 5 . 1 2 ~ )  

(5.12b) 

( 5 . 1 2 ~ )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABO = (n’lDi?ln) = (n’l exp(a’u+) exp(-a’*u)ln) exp(-31u’I2), 

B- = ( n ’ / ~ i f u / n )  = nl/’(nrJ exp(v’u+) exp(-v‘*u)ln - 1) exp(-;/a‘l2), 

B+ =(n’lDi’u+ln) = (n + l)l’z(nfl exp(du*) exp(-a’*a)ln + 1) exp(-&’12). 

It can be verified by elementary algebra that 

(n’l exp(da+)  exp(--(+’*u))n) 

With the help of this last expression we can easily show that the B coefficients are 
proportional to certain generalised Laguerre polynomials (Abramowitz and Stegun 
1964), namely, by using ( 5 . 1 2 ~ )  and (5.12d) 

n f < n ,  
(5.12e) Bo = [ 

! / n  .) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( ( T ’ ) n ’ - n ~ p ’ - n )  (Ir’I’) exp(- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW), n <n’.  

B, and B- have similar expressions in terms of the Laguerre polynomials L2-’-”’) and 
. It can also be shown that if n ‘  = no zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf n and no >> 1 and no >> n, then the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARHS of 

(5.12d) can be approximated by Bessel functions of integer order (Abramowitz and 

Stegun 1964) as 

(Id2) ex?(- WIZ), 1) 1/2( --(T ’*)“ - n ’ L $  -n’) 

L$ + 1 --It‘) 

(no* nI exp((T’u+) e x p ( - “ + ’ * ~ ~ ) J n o ) ~ ~ * ~ ( 2 / ( + ’ j n ; ’ ~ )  exp(*incp). (5.12f) 

If in the argument 2 g ( q ’ ~ / q ’ k ) r ~ ; / ~  of the Bessel functions we identify 2gn;” with the 
amplitude of the vector potential of the corresponding classical radiation field, then the 
transition amplitudes (5-1 1) nre in full agreement with the semiclassical amplitudes 
obtained from Volkov states (Brown and Kibble 1964). Thus, not very surprisingly, we 
are led to the conclusion that if the initiai expectation value of the photon ngmber in the 
mode { k ,  E }  is large, and if the relative depletion of the mode during scattering is 
negligible (n  << no), then our results reproduce the semiclassical results. 

Let us consider therefore such processes where the depletion of the mode is maximal 
(6 = l),  i.e. the expectation value of the photon number in the scattering mode 
decreases from n to 0. IC the case n = 1 we can easily obtain the matrix elements (5.1 1) 
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with the help of the conservation law zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.4) and frequency condition (5.6): 

2 
It:? = (-) g zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW + - W I  - 2 + 4 1 4 ’ )  exp[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- ( E )  /&’E 12 ] ,  

K 4 W  W K 
(5.13) 

Here R’ is a unit vector in the direction of the scattered wave. Apart from the 
exponential factor, (5.13) is the well known Klein-Nishina formula. In computing 
(5.13) we keptonlytermsof theorder of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg2/K2inIt6~’j2,sinceusuallyg2/K2<< 1 (g2/K2is 
the intensity parameter corresponding to photon density 1/ V). We also note that in the 
expression (5.11b) for C the terms of the order g2/K2 containing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(q&”)Bo and (k ’&)B-  
cancel. Similarly, in the expression ( 5 . 1 1 ~ )  for (01’ the terms IB0/2 and 
g Re(q’&/q’k)BzB- cancel. It can be shown that the same is true for the transition 
matrix elements of an arbitrary nth-order (n + 0 type) process. The transition prob- 
ability of the two-photon Compton scattering can be calculated quite similarly to the 
previous one from equation (5.11): 

(5.14) 

Here we should mention that in deriving (5.13) and (5.14) we have neglected the 
intensity-dependent shift in the frequency equation (5.6). In the general case, intro- 
ducing the above simplifying assumptions, the following formula is valid: 

The transition probability of the nth-order nonlinear Compton scattering thw differs 
from the usual value $(nw/w ’+w ’ /nw  -2  + 4 / ~ e ’ / ~ )  by the factor 

f i  E (g/K)/l’E 1. (5.16) 

This factor depends on the order of the process. The study of p- ,ocesses more 

2 2 n  UP n / n ! I e x p ( - ~ ~ n ~ ) ,  

general than the ones of type n + 0 is beyond the scope of the present work. 

6. Summary and discussion 

In paper I we set forth that for the description of nonlinear transitions of a free electron 
in an intense field semiclassical methods are not always applicable. This is the case 
especially if the depletion is comparabie to the initial number of photons in the intense 
mode. A perturbation theoretical treatment of such highly nonlinear processes using 
the full QED formalism is, on the other hand, extremely complicated. Therefore in I we 
worked out a relatively simple method to handle such problems. That method is 
developed further in the present paper, iaasmuch as it is generalised to the relativistic 
case and the dipole approximation is dropped. In P 5 we illustrated, using the nonlinear 
Compton scattering (harmonic generation), how one can determine in one step the 
amplitude of transition for the process of absorption of n photons from the intense 
mode and simultaneous appearance of one photon in the scattering mode. To perform 
this, in 09 2 and 3 we solved exactly the Dirac equation of the system ‘electron+one 
quantised EM mode’ for linear and circular polarisation. The solutions are given by 
equations (2.28) and (3.15). With the help of these solutions, we have calculated 
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analytically the cross section of the nonlinear Compton scattering. We have explicitly 
shown that in the limit of large initial photon number and small depletion, equation 
(5.11) reduces to the semiclassical results obtained with the help of the Volkov solution 
(Alperin 1944, Brown and Kibble 1964). In the other extreme case of complete 
depletion we also obtained a closed-form result, equation (5.15). 

This result can be regarded as the generalisation of the semiclassical result to the 
large-depletion case. It contains the depletion factor (5.16), and so it takes into account 
explicitly the depletion of the intense mode due to the highly nonlinear scattering 
process. 

In both cases (linear and circular polarisation) we have found that the spectrum of 
the full system ‘electron +quantised mode’ belonging to stationary states can be 
parametrised by two quantum numbers p and n. The continuous parameter p specify- 
ing the total four-momentum of the system can be decomposed in a natural manner into 
a four-momentum q lying on the free mass-shell, a four-momentum which is roughly an 
integer multiple of the four-momentum k of the free mode and an intensity-dependent 
shift in the direction of k (see equation (4.3)). Thus, the totalfour-momentum-though 
it is a good quantum number-is not simply a sum of the four-momenta of the electron zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(4) and EM mode ( n k ) ,  but, in addition, contains correction terms arising from the 
interaction. The discreteness of the parameter n is related to the fact that one of the 
component subsystems (the EM mode) can be excited in discrete steps, though in the 
interacting case n cannot be identified with the photon content in the mode (excitation 
level of the mode) in the strict sense of the word. This point is discussed in more detail 
together with the statistical aspects of the problem in § 4. Here we briefly recall just one 
interesting property of the photon distribution function, namely that the distribution 
corresponding to the lowest-energy state of the full system at fixed electron four- 
momentum q describes a slightly modified coherent state which is, in fact, very similar 
to the coherent state found in I. The slight modification is due to the spin-mode 
interaction. 

Finally, we mention that the Dirac equation in a classical external field was first 
solved exactly by Volkov (1935). An independent solution was obtained and applied to 
nonlinear Compton scattering by Alperin (1944). The exact solution of the eigenvalue 
problem and stationary states of the system ‘Dirac electron + one quantised EM mode’ 
was given for the linearly polarised case by Berson (1969) using the coordinate 
representation for the boson operators. In the present paper we reobtained this 
solution in a representation-independent manner by purely algebraic methods. This 
solution can be immediately obtained by the usual Volkov ansatz (2.27) for the bispinor 
amplitude but, as we have demonstrated, there is no need to introduce this ansatz since 
this form of the solution derives automatically in the Majorana representation. ‘The 
solution for the circularly polarised case was made possible by using the projection 
technique (Neville and Rohrlich 1971a, b, Becker and Mitter 1974). For the sake of 
brevity in this case we introduced the Volkov ansatz in equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.8) instead of a 
detailed algebraic derivation. 

Essentially similar problems were treated in a series of papers (Fried and Eberly 
1964, Eberly and Reiss 1966, Reiss and Eberly 1966, Eberly 1969), where instead of 
stationary states the Green function of the system was calculated. An almost exact 
summation of the diagrams for the Green function was carried out. By ‘almost’, we 
mean that the photon number in the intense mode was the same fixed value in diagrams 
of different order, i.e. depletion was neglected. Here we also note that our method is 
applicable to the Green function problem, yielding a simple algebraic solution to it 
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which also describes depletion of the mode. This point is left, however, to a future 
publication. 

We have also shown how our results reduce to the semiclassical ones in the limit of 
large initial photon number and small depletion. Nonlinear Compton scattering was 
investigated by semiclassical methods in a number of papers (Goldman 1964, Brown 
and Kibble 1964, Nikishov and Ritus 1964). Closed-form analytical results, equation 
(5.15), are also given for the other limiting case, i.e. for complete depletion. The 
depletion factor (5.16) ensures the convergence of the sum of different high-order 

contributions, thus giving credit to the power of the method outlined here and in I. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Appendix 1. Notation 

The scalar product of two four-vectors a ={a”}= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ao, a )  and b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= {b”} = (bo, b) is 
defined as 

(Al . l )  ab = g,,,a@b” = a”b, = aobo-ab. 

Here 

g,, = 0 if ,LL # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv (,LL, v = 0, 1,2,3)  

and 

goo = -g.. = 1 ( i  = 1,2,3).  

The definition of the four-gradient is 

a = {a,}, a, = a/ax”, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ x ” }  = (ct, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx), (A1.2) 

In § 2 we used concrete forms of the a and P matrices. In standard representation 

(A1.3) 

Here rX,,,,= are the 2 x 2 Pauli matrices and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU stands for the 2 x 2 unit matrix. The Dirac y 
matrices are defined as 

Y o = &  y1,2,3 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApax,y,r. (A1 -4) 

The y matrices satisfy the relations 

YPYU + YvYr = 2g,u. 

Throughout the present paper we use the Feynman dagger (or slash) notation for scalar 
products of the type a y  = awy f i ,  i.e. 

a y  =&. (A1.5) 

We make the transition from the standard representation of a and /3 to the Majorana 
representation with the help of the unitary matrix 

u‘‘’-(l/JZ)(ay + P ) .  (A1.6) 

In this representation 

U ( M ) ~ , U ( M ) - I  = - a x ,  u ( M ) ~ ~ ~ J ( M ) - - ~  = P, ( A 1 . 6 ~ )  

U‘’’P U(M)-l = f f Y .  (A1.66) U(M)a,,p)--l = -az, 
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Appendix 2. Light-like formalism and the projection technique 

The light-like formalism is based on the fact that the null vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c 1 1 

ii ={n*l”}=-(l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- n ) ,  
J2 

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{n l ” }= - {k l ” }=  -(l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn), 
J5U J2 

together with the space-like unit vectors 

.si = (0, E l ) ,  i = 1 , 2 ,  E1 E2,  

(A2.1 a )  

(A2.lb) 

form a complete set in Minkowski space. This complete set is used as a basis for the 

decomposition of the four-vectors (Neville and Rohrlich 197 l a ,  b). The light-like 
components of an arbitrary four-vector a are defined as 

(A2.2) a = nuu +$a, - eiai (summation over i = 1, 2) 

where 

a, = iia, a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE nu, a.  -e.a. ( A 2 . 2 ~ )  

The scalar product of two four-vectors a and b can be given in terms of light-like 
components as 

(A2.3) ab = nub, + aubu - aibi. 

For the light-like components of { y ” ’ }  it can easily be shown that 

2 2  
Y u  = Y u  = 0, YuYi = -YiYu, YuYi = -YiYu, 

Y d  = -E?,. 
(A2.4) 

Y U Y V  + Y U Y U  = 2, Y d  = - P i u ,  

Let us define the projection operators P, and Pv and the bispinors w,  and w, as 

p u E Z Y U Y V ,  1- (A2.5) p 

w,  = YUW, w, = y,w. (A2.6) 

U Z Y V Y U ,  

Using the properties (A2.4), the following relations can be shown to be valid: 

Puw, = Puw, = 0, Puw, = wu, Pow, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,. (A2.7) 

After these preliminaries we proceed to the solution of equation (3.10d). Let us 

p ’ = p - k ( l + g 2 / p k ) ( n + ~ - / c + I 2 ) ;  (A2.8) 

then by taking into account equation (A2.6), equation (3.10d) can be written in 
light-like components as 

(A2.9) 

(Here we have made use of p ,  = ph.) 
If we multiply (A2.9) by P, from the left and take into account the projection 

p;,operties (A2.7), then we find the following simple connection between w,  and w, :  

(A2.10) 

introduce the four-vector 

p:Wu + p : W u  -(p;yi + K ) W  +(g2/2p:)3(dd*-d*d)w, =o.  

wu = [ ( p l ~ i  + K)/~PLIY~VJ ,*  
On the other hand, by multiplying (A2.9) by P, from the left, we obtain 

pLwv- (p ;y i  + K ) ~ Y , w ,  +(g2/2p:)~(dd*-d*d)w, =o .  (A2.11) 
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Substitution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw u  from (A2.10) into (A2.11) yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ g2:(,t?6* -6*6)]wU = 0 (A2.12) 

where 

A=2pLpL-p! IPI ! -K2=pf2  -U  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI (A2.12a) 

We see from equation (A2.12) that 

g2i(g$* -d*d),k’~ = -A,k’w. (A2.12b) 

Upon multiplication by [A - g2:($$* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-g*$)] the solution of the eigenvalue equation 
(A2.12) is derived automatically: 

A = * g 2 .  (A2.13) 

In the treatment of this paper we used the value A = g2 since in the case of 
A=-g2-according to (A2.12a)-from the relation p” = u 2  - g 2  we find imaginary 
values of pb if g 2 >  K’ (long-wavelength photons) which is physically inadmissible. The 
concrete form of w is derived in the text (equation (3.14))- 
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