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Abstract

Cubic Schrödinger equations with small initial data (or small nonlinearity) and their spec-
tral semi-discretizations in space are analyzed. It is shown that along both, the solution of the
nonlinear Schrödinger equation as well as the solution of the semi-discretized equation, the
actions of the linear Schrödinger equation are approximately conserved over long times. This
also allows to show approximate conservation of energy and momentum along the solution
of the semi-discretized equation over long times. These results are obtained by analyzing a
modulated Fourier expansion in time.
They are valid in arbitrary spatial dimension.
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1 Introduction

We consider the nonlinear Schrödinger equation

iut = −∆u + V ∗ u + |u|2u (1)

with periodic boundary conditions in dimension d ≥ 1, where u = u(x, t), x ∈ T
d = R

d/2πZ
d,

t ≥ 0. The linear potential V = V (x) ∈ L2(Td) acts by convolution on u. It is assumed to be
periodic with real Fourier coefficients.

Such equations have been studied by Bambusi and Grébert [3], Bourgain [4], and Eliasson
and Kuksin [7]. Bambusi and Grébert transformed them to a normal form, which allows to show
approximate conservation of the actions of the linear Schrödinger equation iut = −∆u+V ∗u along
solutions of (1) over long times in case of small initial data [3, Theorem 3.25]. Here instead, we
prove such a result using the alternative technique of modulated Fourier expansions. This technique
of proof has the advantage of being transferable to discretizations of the equation. Here we show
that the approximate conservation of actions remains true after a spectral semi-discretization in
space. Moreover, we show that the energy and the momentum of (1) are approximately conserved
along solutions of the semi-discretized equation. Similar results for a full discretization of (1) using
in addition a Lie-Trotter splitting in time are shown in a separate paper [8].

The technique of modulated Fourier expansions has been used by Hairer and Lubich [9] to study
conservation properties of numerical methods for highly oscillatory ordinary differential equations,
see also [11, Chapter XIII]. Recently, together with Cohen, they extended this technique to semi-
linear wave equations [6], their spectral semi-discretizations in space [10], and full discretizations
with trigonometric integrators and the Störmer-Verlet method [5].

In Section 2 we state the result of approximate conservation of actions for the solution of (1).
For the proof of this result we study a modulated Fourier expansion in Section 3 and conservation
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properties of this expansion in Section 4. In Sections 5 and 6 we extend the results to the standard
spectral discretization in space of (1) and study the long-time near-conservation of energy and
momentum.

2 Near-conservation of actions for the nonlinear Schröding-

er equation

2.1 Statement of the result

In this section we formulate our main result for solutions of the nonlinear Schrödinger equation
(1). To motivate this result we first consider the linear Schrödinger equation iut = −∆u + V ∗ u
and note that the actions

Ij(u, ū) =
1

2
|uj |2 (j ∈ Z

d) (2)

are exactly conserved along any solution of this equation. Here uj = Fj(u) denotes the j-th Fourier
coefficient of a periodic function u =

∑

j∈Zd uje
i(j·x) where j · x = j1x1 + · · · + jdxd. In fact the

linear Schrödinger equation as an equation for the Fourier coefficients reads i(uj)t = ωjuj , where

ωj = |j|2 + Fj(V ) (j ∈ Z
d) (3)

are the frequencies with |j|2 = j2
1 + · · · + j2

d . The frequencies behave asymptotically like |j|2.
Our main result states that along solutions of the nonlinear equation (1) the actions (2) are

approximately conserved over long times provided that the frequencies satisfy a non-resonance
condition and that the initial data is small. The smallness of the initial data is measured in the
Sobolev norm

‖u‖s =
(

∑

j∈Zd

|ωj |s|uj |2
)

1
2

for s ≥ 0. In this definition ωj is replaced by 1 in case of ωj = 0. Because of the asymptotics
of the frequencies the norm ‖·‖s is equivalent to the Sobolev norm of Hs. The s-norm of the
initial data is assumed to be of size ε ≪ 1. Equivalent to the condition of small initial data we
could require a small nonlinearity and initial data of size 1 in the norm ‖·‖s by replacing (1) by
iut = −∆u + V ∗ u + ε2|u|2u. We consider the almost-conservation of actions on time intervals of
length ε−N for natural numbers N .

For the precise statement of the non-resonance condition on the frequencies (3) of the linear
part of the equation we introduce the following notations similar to [6]. For a sequence k = (kl)l∈Zd

of integers kl and the sequence ω = (ωl)l∈Zd of frequencies (3) we write

j(k) =
∑

l∈Zd

kll, ‖k‖ =
∑

l∈Zd

|kl|, k · ω =
∑

l∈Zd

klωl, ω
σ|k| =

∏

l∈Zd

ω
σ|kl|
l (4)

for σ ∈ R. In our analysis we have to divide by k ·ω − ωj(k). We collect pairs (j(k),k) with small
denominator in the set of near-resonant indices

Rε = { (j,k) : j = j(k),k 6= 〈j〉, |k · ω − ωj | < ε
1
2 , ‖k‖ ≤ 2N + 2 },

where 〈j〉 = (δjl)l∈Zd with Kronecker’s delta, and impose on this set the non-resonance condition

sup
(j,k)∈Rε

|ωj |s−
d+1

2

|ω(s− d+1

2
)|k||

ε‖k‖+1 ≤ C0ε
2N+4 (5)

for a constant C0 (independent of ε) and a given natural number N . Here again and in the following
whenever the absolute value of the frequencies appears, zero frequencies are replaced by 1. The
proof of the following theorem will be the subject of Sections 3 and 4.
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Theorem 1. For given N and s ≥ d + 1 there exists ε0 > 0 such that the following holds: Under
the conditions of small initial data ‖u(·, 0)‖s ≤ ε ≤ ε0 and of non-resonance (5), the estimate

∑

l∈Zd

|ωl|s
|Il(u(·, t), ū(·, t)) − Il(u(·, 0), ū(·, 0))|

ε2
≤ Cε

3
2 for 0 ≤ t ≤ ε−N

holds for solutions u(x, t) of (1) with a constant C which depends on C0, d, N , s, and V but is
independent of ε and t.

This theorem slightly refines [3, Theorem 3.26]. We mention that Theorem 1 (and also Theorem
2 below) can be extended easily to nonlinear Schrödinger equations with nonlinearities of the form
g(|u|2)|u|2u where g is a polynomial (the constants will then depend also on g).

2.2 On the non-resonance condition

We now show that the non-resonance condition (5) is realistic in the sense that it is fulfilled for a
large set of potentials V . We do this by proving that our non-resonance condition is implied by
the one used by Bambusi and Grébert [3]. They show the following proposition.

Proposition 1 (Bambusi and Grébert [3, Theorem 3.22]). Fix m > d
2 and R > 0. The space

{

V (x) =
∑

j∈Zd

vje
i(j·x) : |vj(1 + |j|)m/R| ≤ 1

2
for all j

}

endowed with the product probability measure has a subset S of measure 1 such that for any V ∈ S
the following property holds. For any r > 0 there exist γ > 0 and α > 0 such that for any L ≥ 1,

∣

∣

∣

∑

j∈Zd

ωjkj

∣

∣

∣
≥ γ

Lα

for any sequence k = (kl)l∈Z of integers kl fulfilling 0 6= ‖k‖ ≤ r + 2 and
∑

|j|>L|kj | ≤ 2 except if

k = 〈j〉 − 〈l〉 with |j| = |l|.
We remark that the exception in Bambusi’s and Grébert’s original version of Proposition 1

covers those k with kj = 0 for |j| ≤ L
√

α/m and
∑

|j|=n kj = 0 for all n > L
√

α/m. Note however

that we can assume α ≥ m as becomes clear from the proof presented in [3] and is also used there,
and hence Proposition 1 as stated above is indeed implied by [3, Theorem 3.22].

Proposition 2. Fix N . For sufficiently large s, the non-resonance condition (5) holds for all
V ∈ S, where S is the set of Proposition 1, with a constant C0 which depends only on N , s, and
V .

Proof. We use the notations of Proposition 1. Let V ∈ S, (j,k) ∈ Rε, and ‖k‖ ≤ r + 1. We write
k · ω = klωl +

∑

|j|≤L,j 6=l kjωj with |l| ≥ L and L ≥ 1 minimal. We have k 6= 〈l〉 since otherwise

l = j(k) = j and k = 〈j〉 contradictory to (j,k) ∈ Rε. We also have k 6= 〈j〉 + (〈l〉 − 〈m〉) since
otherwise j + (l − m) = j(k) = j and hence again k = 〈j〉. Hence, k − 〈j〉 is not an exception in

Proposition 1. This proposition then yields γ
Lα ≤ |k ·ω − ωj | < ε

1
2 . The statement now follows as

in the proof of [6, Lemma 1].

Note that the non-resonance condition of Bambusi and Grébert in Proposition 1 requires that
all frequencies are nonzero. Our non-resonance condition (5) does not impose this restriction.

3 Modulated Fourier expansions

The analysis of the solution of (1) is done by the method of modulated Fourier expansions. We
follow the lines of [6].

Throughout this section we work under the assumptions of Theorem 1. All appearing constants
will be denoted by C. The main point is that all these constants do not depend on ε and the time
0 ≤ t ≤ ε−1; however, they may depend on C0 and N from the non-resonance condition (5), the
dimension d, the regularity parameter s, and the potential V .
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3.1 The modulation system

We are looking for a function ũ(x, t) which approximates the solution u(x, t) of (1) by a modulated
Fourier expansion

ũ(x, t) =
∑

‖k‖≤K

zk

j(k)(εt)e
i(j(k)·x)e−i(k·ω)t =

∑

‖k‖≤K

zk(x, εt)e−i(k·ω)t (6)

with zk(x, εt) = zk

j(k)(εt)e
i(j(k)·x). We set zk

l (εt) = 0 for l 6= j(k). In contrast to [6] the functions

zk consist of a single wave. This is crucial for the validity of Theorem 1 in arbitrary dimension as
is seen in the proof of Proposition 2. In the following we choose K = 2N + 2 and tacitly assume
‖k‖ ≤ K unless stated otherwise. We insert (6) in (1) and note that for k = k1 + k2 − k3 we have

Fj

(

zk
1

zk
2

zk3

)

=

{

zk
1

j(k1)z
k

2

j(k2)z
k3

j(k3), j = j(k),

0, else

since j(k) = j(k1) + j(k2) − j(k3). If we compare the coefficients of ei(j(k)·x)e−i(k·ω)t we thus
arrive at the modulation system

iεżk

j(k) + (k · ω)zk

j(k) = ωj(k)z
k

j(k) +
∑

k1+k2−k3=k

Fj(k)

(

zk
1

zk
2

zk3

)

. (7a)

Here, we denote by żk

j(k) the derivative with respect to τ = εt. Requiring ũ(·, 0) = u(·, 0) further
yields

∑

k

zk

j (0) = uj(0). (7b)

3.2 Results on the modulation functions

We will construct an approximate solution of the modulation system (7) for 0 ≤ εt = τ ≤ 1. For
measuring the size of functions z = (zk)k = (zk

j(k)e
i(j(k)·x))k we use the norm

‖|z|‖s =
∥

∥

∥

∑

k

{zk}
∥

∥

∥

s
=

(

∑

j∈Zd

|ωj |s
(

∑

k

|zk

j |
)2) 1

2

(8)

where
{v}(x) =

∑

j∈Zd

|vj |ei(j·x)

for a periodic function v(x) =
∑

j∈Zd vje
i(j·x). This norm yields a mixture between the l2-based

framework of [6] and a more handy l1-based framework. We use the notation ·̂ for the scaling

ẑ = (ẑk)k = (|ω 2s−d−1

4
|k||zk)k

and prove the following proposition for the approximate solution.

Proposition 3. There exists a function ũ(x, t) =
∑

‖k‖≤2N+2 zk

j(k)(εt)e
i(j(k)·x)e−i(k·ω)t for x ∈ T

d

and 0 ≤ εt ≤ 1 satisfying
‖u(·, t) − ũ(·, t)‖s ≤ CεN+2. (9a)

Moreover, the following estimates hold:

• ũ is small,
‖ũ(·, t)‖s ≤ Cε. (9b)

• z is small,

zk

j(k) = 0 for (j(k),k) ∈ Rε, ‖|ẑ|‖ d+1

2

≤ Cε,
∑

j∈Zd

|ωj |s|z〈j〉j |2 ≤ Cε2,

∑

j∈Zd

|ωj |s
(

∑

k6=〈j〉

|zk

j |
)2

≤ Cε5,
∑

j∈Zd

|ωj |
d+1

2

(

∑

k6=〈j〉

|ẑk

j |
)2

≤ Cε5.
(9c)
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• z is a solution of (7a) up to a small defect d = e+ f with ek

j = 0 for j 6= j(k) or (j,k) ∈ Rε

and fk

j = 0 for (j,k) 6∈ Rε,

‖|e|‖s ≤ CεN+3, ‖|ê|‖ d+1

2

≤ CεN+3. (9d)

All constants are independent of ε and 0 ≤ t ≤ ε−1 but may depend on C0, d, N , s, and V .

The proof of this proposition will cover the remaining part of this section except Subsection
3.9. At a first reading it might be useful to skip this highly technical part.

3.3 Iterative solution of the modulation system

The pairs (j, 〈j〉) play a special role since k · ω − ωj = 0 for k = 〈j〉. We therefore collect those
pairs (j(k),k) which are not of this form and are not near-resonant in the set

Sε = { (j,k) : j = j(k),k 6= 〈j〉, (j,k) 6∈ Rε, ‖k‖ ≤ K }.

The solution of the modulation system (7) is determined up to a small defect by an iterative
procedure as in [6]. We start by setting

[

z
〈j〉
j

]0

= uj(0) and
[

zk

j(k)

]0

= 0 for k 6= 〈j(k)〉

for 0 ≤ εt = τ ≤ 1. For n ≥ 0 and 0 ≤ εt = τ ≤ 1 we set, motivated by isolating the dominant
terms in (7a),

[

zk

j

]n+1

=
1

k · ω − ωj

[

−iεżk

j +
∑

k1+k2−k3=k

Fj

(

zk
1

zk
2

zk3

)]n

for (j,k) ∈ Sε,

[

ż
〈j〉
j

]n+1

= −iε−1
[

∑

k1+k2−k3=〈j〉

Fj

(

zk
1

zk
2

zk3

)]n

,
[

z
〈j〉
j (0)

]n+1

= uj(0) −
[

∑

k6=〈j〉

zk

j (0)
]n

,

[

zk

j

]n+1

= 0 for (j,k) ∈ Rε.

The notation [·]n means that the n-th iterates of the variables within the brackets are taken. In

each iteration step we have initial value problems for z
〈j〉
j and algebraic equations for the other zk

j .

We stop the iteration after L = 2N + 2 steps. The functions of Proposition 3 will be z = [z]L.

3.4 Abstract formulation of the iteration

We set

[[k]] =

{

max( 1
2 (‖k‖ + 1), 2), k 6= 〈j〉,

1
2 (‖k‖ + 1) = 1, k = 〈j〉.

We split and scale the variables as follows:

ak

j =

{

ε−[[k]]zk

j , k = 〈j〉,
0, k 6= 〈j〉

and bkj =

{

0, k = 〈j〉,
ε−[[k]]zk

j , k 6= 〈j〉,

and write a = (ak)k = (ak

j(k)e
i(j(k)·x))k, b = (bk)k = (bkj(k)e

i(j(k)·x))k, and c = a + b. We further
define

(Ωc)kj =

{

(k · ω − ωj)c
k

j , (j,k) ∈ Sε,

ε
1
2 ckj , else

and
F(c)kj = ε−max([[k]],2)

∑

k1+k2−k3=k

Fj

(

ε[[k1]]+[[k2]]+[[k3]]ck
2

ck
2

ck3

)

.
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The iteration in the rescaled variables becomes
[

bkj

]n+1

=
[

−iε(Ω−1ḃ)kj

]n

+
[

(Ω−1F(c))kj

]n

for (j,k) ∈ Sε,

[

ȧ
〈j〉
j

]n+1

= −i
[

F(c)
〈j〉
j

]n

,
[

a
〈j〉
j (0)

]n+1

= ε−1uj(0) −
[

∑

k6=〈j〉

ε[[k]]−1bkj (0)
]n

.
(10)

We also use a second rescaling of the variables, âk

j = |ω 2s−d−1

4
|k||ak

j , b̂kj = |ω 2s−d−1

4
|k||bkj , and

ĉ = â + b̂. With

F̂(ĉ)kj = ε−max([[k]],2)|ω 2s−d−1

4
|k||

∑

k1+k2−k3=k

Fj

(

ε[[k1]]+[[k2]]+[[k3]]|ω− 2s−d−1

4
(|k1|+|k2|+|k3|)|ĉk1

ĉk
2

ĉk3

)

the iteration for b̂ becomes
[

b̂kj

]n+1

=
[

−iε(Ω−1 ˙̂
b)kj

]n

+
[

(Ω−1F̂(ĉ))kj

]n

for (j,k) ∈ Sε.

3.5 Estimating the nonlinearity

The following lemma is crucial for estimations of the nonlinearity. It reflects the fact that for s > d
2

the Sobolev space Hs is an algebra.

Lemma 1. We have for s > d
2

‖v̄‖s ≤ C‖v‖s, ‖vw‖s ≤ C‖v‖s‖w‖s, and
∥

∥

∥

∑

k,l

{ckdl}
∥

∥

∥

s
≤ C

∥

∥

∥

∑

k

{ck}
∥

∥

∥

s

∥

∥

∥

∑

l

{dl}
∥

∥

∥

s
(11)

with a constant C which depends on d, s, and V but is independent of ε.

Proof. The first inequality is clear from the asymptotics of the frequencies. Using the Cauchy-
Schwarz inequality we get

‖vw‖2
s ≤

∑

j∈Zd

|ωj |s
(

∑

k+l=j

|vk||wl|
)2

≤
∑

j∈Zd

(

∑

k+l=j

|ωk|s|vk|2|ωl|s|wl|2
)(

∑

k+l=j

|ωj |s
|ωkωl|s

)

.

The term
∑

k+l=j
|ωj |

s

|ωkωl|s
can be bounded independently of j by C

∑

0 6=k∈Zd
1

|k|2s where C depends

on V . We replace the Euclidean norm |·| in the latter series by the equivalent 1-norm |k|1 =
|k1| + · · · + |kd| (the constant then will also depend on d). By counting the vectors k ∈ Z

d with
1-norm equal to a given number n we see that this series converges for 2s > d, cf. [2, Proof of
Theorem 4 in §24]. This gives the second estimate of (11). For the third estimate we just notice

∥

∥

∥

∑

k,l

{ckdl}
∥

∥

∥

2

s
=

∑

j∈Zd

|ωj |s
(

∑

k,l

∣

∣

∣
Fj(c

kdl)
∣

∣

∣

)2

≤
∑

j∈Zd

|ωj |s
(

∑

k+l=j

∑

k

|ckk |
∑

l

|dl

l|
)2

=
∥

∥

∥

∑

k,l

{ck}{dl}
∥

∥

∥

2

s
.

The second estimate of Lemma 1 is well known, see for example [1, Theorem 5.23]. The proof
presented here does not make use of the Sobolev embedding theorem as in [1]. However, the proof
presented here is in essence well known.

Now, we can study the nonlinearity.

Lemma 2. We have

‖|Ω−1c|‖s ≤ ε−
1
2 ‖|c|‖s (12a)

‖|F(c)|‖s ≤ Cε‖|c|‖3
s (12b)

‖|F(c) − F(c̃)|‖s ≤ Cε‖|c − c̃|‖s max(‖|c|‖s, ‖|c̃|‖s)
2 (12c)
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with a constant C which depends on d, s, and V but is independent of ε. The same estimates hold
for ĉ, ˆ̃c, F̂, and ‖| · |‖ d+1

2

instead of c, c̃, F, and ‖| · |‖s, respectively.

Proof. The estimate (12a) follows from the definition of the set Rε of near-resonant indices. For
the proof of (12b) we first note that for k1 + k2 − k3 = k

[[k1]] + [[k2]] + [[k3]] ≥ max([[k]], 2) + 1 (13)

since [[k1]]+[[k2]]+[[k3]] ≥ 1
2 (‖k1‖+‖k2‖+‖k3‖+3) ≥ 1

2 (‖k‖+1)+1 and [[k1]]+[[k2]]+[[k3]] ≥ 3.
Using this estimate we get

‖|F(c)|‖2
s =

∑

j∈Zd

|ωj |s
(

∑

k

ε−max([[k]],2)
∣

∣

∣

∑

k1+k2−k3=k

Fj

(

ε[[k1]]+[[k2]]+[[k3]]ck
1

ck
2

ck3

)∣

∣

∣

)2

≤ ε2
∑

j∈Zd

|ωj |s
(

∑

k1,k2,k3

∣

∣

∣
Fj

(

ck
1

ck
2

ck3

)∣

∣

∣

)2

= ε2
∥

∥

∥

∑

k1,k2,k3

{

ck
1

ck
2

ck3

}∥

∥

∥

2

s
.

Using (11) from Lemma 1 we obtain (12b). The same calculation is true for c, F, and ‖| · |‖s

replaced by ĉ, F̂, and ‖| · |‖ d+1

2

, respectively.

For the last inequality (12c) we note that a1 · · · an − b1 · · · bn =
∑n

j=1 2−j(a1 + b1) · · · (aj−1 +
bj−1)(aj − bj)(aj+1 · · · an + bj+1 · · · bn) (used for n = 3). A calculation as above thus yields the

result on ‖|F(c) − F(c̃)|‖s and ‖|F̂(ĉ) − F̂(ˆ̃c)|‖ d+1

2

.

3.6 Size of the iterated modulation functions

We have

‖|[a(0)]n+1|‖s =
(

∑

j∈Zd

|ωj |s|[a〈j〉
j (0)]n+1|2

)
1
2 ≤ ε−1‖u(0)‖s + ε‖|[b(0)]n|‖s.

Using Lemma 2 we get for 0 ≤ εt = τ ≤ 1 and l ≥ 0

‖|[b(l)]n+1|‖s ≤ ε
1
2 ‖|[b(l+1)]n|‖s + ε−

1
2 ‖|F([c]n)(l)|‖s,

‖|[a]n+1|‖s ≤ ‖|[a(0)]n+1|‖s + sup
0≤τ≤1

‖|[ȧ(τ)]n+1|‖s,

‖|[a(l+1)]n+1|‖s ≤ ‖|F([c]n)(l+1)|‖s

where (l) denotes the l-th derivative with respect to τ = εt. With

αn = max
l=0,...,1+2L−n

sup
0≤τ≤1

‖|[a(l)(τ)]n|‖s,

βn = max
l=0,...,1+2L−n

sup
0≤τ≤1

‖|[b(l)(τ)]n|‖s

this implies for n = 0, . . . , L − 1, using again Lemma 2 and the smallness of the initial data,
αn+1 ≤ 1 + εβn + Cε(αn + βn)3 and βn+1 ≤ ε

1
2 βn + Cε

1
2 (αn + βn)3 where the constants depend

on d, L, n, s, and V but not on ε. The dependence on n is due to the estimates of derivatives
of F with the product rule. Using α0 = ‖|[a(0)]0|‖s = ε−1‖u(0)‖s ≤ 1 and β0 = 0 we get for
n = 0, . . . , L

αn ≤ C, βn ≤ Cε
1
2 (14)

with a constant C which depends on d, L, n, s, and V but not on ε. With these estimates we now
prove the estimate (9b) of Proposition 3 for ũ = [ũ]L =

∑

k
[zk]Le−i(k·ω)t.

‖ũ‖2
s =

∑

j∈Zd

|ωj |s
∣

∣

∣

∑

k

[

zk

j (εt)
]L

e−i(k·ω)t
∣

∣

∣

2

≤ ε2
∑

j∈Zd

|ωj |s
(

∑

k

∣

∣

∣

[

ckj (εt)
]L∣

∣

∣

)2

= ε2‖|[c]L|‖2
s.
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We now turn to the size of the variables â and b̂ in the second rescaling and set

α̂n = max
l=0,...,1+2L−n

sup
0≤τ≤1

‖|[â(l)(τ)]n|‖ d+1

2

,

β̂n = max
l=0,...,1+2L−n

sup
0≤τ≤1

‖|[b̂(l)(τ)]n|‖ d+1

2

.

The relation ‖|â|‖ d+1

2

= ‖|a|‖s yields α̂n = αn. For β̂n we get the same estimate as for βn and so

for n = 0, . . . , L
α̂n ≤ C, β̂n ≤ Cε

1
2 (15)

with a constant C which depends on d, L, n, s, and V but not on ε. Together with (14) this yields
for z = [z]L the estimates (9c) of Proposition 3.

3.7 Defect of the iterated modulation functions

After n steps the defect in the modulation system (7a) is (with j = j(k))
[

dk

j

]n

=
[

iεżk

j + (k · ω − ωj)z
k

j −
∑

k1+k2−k3=k

Fj

(

zk
1

zk
2

zk3

)]n

.

This has to be considered for ‖k‖ ≤ 3K where we set [zk]n = 0 for ‖k‖ > K and all n. We
decompose the defect in (7a) as dk

j = ek

j + fk

j + gk

j with ek

j = 0 for (j,k) 6∈ Sε and k 6= 〈j〉, fk

j = 0

for (j,k) 6∈ Rε and gk

j = 0 for ‖k‖ ≤ K. The defect in equation (7b) for the initial condition reads
[

d̃
〈j〉
j

]n

= uj(0) −
[

∑

k

zk

j (0)
]n

.

To estimate f we make use of the non-resonance condition (5). With Lemma 2 and the estimates
(15) we get for n = 0, . . . , L

‖|[f ]n|‖2
s =

∑

j∈Zd

|ωj |s
(

∑

k:(j,k)∈Rε

∣

∣

∣

[

fk

j

]n∣

∣

∣

)2

=
∑

j∈Zd

|ωj |s
(

∑

k:(j,k)∈Rε

εmax([[k]],2)
∣

∣

∣

[

F (c)kj

]n∣

∣

∣

)2

=
∑

j∈Zd

|ωj |
d+1

2

(

∑

k:(j,k)∈Rε

|ωj |
2s−d−1

4 εmax([[k]],2)

|ω 2s−d−1

4
|k||

∣

∣

∣

[

F̂ (ĉ)kj

]n∣

∣

∣

)2

≤ ‖|[F̂(ĉ)]n|‖2
d+1

2

sup
(j,k)∈Rε

( |ωj |
2s−d−1

4

|ω 2s−d−1

4
|k||

ε[[k]]
)2

≤ (CεN+3)2.

(16)

with a constant which depends on C0, d, N , n, s, and V but not on ε. With the same arguments
as in the proof of Lemma 2 we obtain for g using in addition (14)

∥

∥

∥

∑

K<‖k‖≤3K

{[gk]n}
∥

∥

∥

s
=

∥

∥

∥

∑

K<‖k‖≤3K

ε[[k]]
{

ε−[[k]]
∑

k1+k2−k3=k

ε[[k1]]+[[k2]]+[[k3]]ck
1

ck
2

ck3

}∥

∥

∥

s

≤ Cε
1
2
(K+2)ε = CεN+3

(17)

with a constant which depends on d, N , n, s, and V but not on ε.
The remainder of this subsection is devoted to the analysis of e,

[

ek

j

]n

=











ε[[k]]
([

(Ωb)kj

]n

−
[

(Ωb)kj

]n+1)

, (j,k) ∈ Sε,

iε
3
2

([

(Ωȧ)kj

]n

−
[

(Ωȧ)kj

]n+1)

, k = 〈j〉.

We have

Ω([b]n − [b]n+1)kj = −iε([ḃ]n−1 − [ḃ]n)kj + (F([c]n−1) − F([c]n))kj for (j,k) ∈ Sε,

(Ω([a(0)]n − [a(0)]n+1))
〈j〉
j = ε

1
2

∑

k6=〈j〉

ε[[k]]−1([bkj (0)]n−1 − [bkj (0)]n),

Ω([ȧ]n − [ȧ]n+1)
〈j〉
j = −iε

1
2 (F([c]n−1) − F([c]n))

〈j〉
j .
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In particular we have with Lemma 2

‖|Ω([a(0)]n − [a(0)]n+1)|‖s ≤ ε‖|Ω([b(0)]n−1 − [b(0)]n)|‖s.

As in the analysis of the size of the modulation functions we set

ηn = max
l=0,...,2L−n

sup
0≤τ≤1

‖|Ω([a(l)(τ)]n − [a(l)(τ)]n+1)|‖s,

µn = max
l=0,...,2L−n

sup
0≤τ≤1

‖|Ω([b(l)(τ)]n − [b(l)(τ)]n+1)|‖s.

By Lemma 2 and (14) we have ηn+1 ≤ εµn + Cε(ηn + µn) and µn+1 ≤ ε
1
2 µn + Cε

1
2 (ηn + µn)

for n = 0, . . . , L − 1. We remark that we gain a factor of ε
1
2 in each iteration step whereas in [6,

Subsection 3.11] the variables had to be rescaled once more to gain a positive power of ε. The
reason is that the nonlinearity in (1) is cubic and not only quadratic as in [6]. Using (14) we get

for the initial values η0 ≤ ε
1
2 (α0 + α1) ≤ Cε

1
2 and µ0 ≤ ‖|Ω([b(0)]1)|‖s ≤ ‖|F([c(0)]0)|‖s ≤ Cε.

Similar estimates are true for the second rescaling with

η̂n = max
l=0,...,2L−n

sup
0≤τ≤1

‖|Ω([â(l)(τ)]n − [â(l)(τ)]n+1)|‖ d+1

2

,

µ̂n = max
l=0,...,2L−n

sup
0≤τ≤1

‖|Ω([b̂(l)(τ)]n − [b̂(l)(τ)]n+1)|‖ d+1

2

.

(Note that η̂n = ηn.) We have thus proven that for n = 0, . . . , L

ηn, µn, η̂n, µ̂n ≤ Cε
n+1

2 (18)

with a constant C which depends on d, L, n, s, and V but not on ε. Hence with Lemma 2

‖|[e]n|‖s ≤ Cε
n+4

2 and ‖|[ê]n|‖ d+1

2

≤ Cε
n+4

2 which yields together with (16) the estimates (9d) of

Proposition 3.

For the defect d̃ in the initial conditions we get using the iteration for [z
〈j〉
j (0)]n, Lemma 2, and

(18)

‖|[d̃]n|‖2
s =

∑

j∈Zd

|ωj |s
∣

∣

∣
uj(0) −

∑

k

[zk

j (0)]n
∣

∣

∣

2

=
∑

j∈Zd

|ωj |s
∣

∣

∣

∑

k6=〈j〉

(

[zk

j (0)]n−1 − [zk

j (0)]n
)∣

∣

∣

2

≤ ‖|Ω−1([e(0)]n−1)|‖2
s ≤ (Cε−

1
2 ε

n+3

2 )2

(19)

for n = 1, . . . , L.

3.8 Error

We now turn to the proof of the estimate (9a) of Proposition 3. We write ũ = [ũ]L =
∑

k
[zk]Le−i(k·ω)t

and z = [z]L, and estimate the error ũ−u where u is the exact solution of the nonlinear Schrödinger
equation (1).

3.8.1 Size of the solution

We first determine the size of the solution u of (1). This solution satisfies

(uj)t = −iωjuj − iFj(|u|2u)

and the variation-of-constants formula yields

uj(t) = e−iωjtuj(0) −
∫ t

0

e−iωj(t−θ)iFj(|u(·, θ)|2u(·, θ))dθ.

While ‖u(·, t)‖s ≤ 2ε we have using Lemma 1

‖u(·, t)‖s ≤ ‖u(·, 0)‖s +

∫ t

0

C2‖u(·, θ)‖3
sdθ ≤ ‖u(·, 0)‖s +

∫ t

0

4C2ε2‖u(·, θ)‖sdθ.

The Gronwall inequality yields ‖u(·, t)‖s ≤ ‖u(·, 0)‖se
4C2ε2t. So we have for ε ≤ log(2)/(4C2)

‖u(·, t)‖s ≤ 2ε for 0 ≤ t ≤ ε−1. (20)
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3.8.2 Error on [0, ε−1]

In t = 0 we have by (19)
‖ũ(·, 0) − u(·, 0)‖s ≤ ‖|[d̃]L|‖s ≤ CεN+2 (21)

with a constant which depends on d, N , s, and V but not on ε.
On [0, ε−1] we have

(ũj − uj)t + iωj(ũj − uj) + iFj(|ũ|2ũ − |u|2u) = −i
∑

‖k‖≤3K

[dk

j ]Le−i(k·ω)tei(j·x) =: δj .

The variation-of-constants formula yields

ũj(t) − uj(t) = e−iωjt(ũj(0) − uj(0))

−
∫ t

0

e−iωj(t−θ)(iFj(|ũ(·, θ)|2ũ(·, θ) − |u(·, θ)|2u(·, θ)) − δj(·, θ))dθ.

The integrand is estimated for 0 ≤ t ≤ ε−1 with (16), (17), (18), and

2‖|ũ|2ũ − |u|2u‖s ≤ ‖(ũ − u)ũ2‖s + ‖(ũ − u)u2‖s + ‖|ũ + u|2(ũ − u)‖s ≤ Cε2‖ũ − u‖s

by Lemma 1, (20), and the inequality (9b). We thus obtain

‖ũ(·, t) − u(·, t)‖s ≤ ‖ũ(·, 0) − u(·, 0)‖s +

∫ t

0

Cε2‖ũ(·, θ) − u(·, θ)‖sdθ + tCεN+3

with a constant which depends on C0, d, N , s, and V but not on ε. Together with (21) and
the Gronwall inequality this yields the estimate (9a) in Proposition 3 completing the proof of this
proposition.

3.9 Interface between modulated Fourier expansions

So far, we have constructed an approximate solution z = [z]L of the modulation system (7) for
0 ≤ εt ≤ 1. With the same method we can construct an approximate solution z̃ of the modulation
system (7) for 1 ≤ εt ≤ 2 taking u(·, ε−1) as initial value. Hence, equation (7b) becomes

∑

k

z̃k

j (1)e−i(k·ω)ε−1

= uj(ε
−1).

The following proposition bounds the difference of z(1) and z̃(1).

Proposition 4. Assume ‖u(·, ε−1)‖s ≤ ε. We have

‖|ẑ(1) − ˆ̃z(1)|‖ d+1

2

≤ CεN+2

with constants depending on d, N , s, and V but not on ε.

Proof. As in the previous sections we use the notations ã, b̃, ˆ̃a, and
ˆ̃
b, cf. Subsection 3.4. The

iteration for ã
〈j〉
j (1) reads

[

ã
〈j〉
j (1)

]n+1

= ε−1uj(ε
−1)eiωjε−1 −

[

∑

k6=〈j〉

ε[[k]]−1b̃kj (1)e−i(k·ω−ωj)ε
−1

]n

.

This yields

‖|a(1) − [ã(1)]n+1|‖s ≤
(

∑

j∈Zd

|ωj |s
∣

∣

∣

∑

k6=〈j〉

ε[[k]]−1([b̃kj (1)]n − bkj (1))ei(ωj−k·ω)ε−1
∣

∣

∣

2) 1
2

+
(

∑

j∈Zd

|ωj |s
∣

∣

∣
a
〈j〉
j (1) +

∑

k6=〈j〉

ε[[k]]−1bkj (1)ei(ωj−k·ω)ε−1 − ε−1uj(ε
−1)eiωjε−1

∣

∣

∣

2) 1
2

≤ ε‖|[b̃(1)]n − b(1)|‖s + ε−1‖ũ(·, ε−1) − u(·, ε−1)‖s.
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In addition we have

(b(1) − [b̃(1)]n+1)kj = (Ω−1Ω(b(1) − [b(1)]L+1))kj − iε(Ω−1(ḃ(1) − [
˙̃
b(1)]n))kj

+ (Ω−1(F(c(1)) − F([c̃(1)]n)))kj for (j,k) ∈ Sε,

(ȧ(1) − [ ˙̃a(1)]n+1)
〈j〉
j = (ȧ(1) − [ȧ(1)]L+1)

〈j〉
j − i(F(c(1)) − F([c̃(1)]n))

〈j〉
j .

For

ρn = max
l=0,...,1+(L−n)

‖|a(l)(1) − [ã(l)(1)]n|‖s,

ξn = max
l=0,...,1+(L−n)

‖|b(l)(1) − [b̃(l)(1)]n|‖s

we note ρ0 ≤ αL + ε−1‖u(ε−1)‖s ≤ C and ξ0 ≤ βL ≤ Cε
1
2 . For n = 0, . . . , L − 1 we have

with Lemma 2, (14), and (9a) ρn+1 ≤ εξn + Cε−1εN+2 + ε−
1
2 ηL + Cε(ρn + ξn) and ξn+1 ≤

ε−
1
2 µL + Cε

1
2 ξn + Cε

1
2 (ρn + ξn), and thus ρn, ξn ≤ C(εN+1 + ε

L
2 + ε

n
2 ) by (18) with a constant

which depends on d, L, n, s, and V but not on ε. The same procedure can be done for the second
rescaling. This proves the estimates of the proposition.

4 Conservation properties

The modulation system (7a) has invariants close to the actions as we discuss now. Let z be the
functions of Proposition 3.

4.1 Almost-invariants of the modulation system

Let

U(z) =
∑

k1+k2−k3−k4=0

1

(2π)d

∫

Td

zk
1

zk
2

zk3zk4dx.

The transformation zk 7→ ei(k·µ)θzk for real sequences µ = (µl)l∈Zd and θ ∈ R leaves U invariant
since the sum is over k1 + k2 − k3 − k4 = 0. Hence, we have

0 =
d

dθ

∣

∣

∣

∣

θ=0

U
(

(ei(k·µ)θzk)k

)

=
∑

k

1

(2π)d

∫

Td

2i(k · µ)zk
∑

k2−k3−k4=−k

zk
2

zk3zk4dx

+
∑

k

1

(2π)d

∫

Td

2(−i)(k · µ)zk

∑

k1+k2−k3=k

zk
1

zk
2

zk3dx

= −4Re
(

∑

k

i(k · µ)
∑

j∈Zd

zk

j Fj

(

∑

k1+k2−k3=k

zk
1

zk
2

zk3

))

,

and with (7a) and 2Re(zk

j εżk

j ) = d
dt |zk

j |2 we obtain

0 = 2
d

dt

∑

k

(k · µ)|zk

j(k)|2 + 4Re
(

∑

k

i(k · µ)zk

j(k)d
k

j(k)

)

.

Hence

Iµ(z(·, εt)) =
1

2

∑

k

(k · µ)|zk

j(k)(εt)|2 (22)

is an almost-invariant of the modulation system (7a). To quantify the term ”almost” we need the
following lemma.

Lemma 3. Let z and r = p + q with zk

j = pk

j = 0 for j 6= j(k) or (j,k) ∈ Rε and qk

j = 0 for
(j,k) 6∈ Rε. The following estimate holds for s ≥ d + 1 with a constant C which depends only on
d, K, s, and V .

∑

l∈Zd

|ωl|s
∑

k

|kl||zk

j(k)||rk

j(k)| ≤ C‖|ẑ|‖ d+1

2

‖|p̂|‖ d+1

2

.
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In addition we have for q = 0

∑

l∈Zd

|ωl|s
∣

∣

∣
I〈l〉(z) − I〈l〉(r)

∣

∣

∣
≤ C‖|ẑ − p̂|‖ d+1

2

‖|ẑ + p̂|‖ d+1

2

.

Proof. Since zk

j = 0 for (j,k) ∈ Rε we have

∑

l∈Zd

|ωl|s
∑

k

|kl||zk

j(k)||rk

j(k)| =
∑

k=〈j〉 or (j,k)∈Sε

|ωj |
d+1

2

∑

l∈Zd |kl||ωl|s

|ω(s− d+1

2
)|k|||ωj |

d+1

2

|ẑk

j ||p̂k

j |

where Sε = { (j,k) : j = j(k),k 6= 〈j〉, (j,k) 6∈ Rε, ‖k‖ ≤ K }. We now bound

sup
k=〈j〉 or (j,k)∈Sε

∑

l∈Zd |kl||ωl|s

|ω(s− d+1

2
)|k|||ωj |

d+1

2

. (23)

For k = 〈j〉 the fraction is 1. Let now (j,k) = (j(k),k) ∈ Sε. We have for the nominator in (23)
∑

l∈Zd |kl||ωl|s ≤ C|ωL|s if L is the index of largest norm |·| with kL 6= 0. The constant C depends
only on K, s, and V .
For the estimation of the denominator in (23) we consider two cases. For k with |kL| > 1 or kl 6= 0

for l 6= L with |l| > 1
2K |L| we have |ω(s− d+1

2
)|k|| ≥ C|ωL|s−

d+1

2 |ωL|
d+1

2 because of s ≥ d + 1 for a
constant which depends on d, K, s, and V . For the other k we have

|j(k)| =
∣

∣

∣

∑

l∈Zd

kll
∣

∣

∣
=

∣

∣

∣
kLL +

∑

|l|≤ 1
2K

|L|

kll
∣

∣

∣
≥ |L| − K − 1

2K
|L| >

1

2
|L|

and hence |ω(s− d+1

2
)|k|||ωj |

d+1

2 ≥ C|ωL|s−
d+1

2 |ωL|
d+1

2 with a constant which depends on d, s, and
V . Thus, (23) is bounded by a constant depending on d, K, s, and V .

The Cauchy-Schwarz inequality now yields the first estimate of the lemma. For the proof of
the second estimate we just remark

∑

l∈Zd

|ωl|s
∣

∣

∣
I〈l〉(z) − I〈l〉(r)

∣

∣

∣
≤

∑

l∈Zd

|ωl|s
∑

k

|kl|
∣

∣

∣
|zk

j(k)|2 − |rk

j(k)|2
∣

∣

∣

and ||zk

j |2 − |rk

j |2| ≤ |zk

j − rk

j ||zk

j + rk

j |.

Using Lemma 3 and Proposition 3 we obtain the following lemma concerning the conservation
of I〈l〉 from (22).

Lemma 4. We have for 0 ≤ t ≤ ε−1

∑

l∈Zd

|ωl|s
∣

∣

∣

d

dt
I〈l〉(z(·, εt))

∣

∣

∣
≤ CεN+3

with a constant C which depends on C0, d, N , s, and V but not on ε and t.

4.2 Relationship between almost-invariants and actions

Lemma 5. We have for 0 ≤ t ≤ ε−1

∑

l∈Zd

|ωl|s
∣

∣

∣
I〈l〉(z(·, εt)) − Il(u(·, t), u(·, t))

∣

∣

∣
≤ Cε

7
2

with a constant C which depends on C0, d, N , s, and V but not on ε and t.
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Proof. On the one hand we have using Lemma 3 and Proposition 3

∑

l∈Zd

|ωl|s
∣

∣

∣
I〈l〉(z) −

1

2
|z〈l〉l |2

∣

∣

∣
=

1

2

∑

l∈Zd

|ωl|s
∣

∣

∣

∑

k6=〈l〉

kl|zk

j(k)|2
∣

∣

∣
≤ Cε5

where zk

j is evaluated at εt. On the other hand we have using the Cauchy-Schwarz inequality

∑

l∈Zd

|ωl|s
∣

∣

∣
|ul|2 − |z〈l〉l |2

∣

∣

∣
≤

(

‖u − ũ‖s +
(

∑

l∈Zd

|ωl|s
(

∑

k6=〈l〉

|zk

l |
)2) 1

2
)(

‖u‖s +
(

∑

l∈Zd

|ωl|s|z〈l〉l |2
)

1
2
)

since

||ul|2 − |z〈l〉l |2| ≤ |ul − z
〈l〉
l e−iωlt||ul + z

〈l〉
l e−iωlt| ≤ (|ul − ũl| + |ũl − z

〈l〉
l e−iωlt|)(|ul| + |z〈l〉l |).

With Proposition 3 this can be bounded by Cε
7
2 . This yields the inequality stated in the proposi-

tion.

4.3 From short to long time intervals

By now we have proven Theorem 1 on the short time interval [0, ε−1]. The extension to long time
intervals [0, ε−N ] as stated in the theorem can be done as in [6, Subsection 4.5]:

On intervals [mε−1, (m + 1)ε−1] for integers m we consider the approximate solution of the
modulation system given by Proposition 3 with initial data u(·,mε−1). On each of these intervals
we have conservation of I〈l〉 up to εN+3 by Lemma 4 (by “conservation” we mean conservation in
the sense of this Lemma and Theorem 1). The difference of I〈l〉 at the interfaces of these intervals
is estimated by εN+3 using the second estimate of Lemma 3 and Propositions 3 and 4. Hence I〈l〉
is conserved up to ε4 on an interval of length ε−N which consists of ε−N+1 intervals of length ε−1.
By Lemma 5 this implies the conservation of the actions Il on this interval up to ε

7
2 . This lemma

also guarantees that the initial data u(·,mε−1) remains of size ε on the considered short intervals
for ε small enough since ‖u‖2

s =
∑

l|ωl|s2Il(u, ū).
This concludes the proof of Theorem 1.

5 Near-conservation of actions, energy and momentum for

the semi-discretized nonlinear Schrödinger equation

We now consider a spectral semi-discretization in space of the nonlinear Schrödinger equation (1)
and study the actions (2) along solutions of the semi-discretized equation. Similar results could be
obtained for a semi-discretization in space with finite differences.

5.1 Spectral semi-discretization in space

The semi-discretization in space is done by a spectral collocation method. As an ansatz for the
solution u of the nonlinear Schrödinger equation (1) we choose the trigonometric polynomial

uM (x, t) =
∑

j∈M

qj(t)e
i(j·x)

where M = {−M, . . . ,M − 1}d. We require this ansatz to fulfill (1) in the collocation points

xk =
π

M
k, k ∈ M.

With uM (xk, t)k∈M = F2M (qj(t))j∈M, where F2M denotes the d-dimensional discrete Fourier
transform, we arrive at the system of ordinary differential equations

i
duM

dt
(xk, t)k∈M = F2MΩF−1

2MuM (xk, t)k∈M + (|uM (xk, t)|2uM (xk, t))k∈M (24)

13



where Ω = diag((ωl)l∈M) is the diagonal matrix with the frequencies ωl, l ∈ M, on its diagonal.
The initial value is uM (xk, 0)k∈M = u(xk, 0)k∈M. We note that the semi-discretized system (24) is

a finite dimensional complex Hamiltonian system with Hamiltonian HM (uM (xk, t)k∈M, uM (xk, t)k∈M) =

HM (uM , uM ),

HM (uM , uM ) =
1

2
uM (xk, t)

T

k∈MF2MΩF−1
2MuM (xk, t)k∈M +

1

4

∑

k∈M

|uM (xk)|4

=
1

2(2π)d

∫

[−π,π]d

(

|∇uM |2 + (V ∗ uM )uM +
1

2
Q(|uM |4)

)

dx.

(25)

Here, we use the notation Q(v) for the trigonometric interpolation of a periodic function v =
∑

j∈Zd vje
i(j·x) in the collocation points, i. e.

Q(v) =
∑

j∈M

(

∑

m∈Zd

vj+2Mm

)

ei(j·x).

The semi-discretized equation (24) can be rewritten as

i
duM

dt
= −∆uM + V ∗ uM + Q(|uM |2uM ) (26)

with initial value
uM (·, 0) = Q(u(·, 0)).

5.2 Statement of the result

The nonlinear Schrödinger equation (1) is an infinite dimensional complex Hamiltonian system
with Hamiltonian or total energy

H(u, ū) =
1

2(2π)d

∫

[−π,π]d

(

|∇u|2 + (V ∗ u)ū +
1

2
|u|4

)

dx. (27)

Along solutions of (1) this Hamiltonian as well as the momentum

K(u, ū) = i
1

(2π)d

∫

[−π,π]d
(u∇ū − ū∇u)dx (28)

are exactly conserved. However, they are not exact invariants of the semi-discretized system
(24). We now formulate our main result for this semi-discretized system which states that energy,
momentum, and all actions (2) are approximately conserved along solutions of the semi-discretized
system over long times.

We use notations similar to those of Section 2, equation (4), but now k = (kl)l∈M and ω =
(ωl)l∈M are finite sequences and

j(k) =
∑

l∈M

kll mod 2M ∈ M.

Here, mod 2M denotes the reduction modulo 2M of each component where the representative is
chosen in M. The set of near-resonant indices now consists of pairs (j(k),k) with a finite sequence
k = (kl)l∈M of integers,

Rε,M = { (j,k) : j = j(k),k 6= 〈j〉, |k · ω − ωj | < ε
1
2 , ‖k‖ ≤ 2N + 2 },

and the non-resonance condition reads

sup
(j,k)∈Rε,M

|ωj |s−
d+1

2

|ω(s− d+1

2
)|k||

ε‖k‖+1 ≤ C0ε
2N+4 (29)

for a constant C0 (independent of ε) and a given natural number N . The following theorem
corresponds to Theorem 1.
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Theorem 2. For given N and s ≥ d + 1 there exists ε0 > 0 such that the following holds: Under
the conditions of small initial data ‖uM (·, 0)‖s ≤ ε ≤ ε0 and of non-resonance (29), the estimates

∑

l∈M

|ωl|s
|Il(u

M (·, t), uM (·, t)) − Il(u
M (·, 0), uM (·, 0))|

ε2
≤ Cε

3
2 for 0 ≤ t ≤ ε−N ,

|H(uM (·, t), uM (·, t)) − H(uM (·, 0), uM (·, 0))|
ε2

≤ Cε2M−s for 0 ≤ t ≤ ε−N ,

d
∑

r=1

|Kr(u
M (·, t), uM (·, t)) − Kr(u

M (·, 0), uM (·, 0))|
ε2

≤ C min(ε
3
2 , tε2M−(s− d+1

2
)) for 0 ≤ t ≤ ε−N

hold for solutions uM (x, t) of (26) with a constant C which depends on C0, d, N , s, and V but is
independent of ε, M , and t.

The proof of this theorem is given in the following section.

6 Modulated Fourier expansions for the semi-discretized

equation

The proof of the near-conservation of actions in Theorem 2 is a modification of the proof of Theorem
1 given in Sections 3 and 4. We mainly state the differences.

6.1 The modulation system and its approximate solution

The ansatz for uM is chosen again as a modulated Fourier expansion

ũ(x, t) =
∑

‖k‖≤K

zk

j(k)(εt)e
i(j(k)·x)e−i(k·ω)t =

∑

‖k‖≤K

zk(x, εt)e−i(k·ω)t (30)

with zk(x, εt) = zk

j(k)(εt)e
i(j(k)·x) and K = 2N + 2. Now and in the following k = (kl)l∈M is

a finite sequence of integers kl with ‖k‖ ≤ K. For the derivation of the modulation system we
proceed similarly as in Section 3. We insert (30) in (26) and note that for k = k1 + k2 − k3 we
have

Fj

(

Q
(

zk
1

zk
2

zk3

))

=

{

zk
1

j(k1)z
k

2

j(k2)z
k3

j(k3), j = j(k),

0, else

since j(k) ≡ j(k1) + j(k2) − j(k3) (mod 2M) and j(k) ∈ M. Comparing the coefficients of
ei(j(k)·x)e−i(k·ω)t gives

iεżk

j(k) + (k · ω)zk

j(k) = ωj(k)z
k

j(k) +
∑

k1+k2−k3=k

Fj(k)

(

Q
(

zk
1

zk
2

zk3

))

, (31a)

The only difference in comparison with the continuous modulation system (7a) is the presence of
Q. For the initial condition we obtain

∑

k

zk

j (0) = uM
j (0). (31b)

For this modulation system we have an approximate solution z as in Proposition 3 with the
same estimates and constants independent of ε, M , and 0 ≤ t ≤ ε−1 (and u replaced by uM and
j ∈ Z

d replaced by j ∈ M). To see this, we only have to ensure that the presence of Q in (31a)
does not affect the estimates of the nonlinearity. This is done by the first inequality of the following
lemma which is similar to [10, Lemma 4.2] (but here in arbitrary spatial dimension).
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Lemma 6. For s > d
2 and s′ ≥ 0 we have

∥

∥

∥

∑

k

{Q(ck)}
∥

∥

∥

s
≤ C

∥

∥

∥

∑

k

{ck}
∥

∥

∥

s
and ‖Q(v) − v‖s′ ≤ CM−(s−s′)‖v‖s

with a constant C which depends on d, s, and V but not on ε and M .

Proof. Recall from Lemma 1 that
∑

k∈Zd
1

|ωk|s
converges for s > d

2 . This implies that

M2s
∑

0 6=m∈Zd

1

|ωj+2Mm|s ≤ C (32)

for a constant C which depends on d, s, and V but not on ε, j, and M .
We have

∥

∥

∥

∑

k

{Q(ck)}
∥

∥

∥

2

s
≤

∑

j∈M

|ωj |s
(

∑

m∈Zd

∑

k

|ckj+2Mm|
)2

=
∥

∥

∥

∑

k

Q({ck})
∥

∥

∥

2

s
.

As in the proof of [10, Lemma 4.2] we have with the Cauchy-Schwarz inequality

‖Qv‖2
s ≤

∑

j∈M

(

∑

m∈Zd

|ωj |s
|ωj+2Mm|s

)

∑

m∈Zd

|ωj+2Mm|s|vj+2Mm|2.

The term
∑

m∈Zd

|ωj |
s

|ωj+2Mm|s can be estimated independently of j with (32) concluding the proof of

the first estimate of the lemma.
As in the proof of [10, Lemma 4.2] we further have

‖Q(v) − v‖2
s′ ≤

∑

j 6∈M

|ωj |−(s−s′)|ωj |s|vj |2

+
∑

j∈M

(

∑

0 6=m∈Zd

|ωj |s
′

|ωj+2Mm|s
)(

∑

0 6=m∈Zd

|ωj+2Mm|s|vj+2Mm|2
)

.

With (32) this can be estimated by CM−2(s−s′)‖v‖2.

6.2 Near-conservation of actions

Let

U(z) =
∑

k1+k2−k3−k4=0

1

(2π)d

∫

Td

Q(zk
1

zk
2

zk3zk4)dx.

Using 1
(2π)d

∫

Td Q(v̄)dx = 1
(2π)d

∫

Td Q(v)dx and Q(vw) = Q(Q(v)Q(w)) we get for finite real se-

quences µ = (µl)l∈M

0 =
d

dθ

∣

∣

∣

∣

θ=0

U
(

(ei(k·µ)θzk)k

)

=
∑

k

1

(2π)d

∫

Td

2i(k · µ)Q
(

zk
∑

k2−k3−k4=−k

zk
2

zk3zk4

)

dx

+
∑

k

1

(2π)d

∫

Td

2(−i)(k · µ)Q
(

zk

∑

k1+k2−k3=k

zk
1

zk
2

zk3

)

dx

= −4Re
(

∑

k

i(k · µ)
∑

j∈M

zk

j Fj

(

Q
(

∑

k1+k2−k3=k

zk
1

zk
2

zk3

)))

,

and with (31a) and 2Re(zk

j εżk

j ) = d
dt |zk

j |2 we obtain

0 = 2
d

dt

∑

k

(k · µ)|zk

j(k)|2 + 4Re
(

∑

k

i(k · µ)zk

j(k)d
k

j(k)

)

.
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Hence

Iµ(z(·, εt)) =
1

2

∑

k

(k · µ)|zk

j(k)(εt)|2

is an almost-invariant of the modulation system (31a).
For the estimation of

∑

l∈M|ωl|s| d
dtI〈l〉(·, εt)| we need Lemma 3 for the semi-discrete setting.

In the proof of this lemma we concluded |j(k)| > 1
2 |L| from |∑l∈Zd kll| > 1

2 |L|. However, this
conclusion is not true any more (recall j(k) =

∑

l∈Zd kll mod 2M). We therefore adapt this part
of the proof of Lemma 3.

Adapted proof of Lemma 3. We need to (re)bound

sup
(j,k)∈Sε,M

∑

l∈M|kl||ωl|s

|ω(s− d+1

2
)|k|||ωj |

d+1

2

where Sε,M = { (j,k) : j 6= j(k),k 6= 〈j〉, (j,k) 6∈ Rε,M , ‖k‖ ≤ K }. For this purpose let again
(j,k) = (j(k),k) ∈ Sε,M . Let |·|max be the maximum norm on R

d which is equivalent to the
Euclidean norm |·|,

|l|2 ≤ d|l|2max ≤ d|l|2. (33)

Using this and the asymptotics of the frequencies we have
∑

l∈M|kl||ωl|s ≤ C|ωL|s if L ∈ M is
the index of largest norm |·|max with kL 6= 0. The constant C depends only on d, K, s, and V .
For |kL| > 1 or kl 6= 0 for l 6= L with |l|max > 1

2K |L|max we have using s ≥ d + 1 and (33)

|ω(s− d+1

2
)|k|| ≥ C|ωL|s−

d+1

2 |ωL|
d+1

2 for a constant which depends on d, K, s, and V . For the other
k we have

3

2
|L|max > |L|max +

K − 1

2K
|L|max ≥

∣

∣

∣
kLL +

∑

|l|≤ 1
2K

|L|

kll
∣

∣

∣

max
=

∣

∣

∣

∑

l∈Zd

kll
∣

∣

∣

max
>

1

2
|L|max.

From this we can conclude |j(k)|max ≥ 1
2 |L|max. Hence, we get with (33) |ω(s− d+1

2
)|k|||ωj |

d+1

2 ≥
C|ωL|s−

d+1

2 |ωL|
d+1

2 with a constant which depends on d, s, and V .

So, Lemma 3 is true in the semi-discretized situation with constants independent of M . Now,
the approximate conservation of actions along solutions of the semi-discretized equation can be
shown as in Section 4.

6.3 Near-conservation of energy

The conservation of actions as stated in Theorem 2 implies |‖uM (·, t)‖2 − ‖uM (·, 0)‖2| ≤ Cε
7
2 and

hence

‖uM (·, t)‖s ≤ 2ε (34)

for times 0 ≤ t ≤ ε−N provided that ε is sufficiently small. This spatial regularity and the
Hamiltonian structure of the semi-discrete system are the main tools to prove the long-time near-
conservation of energy and momentum with the arguments of [10, Section 6].

We have from (25) and (27)

H(uM (·, t), uM (·, t)) − HM (uM (·, t), uM (·, t)) =
1

4(2π)d

∫

[−π,π]d

(

|uM (·, t)|4 −Q(|uM (·, t)|4)
)

dx.

As in [10, Subsection 6.2] the right-hand side can be bounded using Lemma 6 with s′ = 0 by

CM−s‖|uM (·, t)|4‖s ≤ CM−sε4

for 0 ≤ t ≤ ε−N by (34). This implies the long-time near-conservation of energy as stated in
Theorem 2 since the Hamiltonian HM is exactly conserved along solutions uM of (24).
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6.4 Near-conservation of momentum

Let v(x, t) be the exact solution of (1) with initial value v(·, 0) = uM (·, 0). Along this solution the
momentum (28), whose r-th component is

Kr(u, ū) = i
1

(2π)d

∫

[−π,π]d

(

u
dū

dxr
− ū

du

dxr

)

dx = 2
∑

j∈Zd

jr|uj |2,

is exactly conserved. With the arguments from Subsection 3.8 we get ‖v(·, t)‖s ≤ Cε for 0 ≤ t ≤
ε−1. For the difference v − uM we have

i(vj − uM
j )t = ωj(vj − uM

j ) + Fj(Q(|v|2v − |uM |2uM )) + Fj(|v|2v −Q(|v|2v)). (35)

With the second inequality of Lemma 6 with s′ = d+1
2 and Lemma 1 the last term is bounded by

‖|v|2v −Q(|v|2v)‖ d+1

2

≤ CM−(s− d+1

2
)ε3. The arguments from Subsection 3.8 applied to (35) yield

‖v(·, t) − uM (·, t)‖ d+1

2

≤ Ctε3M−(s− d+1

2
)

for 0 ≤ t ≤ ε−1. This implies using in addition Proposition 3

|Kr(u
M (·, t), uM (·, t)) − Kr(v(·, t), v̄(·, t))| ≤ Ctε4M−(s− d+1

2
)

for 0 ≤ t ≤ ε−1. The extension to long time intervals can be done as in [10, Subsection 6.1] which
yields

|Kr(u
M (·, t), uM (·, t)) − Kr(u

M (·, 0), uM (·, 0))| ≤ Ctε4M−(s− d+1

2
)

for 0 ≤ t ≤ ε−N . On the other hand we have using the conservation of actions

|Kr(u
M (·, t), uM (·, t)) − Kr(u

M (·, 0), uM (·, 0))|
≤ 2

∑

j∈M

|jr||Ij(u
M (·, t), uM (·, t)) − Ij(u

M (·, 0), uM (·, 0))| ≤ Cε
7
2

for 0 ≤ t ≤ ε−N and r = 1, . . . , d since |jr| ≤ C|ωj |s. This concludes the proof of Theorem 2.

7 Conclusion and comparison

In this paper the long-time near-conservation of actions has been shown for the nonlinear Schrö-
dinger equation (1) and its spectral semi-discretization (24) in the weakly nonlinear setting of
small initial data, over time scales far beyond a linear perturbation analysis. The implied spatial
regularity allowed to show the long-time near-conservation of energy and momentum for the semi-
discretized system. These results have to be compared with [6, Theorem 1] and [10, Theorems
3.1, 3.2, 3.3] where the corresponding quantities of semilinear wave equations and their spectral
semi-discretizations are studied.

The method of proof presented in the present paper is the same as in [6] and [10]: A modulated
Fourier expansion of the solution of (1) or its semi-discretization (24) is established, and the
coefficients of this expansion are determined up to a small defect on a time interval of length ε−1

(Sections 3 and 6.1). The system determining these coefficients has invariants which are conserved
up to ε−N+3 on a time interval of length ε−1 and which are close to the actions (Sections 4 and
6.2). The result for the long time interval of length ε−N is obtained by patching together the short
time intervals.

However, there are some remarkable differences between the semilinear wave equation and the
nonlinear Schrödinger equation, which we collect in the following.

A major difference lies in the validity for arbitrary spatial dimension of Theorems 1 and 2 for
the nonlinear Schrödinger equation (so far, the results for semilinear wave equations have only
been established for the one dimensional problem). This is due to the fact that the frequencies of
the Schrödinger equation behave milder than those of the wave equation in arbitrary dimension,
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cf. [3] where a theorem similar to Theorem 1 is shown by transforming (1) to a normal form. To
make use of this fact in the context of modulated Fourier expansions, it is essential to observe that
it suffices to consider modulation functions consisting of a single wave, cf. Proposition 2.

Another difference in the statements of the results is that the actions divided by ε2 are conserved
up to ε

3
2 for the nonlinear Schrödinger equation (instead of ε for the semilinear wave equation).

This is explained by the cubic (instead of quadratic) nonlinearity in (1). For this reason, one
could even expect a conservation up to ε2, but it is not clear how to achieve ε2. Note however
that in the near-conservation of energy and momentum divided by ε2 along solutions of the semi-
discretized equation we get a factor ε2 as expected since these proofs only rely on the spatial
regularity established by the conservation of actions. In [6], the enhancement from ε

1
2 to ε in

the conservation of actions is derived by bounding the denominator |ω2
j − (k · ω)2| from below

independently of ε for (amongst others) k = ±〈k〉 ± 〈l〉 and j = k + l, cf. equation (30) and the
proof of Theorem 4 in [6]. Here, we should accomplish this for k = ±〈k〉 ± 〈l〉 ± 〈m〉 due to the
cubic nonlinearity, but this is not true. However, the conservation of the actions in Theorems 1 and
2 can be enhanced to ε2− 1

m for any integer m ≥ 2 with a new definition of the set of near-resonant
indices

R̃ε = { (j,k) : j = j(k),k 6= 〈j〉, |k · ω − ωj | < ε
1
m , ‖k‖ ≤ 2N + 2 }.

Then we get βn ≤ Cε1− 1
m instead of βn ≤ Cε

1
2 in Subsection 3.6, and this yields ε4− 1

m instead of
ε

7
2 in Lemma 5.

Due to the cubic nonlinearity a linear perturbation analysis allows estimates over times ε2.
This suggests to consider the time scale τ = ε2t instead of τ = εt for the coefficients zk

j of the
modulated Fourier expansion. However, this time scale leads to difficulties in the estimations of
the defect in Subsection 3.7 since a result corresponding to [6, equation (22)] is not true for the
cubic nonlinearity. The usage of the time scale εt in combination with the cubic nonlinearity
even simplifies the estimation of the defect in the modulation functions in comparison with [6,
Subsection 3.11]: Yet another rescaling of the variables as in the estimation of the defect in [6] is
no longer necessary.

The technical differences arising in the analysis of the modulation functions are mainly caused
by a different structure of the wave and the Schrödinger equation. While the wave equation is
a second order partial differential equation with asymptotically linear frequencies, the Schröding-
er equation is of first order with asymptotically quadratic frequencies. This leads to different
linear parts in the modulation systems. For the nonlinear Schrödinger equation, this linear part is
(k · ω − ωj(k))z

k

j(k) (equation (7a)) whereas it reads

((k · ω)2 − ω2
j )zk

j = (|k · ω| + ωj)(|k · ω| − ωj)z
k

j

for the semilinear wave equation (equation (15) in [6]). Hence, in the case of the wave equation
(|k · ω| + ωj)b

k

j can be estimated and not only bkj as for the Schrödinger equation.
The first consequence is that in the proof of Lemma 3 we no longer have the factor |k · ω| + 1

in the denominator of (23), but the absence of this term can be compensated by our knowledge
that the modulation functions consist of single waves.

The second more fundamental consequence is that we need to use a different norm for the
analysis of the modulation functions. Our mixture between l2- and l1-framework described by (8)
replaces the l2-framework of [6] where the norm

(

∑

j

ω2s
j

∑

k

|zk

j |2
)

1
2

is used instead. With this norm from [6] another rescaling of the variables is needed for the
estimation of the nonlinearity, namely ck = ω

|k|ε−[[k]]zk with a slightly different definition of
[[k]] due to the quadratic nonlinearity, cf. [6, Subsection 3.5] (recall that we scaled the variables
by introducing ck = ε−[[k]]zk). This rescaling introduces a factor (ωj − k · ω) before bkj in the
modulation system for the initial values in [6] (to be more precise, it is responsible for the ωj in
this factor), cf. [6, Subsection 3.6]. This is no problem since (|k · ω| + ωj)b

k

j can be estimated. In

the case of the nonlinear Schrödinger equation a factor ωj would appear before bkj in the formula
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(10) for a
〈j〉
j (0) which we cannot handle by this argument. For this reason we choose the norm

(8). A further advantage of this norm is that it simplifies many estimations in the analysis of the
modulation functions.
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