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Nonlinear Schrόdinger Equations
and Sharp Interpolation Estimates
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Abstract. A sharp sufficient condition for global existence is obtained for the
nonlinear Schrόdinger equation

(NLS) 2ίφt + Δφ + \φ\2σφ = 0, xeR N , ί e R + ,

in the case σ = 2/JV. This condition is in terms of an exact stationary solution
(nonlinear ground state) of (NLS). It is derived by solving a variational
problem to obtain the "best constant" for classical interpolation estimates of
Nirenberg and Gagliardo.

I. Introduction

The "best constant" of an interpolation estimate among various norms often has
an analytical or geometrical significance [2, 23].

The main objective of this paper is to present a relationship between the best
constant for a classical interpolation inequality due to Nirenberg and Gagliardo,
and a sharp criterion for the existence of global solutions to the nonlinear
Schrδdinger equation:

2iίj-+Aφ + \φ\2σφ = 0, φ = φ(x,t), xelR",

in the critical case σ = 2/N.
W e will use the n o t a t i o n \\f\\p=( J \f{x)\pdx)ίlp.

In Sect. II we determine the best constant Cσ N for the interpolation estimate
[12,13,22]:
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__
σ N~\\\ψ\\ϊwhere ψ is the ground state solution of

j + 1 = 0 . (1.4)

The results (1.3)—(1.4) are evident from the following considerations: To
compute Cσ N, it will suffice to minimize the functional:

l l σ i V l lH iσ,N( f\ _

In Sect. II, we show that the minimum is attained at some H1 function ψ*. By
scaling we can take | |Fψ*| | 2 = l and | |ψ*| | 2 = l. Computing the Euler-Lagrange
equation leads to (1.3) and (1.4).

Estimate (1.2) and the constant (1.3) were obtained in the case N= 1 by Nagy
[20]. Partial results for the case N = 2, σ = 2, were obtained by Levine [17]. The

case JV = 2, σ = 1, arose in the work of Payne [24]. He proves C 1 > 2 ^ xy^. Levine

proves Cί 2^~γ\^^ using an estimate of Federer [10] and Fleming and Rishel

[11]. We have computed the ground state solution of Δψ — ψ + ψ3 = 0 in R 2 for
which we obtain ||ip||2 = (1.86225 ...)(2π). By expression (1.3) we have

l/4

Cί 2 = — . — - . Our methods enable one to answer the analogous
\π (1.86225 ...)/

question for any of the inequalities (1.2).
In proving (1.2), we demonstrate the existence of a positive, radial and H1

solution of
Δu-u + u2σ+1=0 if 0 < σ < ^ — . (1.6)

N — 2

Many other authors have obtained results on the existence of solutions to
semilinear equations of the form,

Δu-u+f{u) = 0. (1.7)

The case of a power nonlinearity [as in Eq. (1.6)] has been studied by Synge [30],
Nehari [21], Ryder [26], Berger [6], and Coffman [9]. The most general results
for a general nonlinear term have been obtained by Strauss [27] and by Berestycki
and Lions [4].

When σ = 2/JV, Eq. (I.I) is known to have global solutions for any ΦQEH1 with
| | 0 O | | 2 sufficiently small. In Sect. Ill, we give an answer to the question: "How
small ?" The answer is simple:

Theorem A. Let ΦQGH^IR^) . For σ = 2/N, a sufficient condition for global existence
in the initial-value problem (I.I) is:

IIΦoll2<llvl l2 ( L 8 )
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Here ψ is a positive solution of the equation

4
+ 11=0 (1.9)

of minimal L2 norm (the ground state), and ψeιtl2 is an exact solution o/(I.l).

In Sect IV results of Glassey [16] and Tsutsumi [31] on the "blow up" of
solutions to (I.I) are summarized. We then discuss the distinguished role played by
solutions of (1.9), in particular the "ground state," in this context. Instability
Theorem C expresses the sense in which (1.8) is a sharp condition.

In Sect. V, we present a brief account of numerical results [18, 29, 34] for the
"critical case": σ = l , N = 2. These observations indicate, at least in the axially
symmetric case, that the structure of blowing up solutions is largely self-similar
and dominated by the profile of the ground state ψ.

Related qualitative results as well as a detailed account of numerical experi-
ments on the nature of blowing up solutions will be presented in [18, 29, 33].

II. Solution of a Variational Problem

We begin by studying Jσ'N [see (1.5)], the nonlinear functional naturally associated
with the estimate (1.2). By estimate (1.2), Jσ>N is defined on HX(RN) for

Theorem B. For 0 < σ <
N-29

oc= inf Jσ^{u)
ueHι(RN)

is attained at a function ψ with the following properties:
(1) ψ is positive and a function of \x\ alone.
(2) ψeHx(RN)nC°°(1RN)
(3) ψ is a solution of Eq. (1.4) of minimal 1} norm (the ground state).
In addition,

\\ψ\\lσ

<7 + Γ

Corollary 2.1. The best (smallest) constant for which the interpolation estimate (1.2)
holds is given by expression (1.3), where ψ is the ground state of Eq. (1.4).

Corollary 2.2. Let 0 < σ < — — - . Then, Eq. (1.6) has a positive, radial solution of
class HX(RN). N~2
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Remark. McLeod and Serrin [19] have obtained results on the uniqueness of
decaying positive solutions for a class of semilinear equations including (1.6). For
Eq. (1.6) their results imply uniqueness of the ground state (the H1 positive
solution) in the ranges:

0 < σ < o o for i^JV^2,

0<σ< for 2^iV^
N — 2

for 4<iV<8.
2N

Note that these results do not cover the entire range in which a ground state is
known to exist.

In the proof of Theorem B, we follow Strauss [27] in using a compactness
property of functions in iίr

1

adial(lRiV). We summarize this technique in the following

Compactness Lemma. For 0<σ< , the imbedding
N — 2

HlaάiΛl(β!<)-*L2σ + 2(RN) « compact.

Proof. The lemma will follow from the interpolation estimate

?
II ||2σ+2 <^||7,||oriV|| ||2 + σ(2-N)

ΛJ—? '

valid for ueH1(Ω\ where Ω is a bounded domain, if we can show that a bounded
sequence in HladisΛ(WLN) is uniformly small at infinity. This is a consequence of an
estimate due to Strauss [27]: If u e H } ^ ^ ) , then

|M(X)1^ | X | ( N ^ 1 ) / 2 11«11HI- •

Proof of Theorem B. First note that if we set uλ'μ(x) = μu(λx), then

(i) Jσ>N(uλ>μ) = Jσ>N{u),

(ii) ll«λ Ίl2 = ^ ~ V M I 2 ,

(iii) \\Vxu
λ>ψ2 = λ2-Nμ2\\Vu\\2

2.

Since Jσ*N(u)^0, there exists a minimizing sequence u^H^^nL2^2^), i.e.
a = infJσ'N(u)= limJ(uv)<co. We can assume MV>0, and by symmetrization

v | oo

[2,25,27] we can take uv = uv(|x|).
Choos ing λv=\\uv\\2/\\Vuv\\2 a n d μv= \\uv\\^l2~^WVuJ^12, we obta in a sequence

ψv(x) = uλv>μv(x) with the following properties:

(a) ψv^0, ψv = Ψ

(b) ψ^H1^),

(c) Ilvvll2 = i a n d

(d) Jσ N(ψv)l* as v ^ o o .
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Since the sequence ψv is bounded in H^JR^), some subsequence has a weak H1

limit ψ*. Since ψv are radial and uniformly bounded in H1^), it follows from the
compactness lemma that we can take ψv strongly convergent to ψ* in L2σ+2(1RN)
for 0<σ<2/(N-2). By weak convergence, | |v?*| |2^l and | |Pfy*| | 2^l. Hence,

It follows that \\Vψ*\\σ

2

N\\ψ*\\l + σi2-N) = l and therefore | | φ * | | 2 = ||Ft/;*||2 = 1, so
ψv^>ψ* strongly in H1. This proves parts (1) and (2).

Part (3) follows from the fact that ψ*, the minimizing function, is in H1(WiN) and
satisfies the Euler-Lagrange equation:

) = 0 for all

Taking into account that | |tp*| |2 = l a n d l|Fty*ll2 = l ' w e have

The smoothness oft/?* follows from results in [5]. Let ψ* = [α(σ+1)] ίl2σψ. Then,
xp satisfies Eq. (1.4) and α = | |φ| | 2V(σ '+1) This completes the proof of Theorem B.

III. Global Existence for the Initial-Value Problem in the Critical Case σ = 2/JV

In this section we use our "best constant" results of Sect. II to prove Theorem A.
The following result is a consequence of the more general theory of Ginibre

and Velo [14]. The special case: σ= 1, iV = 2, was studied previously by Baillon et
al. [1],

Theorem 3.1. Let φ^eH1^).
(i) J/0<σ<2/JV, then there exists a unique solution φeC([0, αoJ if^IR*)), of

the initial-value problem (I.I) in the sense of the equivalent integral equation.
(ii) // σ = 2/N, then for \\φo\\2 sufficiently small, the conclusion of(ϊ) holds.
(iii) 4̂5 long as φ(x,t) remains in H1^),

and ^(φ)

are constants in time.

Remark. If σ^2/W, solutions may develop singularities in finite time; hence the
term "critical" for the case σ = 2/JV.

2
In the local existence theorem [14], which holds for 0 < σ < , it is shown

that the length T, of the interval of existence [ί0, t0 + T], can be taken to depend
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only on \\φ(to)\\Hι. It follows that if φ(x,t) is a maximally defined solution on

or
(ii) lim

ίtίmax

The heart of the global existence proof is the use of the invariants (III. 1) to get
an a priori bound of the following type:

H ^ ^ ) (ΠL2)

Ginibre and Velo [14] show that this "H1-control" of the solution is sufficient for
global existence in if1.

To establish Theorem A, we prove a particular version of (III.2). We proceed as
follows:

By the constants of motion and interpolation estimate (1.2):

If 0<σ<2/iV, the estimate (III.2) follows easily from (III.3). If σ = 2/N, we find

ii t'η ιι ̂ w ιι \ ̂  * ( m 4 )
Corollary 2.1 implies the estimate:

Taking | |φ 0 l l2 < IIΨII2' w e β e t a time-independent bound on \\Vφ(t)\\2. Noting that

the scaling f{x)^>λ1/σf(λx) leaves the L2 norm unchanged when σ= —, we find

that ψ can be taken to solve Eq. (1.9), from which Theorem A follows.

IV. Blowing Up Solutions

Theorem 4.1. Let \x\φo(x)eL2, and let φ{x,t) be an H1 solution of Eq.(lΛ) for
OStST. Then, for O^t^T

(2)

Remarks, (i) The identity (2) was discovered by Vlasov et al. [32]. It is actually a
combination of the identity (1) and the conservation of J f, which were derived
rigorously for H1 solutions by Ginibre and Velo [14]. Identity (1) is referred to as
the "pseudoconformal conservation law".
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(ii) The version of identity (1) obtained for nonlinear Schrodinger equations
with the "repulsive interaction" —\u\2σu (instead of -\-\u\2σu), plays an important
role in the scattering theory of such equations [15]. In the critical case σ = 2/N, this
identity is in fact a conservation law. Scattering results particular to the critical
case have been obtained by Strauss [28].

Glassey [16] proved a result on finite time blow up of solutions to (I.I) when
σ ^ 2/N. We give the proof of a strengthening of Glassey's result due to Tsutsumi
[31].

Lemma. Let \x\f and Vf belong to L2(1RN). Then, f is in L2(JRN) and the following
estimate holds: 2

1^ —ii^/li2llχ/il2. (iv. l)\\2
ΪV

Proof Note that -N§\f\2dx = 2Re§x Vffdx and apply the Cauchy-Schwarz
inequality. •

We remark that "2/iV" is the best constant for the estimate (IV. 1), with equality
holding for the functions f(x) = exp { — -||x|2}. ^ ~

We assume for the remainder of this section that — ^ σ < -.

Theorem 4.2. Let either

(i)

(ii) j4?(φo) = 0 and lm$x-φoVφodx<0,

or

(iii) ^(φo)>0 and lm$x-φoVφodx^-2}/W(φo)\\xφo\\2.
Then, there exists 0 < T< oo such that

Proof Under hypothesis (i), (ii) or (iii), part (2) of Theorem 4.1 implies that if φ
remains in iϊ^IR^), then there is a ί* < oo such that

We have used that Eq. (I.I) implies that

d_

at

By the preceding lemma,
t=0

Thus, lim \\Vφ(t)\\2= + oo. By the discussion following Theorem 3.1, ί m a x ^£* and
tu*

lim ||F0(f)H2= + °o. D
tίtmax

In the critical case σ = 2/N, identity (2) of Theorem 4.1 simplifies:
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Consider now the particular solutions Φ(x, t) = eίtl2R(x), where R(x) is an H1

function satisfying Eq. (1.9). By identity (IV.2),

Remark. Identity (IV.3) is also a consequence of the Pohozaev identity [4, 27],
which can be derived directly from (1.9).

A consequence of (IV.3) is the following instability result in the case σ = 2/]V,
which also expresses the sense in which the condition (1.8) is sharp.

Instability Theorem C. Let σ = 2/N. The nontrivial H1 solutions of Eq. (1.9) are
unstable for the nonlinear Schrόdinger equation (I.I) in the following sense:

Let ReH1 ORφO) solve Eq. (1.9). Then for any <5>0, there is a function {, with
| |C-Λ||2<<5, such that for φ{χ,t) the solution o/IVP (I.I) with φo = ζ

lim || Vφ(t)\\2 = oo,
for some 0 < T< oo. ί~>τ"

Proo/. Let ζε{r) = {l +ε)R(r). Then for ε positive, \\ζε\\2

2 = {l +ε)2\\R\\2

2> \\R\\2

2 since
# φ θ . By (IV.2) 3tf(ζε)= -2ε\\R\\2 + O(ε2)<0. The result now follows from
Theorem 4.2. •

The following picture emerges in the critical case σ = 2/iV.
(1) If ΦQEH1^) and | |φol l 2

< 11̂ 112' where ψ is the ground state of Eq. (1.9)
(a positive, radial and H1 solution of minimal L2 norm, see Theorem A), then the
initial-value problem for Eq. (I.I) has a unique global solution φ{x,t) of class

[0, oo);H1(]RN)).
(2) If 3Ίf(φo)<0, then the solution φ(x, i) of Eq. (I.I) blows up in finite time in

(3) By Theorem 4.2 (̂</>o) = 0 ^s n ° t sufficient for global existence.
(4) If | | φ o | | 2 ^ | | ψ | | 2 , then JT(φ o )^0, by estimate (III.5).
(5) If R is a nontrivial H1 solution of Eq. (1.8), then Reίtl2 is an exact solution of

Eq. (LI), and jtf?(Reίt/2) = 0. These solutions are unstable in the sense of
Theorem C.

Remarks. The regime defined by

(i) ^ f ( φ o ) ^ 0 and ||φoII2 = llvll̂ * Lψ> t n e ground state of (1.9)] is currently
under numerical investigation [18, 29].

(ii) Berestycki and Cazenave [3] have proved, in the supercritical case σ > 2/JV,
that the stationary solutions Reίt/2, where R is a nontrivial H1 solution of Eq. (1.9),
are unstable.

(iii) Cazenave and Lions [7] have proved "orbital stability" of these stationary
solutions in the subcritical case σ<2/N.

V. Numerical Observations and Open Questions

The observations concluding Sect. IV may lead one to suspect that the "zero
energy" (Jf = 0) modes eitl2R(x\ and in particular the "ground state" eίtl2ιp(\x\),
play a fundamental role in the structure of solutions with finite time singularities in
the critical case σ = 2/N.
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We close with a brief account of numerical results obtained in the critical case
σ = l , N = 2 [18, 29, 34], which corroborate this view. Equation (I.I) reduces to

2iφt + Aφ + \φ\2φ=0, £eIR+, xeΊR2. (V.I)

This equation arises in modeling the propagation of a thin electromagnetic beam
through a medium with an index of refraction dependent on the field intensity (see
for example [8]).

For a variety of axially symmetric initial data φo(\x\), the field φ(\x\, f), as the
time of "blow up" is approached, is observed to have the dominant behavior:

Φi\x\,t)'
ds

Here, ψ is the ground state oϊ Δxp — ψ + ψ3 = 0. P denotes a plateau or a slowly
decaying part as |x|->oo, which is not as prominent in the supercritical case σ = 1,
JV = 3 and α(ί)~c (ί* — ί) 2 / 3 as ί->£*. These observations were first made by
Zakharov and Synakh [34].

It remains an open problem to establish analytically the sense in which the
"ground state" is the state to which blowing up solutions are attracted. Theorem A
is, to the author's knowledge, the only known analytical result which displays a
connection between the nature of blow up in the critical case and the ground state
solution, ψ9 of Eq. (1.9).
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Note added in proof: The a u t h o r has proved, using the technique of this paper, the following:

Theorem. Let uoe H2^1). A sufficient condition for the existence of a unique global solution of the IVP

(GKdV) Mr + M*Mx+MXAA = 0

u{x,0) = uo{x)

is | | u o | | 2 < IIΨIU Here ψ(x — t) is the solitary (traveling) wave solution of GKdV.

The proof will appear elsewhere.


