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Abstract 
We have studied the nonlinear screening and stopping power of charged projectiles moving through a uniform electron 

gas with velocities up to the Fermi velocity of the gas. Our approach is based on density functional theory and is an 
extension of previous calculations which consider the screening of the projectile in the zero velocity limit. At the higher 
velocities considered here, the electrons of the metal occupy a shifted Fermi sphere which leads to an asymmetry of the 
screening charge density and scattering potential along the line of motion of the projectile. To obtain an approximate 

self-consistent solution of this dynamic screening problem, we use the spherically averaged density to define an averaged 
scattering potential (spherical potential approximation). As a specific application, we determine the axial screening charge 
density and stopping power of antiprotons in an electron gas characteristic of aluminium. Screening nonlinearities are found 
to be important for the full range of velocities considered. In addition, we find that the stopping power exhibits a linear 
dependence on velocity up to velocities approaching the stopping power maximum. 

1. Introduction 

The dynamic screening charge induced by the passage 

of a charged particle through matter is a central quantity 
required for an understanding of the electronic stopping 
power and other projectile-target interaction phenomena. 
The retarding force. experienced by the projectile arises 
directly from the asymmetry of the induced charge density, 
and it is therefore of interest to determine how this asym- 
metry develops with increasing projectile velocity. For 
example, at high velocities the collective response of the 
medium becomes important and results in the formation of 

a trailing wake [l]. This influence of the projectile on the 
surrounding medium is most easily visualized in terms of 
the induced screening charge density and its associated 
electrostatic potential. 

One approach commonly used to understand this be- 
haviour is based on linear response theory as applied to the 
model of a uniform electron gas [1,2]. Although this 
dielectric function formalism provides a qualitative de- 
scription of dynamic screening over the full range of 
projectile velocities, it is not quantitatively accurate. It is 
now well-known that a charged projectile represents a 
strong perturbation at low velocities and a description 
which goes beyond lowest order perturbation theory is 
needed to make contact with experimental stopping power 
measurements [3]. 

* Corresponding author. 

In going beyond linear response theory, several ap- 
proaches are available, each with its own limitations. A 

particularly simple and appealing approach is a hydrody- 
namic description [4] in which the electron gas is treated as 
a charged fluid interacting with the moving external charge. 

The relevant dynamical variables are the electronic charge 
density and fluid velocity which together satisfy a set of 
coupled partial differential equations. Although essentially 
a classical picture, some quantum mechanical aspects can 
be included by using an equation of state obtained at the 
level of the Thomas-Fermi or Thomas-Fermi-von 
Weizslcker approximation [5]. Contact with the linear 
response dielectric formalism is achieved by linearizing 

the hydrodynamic equations. However, the method is not 
restricted to the linear regime and a more accurate descrip- 
tion is in principle available through a direct numerical 

solution of the full set of nonlinear equations. Some pre- 
liminary work [6] along these lines has demonstrated that 

this hydrodynamic approach is a useful complement to the 
more rigorous quantum mechanical methods. 

A quite different extension of linear response theory is 
based on a systematic expansion in powers of the projec- 

tile charge 2. Within a many-body theory context, the 
induced density to second order in 2 is determined by the 
so-called quadratic density response function which can be 
calculated within the random phase approximation. This is 
the same approximation used in the linear theory, and 
essentially constitutes a mean field theory of the electronic 
interactions. With this one approximation, the Z3 conec- 
tion to the stopping power was obtained in both the low [7] 
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and high [8] velocity limits. More recently, the theory was 
extended to the full range of velocities spanning the stop- 
ping power maximum [9] and to date, represents the most 
complete description of the nonlinear corrections. How- 
ever, being an expansion in 2, the theory is limited to 
those situations in which the corrections to the linear 
results are relatively small. In practice, for low projectile 
velocities this limits the theory to the lowest possible value 
of Z (Z = 1) and high electron densities. At velocities 
above the stopping power maximum, the Z3 correction to 
the stopping power decreases more rapidly with velocity 
than the Z2 contribution. As a result, nonlinear effects 
become relatively less important and the quadratic re- 
sponse theory can be used to obtain a good qualitative 
understanding of nonlinearities in the high velocity regime. 

The third distinct approach to the stopping power prob- 
lem is the scattering theory formulation [lo]. It improves 
upon quadratic response theory by treating the screening of 
the projectile to all orders in Z. In the frame of reference 
of the ion, the electrons in the medium stream by and 
scatter from a fixed potential, and the net momentum 
transferred to the projectile is the source of the retarding 
force. Of course, to implement this approach requires some 
knowledge of the scattering potential. In the limit of low 
velocities (v -K vF) where the stopping power is linear in 
v, one can obtain the scattering potential by performing a 
nonlinear screening calculation within density functional 
theory [ll] for a stationary point charge. The angular 
distortion of the electronic screening cloud around the ion 
can be neglected in this limit since it leads to corrections 
which are higher order in u. Previous applications of the 
method to channelling particles have been quite successful 
[12] in accounting for both the absolute magnitude of the 
stopping power and the observed Z-oscillations. Our objec- 
tive in this paper is to extend these calculations to higher 
velocities where the screening charge and scattering poten- 
tial deviate from their form in the low velocity limit. An 
application to the stopping of antiprotons illustrates our 
general calculational approach. Interestingly, the linear 
dependence on v persists in this, case up to velocities 
approaching the stopping power maximum. 

2. Theory 

Recently, BSnig and Schonhammer [13] have consid- 
ered the time-dependent problem of an external potential 
moving with a velocity v through a noninteracting elec- 
tron gas of density no. For a spherically symmetric scatter- 
ing potential, they arrive at the following expression for 
the stopping power, 

s=2/- d3p f( 
(27rn)3 

&p+,“)+%(P). 

Fig. 1. Schematic of the shifted Fermi sphere and relevant parame- 
ters. All states within k, of the center of the sphere are occupied. 

Here f(~,+,, ) is a shifted Fermi distribution at zero 
temperature, representing the momentum distribution of 
the electron gas in the projectile frame of reference. In 
wave vector space, the Fermi sphere is shifted by an 
amount 9 = mv/h. The factor of 2 accounts for spin 
degeneracy and D is a unit vector in the direction of the 
moving charge. The momentum transfer (or transport) 
cross section a@(p) is defined in terms of the differential 
scattering cross section a( 8, p) by 

u,,(p) =/ dR(l -cos @)a(@, p). (2) 

By making use of the geometry in Fig. 1 and the kinematic 
variables defined therein, Eq. (1) can be expressed as 

fi2 k 
SC_ 

/ 
““dkk4[1-co&,,,,,(k)]u,(k). 

4n2m k,, (3) 

In the low velocity limit, Eq. (3) reduces to the familiar 
expression [ 101 

5 = mu,una~,r(kr>, (4) 

in which the transport cross section is evaluated at the 
Fermi momentum k,. If the scattering phase shifts 6,(k) 
are available for the given scattering potential, the momen- 
tum transfer cross section can be conveniently evaluated 
using [14] 

Us,=; c (I+1)sin2(6,+,-S1). (5) 
I-O 

In both their original [13] and subsequent [15] work, 
B&rig and Schijnhammer studied the scattering of elec- 
trons from a hard sphere potential. Here we take the 
additional step of determining the scattering potential self- 
consistently. For a charged projectile, each electronic scat- 
tering state contributes to the screening of the projectile’s 
bare Coulomb potential, and as a result, the effective 
scattering potential is itself dependent on the form of the 
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electronic states. To close this loop we make use of density 
functional theory [16] which requires the self-consistent 
solution of the equations (we use atomic units henceforth, 
e=m=k=l) 

4(r) = / d3r’E, 

n(r) =2 c IJlk(W, 
k&c) 

(8) 

where the single-particle states Icrk(r) are obtained from 
the solution of the Schriidinger equation 

[-$V”+V(r)]$k(r)=~k211r,(r). (9) 

The effective scattering potential V(r) consists of the 
external Coulomb potential of the projectile, the electro- 
static potential 4(r) of the screening charge density &z(r) 
= n(r) - no, and the exchange-correlation potential u,(r). 
Since the electrons are streaming past the projectile, the set 
of occupied states in the k-summation extends over a 
shifted Fermi sphere. As a result, n(r) and V(r) have axial 
symmetry only, in contrast to the static screening situation, 
and the usual procedures for solving the Schriidinger equa- 
tion for spherical potentials are inapplicable. An expansion 
of rkk(r) in spherical harmonics would lead to a set of 
coupled radial equations for the angular momentum com- 
ponents and would necessitate a coupled-channels tech- 
nique for their solution. To avoid this complexity we have 
adopted the simplest reasonable approximation of replac- 
ing V(r) by a spherically symmetric potential to be de- 
fined. In this case the scattering states with outgoing wave 
boundary conditions have the usual form 

(10) 

where the radial wave function R,, is the regular solution 
of the radial Schriidinger equation. With these solutions 
the spherically averaged screening density is given by 

ii(r) =2 c c(22+ l)R:,(r) 
k&c) I 

= $(21+ 1) fatin dkk’R:,(r) 
[ 

+7 2; ~k~XdkkZ[l-cos t’,,(k)]R:,(r) . 
ml” I 

(11) 
This density is then used to define a spherically symmetric 
potential v(r) according to Eq. (6) which we use in the 
solution of Eq. (9). This is the main approximation used in 
our work. While the kinematical effects are explicitly 
included through the occupancy of the electronic states, the 

modification of the scattering potential is only included in 
an average way. 

Apart from the shifted Fermi sphere, the numerical 
procedures used to achieve self-consistency are the same 
as for the static case [ll]. Once the equations have been 
iterated to convergence, the final spherical potential is used 
to determine the scattering phase shifts, the scattering cross 
section and the stopping power. Despite the assumed 
spherical symmetry of the scattering potential, the density 
itself is not spherically symmetric due to the summation 
over the shifted Fermi sphere. It has the form 

n(r, 0) = xl(r) + nz(r, 0) (12) 

where the spherically symmetric component is given by 

ni( r) = f c (2Zf l)/xmzn dk k’R:,( r). 
I 

(13) 

This contribution arises only for q < k, (see Fig. l), 
otherwise it is zero. The nonspherical component takes a 
simple form along the projectile axis. In the forward 
direction, 

n,(r, t?=O) 

where 

C,,(k) 

= (21+ 1)(21’ + l)~e”‘““‘sin BP,(cos 0) 

xZ=,(cos 0) d0 

x (- 1)+“)‘2 cos(S, - $0) if (I-1’) is even 

(-l)(“-‘+‘)” sin(6, - 6,,), if (I - I’) is odd. 

(15) 

This coefficient is symmetric in the indices 1 and 1’. 

Behind the projectile, we have 

n*(r, e=?rTT) = C(-l)‘+“n,,(r). (16) 
II’ 

For points off the projectile axis the expression for n,(r, 0) 
takes a slightly more complex form which we do not 
display here as we shall restrict our calculations of the 
induced density to the projectile axis. 

3. Results and discussion 

As an application of the above results we consider the 
situation of an antiproton moving through an electron gas 
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Fig. 2. Normalized screening charge densities along the axis of 
motion of the antiproton for various velocities: (a) u = 0, (b) 
u = OSu,, and (c) u = t+. 

corresponding to aluminium densities (rS = 2.07; or = 
0.927 a.u.). Previously, we considered this situation in the 
low velocity limit in a study of the differences between the 
stopping characteristics of protons and antiprotons [17]. 
Fig. 2 shows the axial charge density for a sequence of 
projectile velocities up to v = t+ Beyond this point the 
results become sensitive to the radial extent used in the 
numerical calculations and the number of partial waves 
used in the construction of the screening density. In addi- 
tion, it is difficult to obtain a well-converged self-con- 
sistent solution. All of these problems are associated with 
the increasing radial extent and asymmetry of the screen- 
ing charge as displayed in Fig. 2. Of course, our neglect of 
the asymmetry in the scattering potential is less justifiable 
at the higher velocities, and quite apart from the numerical 
difficulties, we believe that our results would not be very 
meaningful beyond about v = vr. 

At v = 0, the axial density shown is the same as that 
found previously [17] and displays the pronounced deple- 
tion hole induced by the negatively charged antiproton. At 
finite projectile velocities, however, a marked asymmetry 
in the depletion hole develops with increasing velocity. In 
the forward direction (positive t values), the induced 
density increases above its value in the v = 0 limit, indicat- 
ing that the electrons are able to penetrate closer to the 
negatively charged antiproton due to their larger relative 
velocity. As a result, there is a slight increase in the 
density at the antiproton, n(O), with increasing velocity. 
Furthermore, there is a region in front of the projectile in 
which the density accumulates to a value above the ambi- 
ent electron gas density. This compression of the electron 
gas is also seen [15] in the motion of an impenetrable 
object through a compressible fluid. Behind the projectile 
there is a relative decrease in the electron density which, 
by v = vF, extends out to 10 a.u. from the projectile. This 
region of rarefaction, also seen in the hard sphere calcula- 
tions [15], constitutes the trailing wake in the case of the 
antiproton. The structure apparent in the trailing density at 
v = I+ should not be taken too seriously since our use of 
the spherically averaged potential is no doubt becoming 
less reliable. Nevertheless, we believe the qualitative be- 
haviour shown in these figures is a good indication of the 
behaviour to be expected in a more complete calculation, 

It is also useful to consider the total integrated charge 
density within a sphere of radius r: 

Q(r) = 4a/or dr’ r’*iG( r’), (17) 

where G(r) is the deviation of the spherically averaged 
density defined in Eq. (11) from n,,. Fig. 3 shows Q(r) for 
u =O, v =0.5v, and u = vr. The rate at which Q(r) 
reaches its limiting value of - 1 decreases with increasing 
velocity, indicating that the screening charge density is 
becoming more extended. We also note that the total 
screening charge density preserves overall charge neutral- 
ity, consistent with the Friedel sum rule in the static limit, 
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Fig. 3. Integrated screening charge densities, Eq. (17), as a 
function of the radial distance from the antiproton: u = 0 (dashed 
line), u = 0.5 vF (solid line), u = uF (dot-dashed line). 
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and ensuring that the electric fields decay at least as re3 
for large distances from the antiproton. 

It is instructive at this point to make a comparison of 
our results with those obtained using linear response the- 
ory at the level of the random phase approximation @PA) 
[l]. The induced density in RPA is strictly proportional to 
2 and therefore, apart from an overall sign, has the same 
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Fig. 4. Normalized screening charge densities along the axis of 

motion of the antiproton as calculated in linear response theory 

(solid lines). The. corresponding nonlinear densities are shown as 

dashed lines. 
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Fig. 5. Integrated screening charge densities as a function of the 

radial distance from the antiproton, as calculated in linear re- 

sponse theory: u = vr (solid line), u = 1.51~~ (dashed line). 

form for both protons and antiprotons. In Fig. 4 we show 
the RPA density for v = 0.01 vr, v = OSv,, v = or and 
v = 1.5~~. The lowest velocity is close to the static limit, 
and is qualitatively similar to the DFT result. However, the 
density at the antiproton is depleted by about three times 
the background density which is obviously inconsistent 
with the requirement that )&(0)/n, 1 I 1. The fact that 
the magnitude of the RPA density is exaggerated near the 
antiproton implies that the external charge is screened 
within a smaller distance than is possible in the DFT 
calculation. This is particularly evident at the higher veloc- 
ity of v = vr which shows the density falling off within 
about 5 a.u. on the trailing side of the antiproton, approxi- 
mately half the extent of the trailing wake in the DFf 
calculation. In Fig. 4 we also show the density for v = 
1.5~~ which is well into the regime of collective plasmon 
wake formation. An even more dramatic view of the 
plasmon wake is provided by the plots of Q(r) in Fig. 5 
which show the large increase in the oscillation amplitude 
on going from v = vr to v = 1.5~~. A comparison with 
Fig. 3 for v = vr shows that the oscillation amplitude is 
much smaller in the DFP calculation, although it should be 
borne in mind that the latter makes use of the spherical 
potential approximation while the RPA does not. 
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Fig. 6. Antiproton stopping power as a function of velocity (solid 

curve). The dashed curve is obtained using the statically screened 

( v = 0) potential. 
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Fig. 6 shows the stopping power as a function of 
velocity. It is noteworthy that the stopping power depends 
almost linearly on v up to v = vn and thus provides a 
theoretical explanation for the empirical conclusions ar- 
rived at by Mann and Brandt [3] on the basis of a survey of 
stopping power data. The near-perfect linearity is a conse- 
quence of two competing effects. The first is the effect of 
the shifting Fermi sphere. Fig. 6 shows the result obtained 
if the static (v = 0) scattering potential is used to obtain 
the cross section. The negative curvature is a phase space 
effect associated with the different sampling of the scatter- 
ing cross section, while the decrease seen at high velocities 
can be understood in terms of a diminishing cross section 
with increasing kinetic energy. The second effect is the 
modification of the scattering potential with increasing 
velocity. The average dynamically screened potential is 
stronger than the static potential and the cross section for it 
is correspondingly larger. This compensates for the phase 
space effect and straightens out the stopping power curve. 
It would be of interest to extend these results to the 
stopping power maximum and beyond, but as mentioned 
previously, it would not be meaningful to do so within the 
present approximation scheme. If the calculations could be 
done, it would be particularly interesting to see whether 
the sudden increase in stopping power found in both the 
linear [IS] and quadratic [9] response theories at the onset 
of collective excitations survives in the fully nonlinear 
calculation. 

We should at this point explain why we expect collec- 
tive effects to show up in our calculations of the screening 
charge even though they appear to be based on a single- 
particle picture. To clarify this point, we note that the 
linear density response function for a noninteracting elec- 
tron gas occupying a shifted Fermi sphere, xf(q, w), is 
given by 

(18) 

i.e. the effect of the shifted Fermi sphere is equivalent to a 
shift of the frequency in the usual equilibrium response 
function. Thus in the static limit, we have 

X,0(% 0) = X,“=0(4, q-v). (19) 

In other words, the static screening for a shifted Fermi 
sphere is in fact related to the usual density response 
function at the finite frequency, w = q * u. The same argu- 
ment applied to the interacting electron gas shows that the 
IVA response function is given by 

X”(4,O) =x,=0(% 4’ u>. (20) 

This implies that the dynamic screening charge can be 
equally well determined by treating the external projectile 
potential as static, but with the response of the electron gas 
represented by the response function in Eq. (20). If q * u 
intersects the plasmon branch, as it must at sufficiently 
large v, the induced screening charge will obviously ac- 
quire a collective contribution. The spirit of the DFT 

calculation is the same as a calculation based on Eq. (20) 
in the sense that the static projectile potential is screened 
by a moving electron gas, with the only difference being 
that the response is determined nonlinearly. We suspect 
that at least some of the numerical difficulties encountered 
above v = vr are associated with the onset of collective 
excitations which has the effect of making the scattering 
potential much more extended in space. 

4. Conclusions 

To conclude, we have shown that it is possible to 
extend the low velocity stopping power calculations to 
finite projectile velocities by allowing the electrons to 
occupy a shifted Fermi sphere. Our results for antiprotons 
for velocities less than vn demonstrate that, within the 
spherical potential approximation, the stopping power is a 
linear function of the projectile velocity. At the higher 
velocities where an extended collective wake is expected 
to form, the nonsphericity of the scattering potential is 
becoming increasingly important, and a refined couple- 
channels calculation is needed. The application to posi- 
tively charged projectiles which support bound states would 
also be of interest. However, such a calculation is much 
more complex since it requires a prescription for the 
capture and loss processes which determine the occupancy 
of the available bound states [19]. These, and other exten- 
sions, are interesting projects for future consideration. 
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