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0. Introduction 

In this paper we study the Dirichlet problem for a function u in a bounded 
domain Q in R with smooth strictly convex boundary dS2. At any point x in 51 
the principal curvatures K = ( K ~ ;  - * ,  K ~ )  of the graph (x, u ( x ) )  are to satisfy a 
relation 

where 4 is a given smooth positive function on 0. In addition, u is to satisfy the 
Dirichlet boundary condition 

The function f is of a special nature as in our papers [3] and [4] (though with 
somewhat different properties). It is a smooth symmetric (under interchange of 
any two K , )  function satisfying 

(3) 

furthermore, 

(4) f is a concave function 
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defined in an open convex 
the positive cone r+. r is 

With 

cone r $ W" with vertex at the origin and containing 
also supposed to be symmetric in the K ~ .  

0 < \clo = min# 5 max+ = 
0 H 

we assume that, for some $o < #o, 
- 
lim f ( ~ )  5 tj,, forevery K~ E ar. 

K ' K g  

( 5 )  

In addition we assume that for every C > 0 and every compact set K in I' there 
is a number R = R(C,  K )  such that 

( 6 )  ~ ( K ~ , . . ' , K ~ - ~ , K , + R ) ~ C  forall K E K .  

Furthermore we have the following conditions: for some constant co > 0, 

(7) EL(.) 2 co > 0 whenever f r  \clo, 

(8) Z K ~ ~ ~ ( K )  2 co whenever +,, sf s 
(9) f ( f K )  5 t f ( ~ )  for K E I?, t 2 1; 

and, for some constant c1 > 0, on the set 

( K  E rl+o S f ( K )  5 $1 and K 1  < o}, 
(10) 

fl 2 c1 > 0. 

In case f is non-negative, condition (9) follows from concavity of f ,  for we have: 
for 0 < E c s < 1, K E I?, 

f ( S K  -k (1 - S ) & K )  2 Sf(K) + (1 - S ) f ( & K )  

2 S f ( K ) .  

Letting E -+ 0 we obtain ~ ( s K )  2 s ~ ( K )  for s < 1, which is equivalent to (9). 

DEFINITION. A function u E C2(G) is called admissible if, at every point of 
its graph, K E r. 

We shall also assume the existence of a suitable admissible subsolution: 

there is an admissible g, ~f = 0 on an, such that the 
principal curvatures 5 of its graph satisfy (11) 
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We can now state the main result of this paper. 

THEOREM 1. Under conditions (3)-(11) there exists a unique admissible smooth 
solution u of (I), (2) in H. 

EXAMPLE. The function f( K) = ( K ) ) ' / ~ ,  where is the k-th elemen- 
tary symmetric function 

U ( k ) ( K )  = K i ,  K i , ,  
j 1 < i 2 <  . . .  < i ,  

satisfies all the conditions of the theorem. Indeed these have all been verified in 
[3] (or are obvious) except for condition (10). But that is also easily verified: if 
u1 j 0, we have 

($4 = u ( k - ' ) ( K  2,** ' ,Kf l )  

since a ( k - ' )  is increasing in K ~ .  

Now (see Section 1 in [31) the connected component in W containing rf  in 
which u ( ~ )  > 0 is a convex cone r with vertex at the origin. In r all the functions 

- a ,  a(') = 1 are positive. By inequality (6) on page 11 of (11 we have 

It follows easily that in r 
1-l/k u("-') 2 constant (a(")) 

and hence ulk)  2 constant &', and (10) is proved. 
In [6],  N. Korevaar also uses and proves condition (10) for (u(~)) ' /~ .  Up to 

now we have not been able to treat more general boundary values, or nonconvex 
domains 52. We may perhaps return to these cases at a later time. 

The uniqueness follows immediately from the following form of the maximum 
principle. 

LEMMA A. Let u be an admissible function; denote its principal curvature at x 
(of its graph) by K ( x ) .  Let v E C2(St) n C(a) and assume that at every point x in 
52 its principal curvatures k ( x )  lie outside the set 

If u 6 u on d52, then u 5 u in St.  
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Proof: If not, u = u achieves a negative minimum at some point x E 9. It 
follows that the ordered principal curvatures L ( x )  at (x, u ( x ) )  of the graph of u 
satisfy L i ( x )  2 K ~ ( x ) .  But then, by (3), L lies in f ;  contradiction. 

We shall rely on some computations from earlier papers in this series. In 
Section 1 of [4] we showed that the principal curvatures K of the graph of u are 
eigenvalues of the symmetric matrix (summation convention is used) 

where w = (1 + ~ v u ( ~ ) ' / ~ .  At the beginning of Section 3 of [3], we remarked 
(rather, we left it to the reader to verify) that 

F(a,, , .  * * ,  arm) = f(4 
satisfies (for convenience we write the left-hand side as F(a, , )  = G(Du,  D 2 u ) ) :  

the matrix { g) is positive definite, 

provided u is admissible. It follows easily that the equation 

(1)' F ( a j l )  = G ( D u ,  D 2 u )  = +(x )  > 0 

is elliptic at every admissible function u. 
Furthermore, relying on the results of Section 3 of [3] we see that F is a 

concave function of the matrix (a i l )  and hence G is a concave function in its 
dependence on the symmetric matrix D2u. 

As in all the preceding papers in this series, our proof of existence is based on 
the 

CONTINUITY METHOD. For 0 5 1 5 1 set 

where + = f ( g ( x ) ) .  (Recall K represents the principal curvatures of the graph of 
the su6solution g.) For each t we wish to find an admissible solution u' in 
c2-a(G), 0 < ff < 1, of 

- 
f(K(graphof u ' ) )  = + ' ( x )  in 9, o t s  1, u ' =  o on an, 

starting with uo = g. The function u1 is then the desired solution u of (I). 
As always one has to prove the openness and closedness of the set of f-values 

in [0,1] for which such a solution exists. The openness is proved directly with the 
aid of the implicit function theorem. To prove the closedness it suffices, since G 
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is concave in { D 2 u } ,  to obtain a priori estimates for the C2 norms of the 
solutions u', as explained in the preceding papers [2]-[4]. The rest of this paper is 
thus taken up with the derivation of such estimates. For convenience we derive 
the estimates for +' = +. 

In Section 1 we derive an estimate for the C1 norm of our (admissible) 
solution u.  In Section 2 we show how to estimate the second derivatives of u if 
we have bounds for them at ail. In Section 3 we study the effects on the solution 
surface of various conformal mappings in R "+'. Some of these will be used in the 
proof of the crucial Proposition 1 of Section 4. In Section 5 that proposition is 
proved while in Section 4 it is used to establish the desired bounds for the second 
derivatives of u at ail. Section 5 contains the most delicate arguments of the 
paper. 

1. The C' Estimate 

We observe first, see (9) in [3], that there is a 6 > 0 such that 

It follows from Lemma A and the usual maximum principle that our solution u 
satisfies (see (11)) for each x o  E 851, 

(1 .I) 
This implies 

(1.2) ~ V U ~ S  C on an. 
To estimate JvuI in 51 we shall obtain a bound for 

where 

A = [ -max(v+I c", ]l'* , 

and c1 is the constant in condition (10). If z achieves its maximum on 6'51, then 
from (1.2) we have a bound and we are through. 

Assume this is not the case; then it achieves its maximum at a point x in Q. 
At that point we may suppose 

lvul= u1 > 0, u,  = 0, a > 1. 

Then log u1 + Au takes its maximum there. Consequently, at x, 

uli 

u1 
- + Aui = 0. 
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So ull = -Au: and ula = 0 for a > 1. After rotation of the coordinates 
(x2; ., x n )  we may assume that uij(x) is diagonal. 

We also have, at x, 

Furthermore, from (12), we find that a, , (x)  is diagonal and 

w ( l  ul' + w )  r-"" w 3 '  
= uil(l W - 

while 

a , . =  - u i i  for i > I. (1 4 w 

Hence F'J = aF/aaij  is diagonal and F" = af/atci = f,. 

(using summation convention), 
Next we use the equation (1)'. Differentiate it with respect to xl; we obtain 

Now, for i > 1, 

1 1 U l U l l  U i i l  
= ( ;)lu,i + ,uiil = - - w 2  a;;  + - W 

and 

Thus 
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Using (1.4) we find 

Thus, by (1.5) and (1.6), 

- - - j . ( ~ 2  f l 4  - 2) + u f i u i i  u u  + Aulfiai i  5 -#I, 
U1W W 2  

and using (1.3) we obtain 

Since C i a i i  = Cf;., > 0, we see that 

1 - f 2A2u:( u: - 1) 5 maxJV#I. 
w 5  

By (9) it follows that 

by our choice of A .  Since w 2  = 1 + u:, this yields a bound for u1 and hence for 
maxlv ule Au. 

(1 -7) lulcl s c. 

We have derived the apriori estimate lvul 5 C in P and hence 

A natural question is: given a solution u of our equation in P, with IuJ s C,  
can one estimate lvul in every compact subset of P? Our method does not yield 
such an estimate. N. Korevaar [6] has derived such estimates for f = [ u ( ~ ) ] ' / ~ ,  
1 

In estimating second derivatives we will need an improvement of (1.1), 
namely: for some constant u > 0 under control, 

k n .  For k = 1 such estimates were proved many years ago. 

1 
a d ( x )  5 - u ( x )  5 ; d ( x ) ,  

where d ( x )  represents the distance from x to aP. 
The right inequality follows immediately from (1.1). To derive the left one we 

use the fact, stated at the beginning of this section, that for the graph of u, 
CK, 2 p > 0. There is a positive number S depending just on D such that at every 
point x o  E ail there is a ball in P with radius S touching dD only at x o .  Let S 
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be a sphere of radius (n + l ) /p lying in W n + l ,  i.e., x, u-space, with center above 
the hyperplane u = 0, and such that its intersection with the hyperplane u = 0 is 
a sphere s" of radius 6 lying in a. Since each principal curvature of S is less than 
p / n ,  so that their sum is less than p, it follows that the sphere S lies above the 
graph of u-since it does so on 9. This yields the left inequality of (1.8). 

2. Estimates for Second Derivatives from their Bounds on the Boundary 

In this section we shall show how to estimate the second derivatives of u in Cl 
if we know bounds for them on ail .  Our argument is similar to those we used in 
[4] and [S]. Let us assume we have a bound 

To estimate the second derivatives in il it suffices, since C K .  > 6 > 0, to estimate 
max K ; ,  i.e., the maximum of the principal curvatures in 9. 

- 1 =  

By (1.7) we have a bound for 

k = 2m_axw; 
n (2.2) 

recall that w = (1 + I v u ) ~ ) " ~ .  Set 

r = l/w, 

(2.3) 

Then 

(2.4) 

It suffices to estimate 

1 1  
a = - = - minr. k 2~ 

1 
r - a = a  

< - = k .  1 - 

1 
r - a  M :  = max - K ~ ( x ) ,  

where the maximum is also taken over all principal curvatures K ~ .  If M is 
assumed on we can estimate it in terms of 7 and we are through. 

Thus suppose M is achieved at some point xo in il. Set 

(2.6) w ( x 0 )  = w. 
It is convenient to use new coordinates, describing the surface by u(y) ,  where 

y are tangential coordinates to the surface at the point (xo, u(xo) ) .  Namely, let 
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e , ,  . . -, en, , denote the unit vectors in the directions of the axes, and introduce 
new orthonormal vectors 

E,,~ being the normal at xo = w-l(-u1,.- -, -u, , l) ,  and corresponding to 
the tangential direction at x o  with largest principal curvature. We represent the 
surface near (xo, u(xo) )  by tangential coordinates y l , - .  -, y,, and u ( y )  (summa- 
tion is from 1 to n): 

xJeJ + u ( x ) e , , + ,  = xjoei + u ( x o ) e , + l  + v,EJ + u ( y ) E n + , ;  

thus vu(0) = 0. Set 

w = (1 + ( V u ( y 2 .  

Then the normal curvature in the direction is 

u11 K =  
(1 + u ? ) o .  

In the y coordinates we have the normal 

1 1 
N = - - u . E .  + - E  J J 

and 

where a j  = ej e,,,, so Ea,? 5 1. 
At the point y = 0 the function 

1 u11 

7 - -a (I + u : ) o  

takes its maximum equal to M .  At this point, since the y ,  direction is a direction 
of principal curvature, we have u l j  = 0 for j > 1. By rotating the E ~ , .  - ., E,, we 
may achieve that 

u , ~  (0) is diagonal. 

Now we begin to compute. At y = 0, the log of the function in (2.8) takes its 
maximum, and hence its first derivatives vanish: 



56 L. CAFFARELLI, L. NIRENBERG, AND J. SPRUCK 

and also 

U l l i i  4 1 ;  o 2 - - - - - - 2ui i  - ui forall i .  (2.10) u11 U i 1  ( T " ) i  

From ( 2 . 7 )  we also find, at y = 0, i = 1,. * ,  n, 

ri = -a.v. .  I 11 3 

(2.11) u; 
7.. = - a  . u . . .  - - 

J J ( 1  w 
Next we must make use of our differential equation (1); here we rely on some 

computations from [4] and [5 ] .  According to Lemma 1.1 of [4] the principal 
curvatures of the surface (in y-coordinates) are the eigenvalues of the symmetric 
matrix 

u; uj UjI ' l U k U k i  UiUlUjUkUjk  - w 'i u d -  w ( l  + w )  w ( 1  + w )  + 4 1  + &))2 

At the origin we find therefore that 

ail = oil is diagonal, 

and 

(2.12) 

In ;..e 1 fferential equation (l), the function f is a smooth concave ,.inction 
which is invariant on interchange of the K ; ,  so f ( ~ )  can be written as a smooth 
function F o f  the symmetric matrix A = { a i l } .  As indicated in [3], F is then also 
a concave function of its arguments. It is easy to verify that, at a matrix 
A = (a,,) which is diagonal, 

(2.13) a F  af 
aai, a K i  

- -  - -ail = hail. 

We proceed to differentiate the equation 
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first with respect to y,, to obtain 

Taking j = 1 and differentiating once more with respect to y, we find, using 
the concavity of F, 

Using (2.12) and (2.13) we have then, at y = 0, 

(2.14) fiuiij = +j for all j ,  

and 

I 

- I f,( + + V I l (  A) i + 2011Ufi + ullu;. - "ii";l) - 2f1Ui, 

= u  l l i T - a  f[l( -a.u...  J J I I  - L! "2.) w + u; - VllVi i  

and hence 

M aCf& + M 2 ( ?  - a ) 2 z f i u i i  i; c ( 1  + M ) .  
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With the aid of (8) it follows that 

M $ C  

for a suitable constant C under control. Then if (2.1) holds we have established 
the estimate 

(2.15) luiJl 5 c in 3i. 

As in the preceding equation one may ask: under what conditions is it 
possible to establish purely interior estimates for Iui,(, knowing a bound for the 
C' norm of u? This is possible under the additional condition (see (ii)' in [5]) 

(2.16) I K I ~ C ~ ( K )  s BCfiK1, 

whenever qo 6 f ( ~ )  
let { be a cutoff function as in Section 2 of [5]; in that section we considered 

Indeed consider a solution of (1) in a ball 1x1 < R and 

1 1 
M :  = max{---K,(x) 2 - max K ,  (01, Ixl<R 7 - a 7 - a  

and derived an inequality at the maximum point ((19) there): 

a 4 1 

Multiplying this by r2 we see that 

) + c(1 + M ) .  

It follows that (recall that 2a  7 5 1) 

4 C 
R 2  U I l G  CO,', I 011- cr, + c ( 1  + M )  

41,, 3 Cfl s u 1 1 3  cr, + c ( 1  + M ) .  

or, by (2.16), 

as2 1 C 

Consequently, with a different constant C,  

C f , s C ( l + M )  
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or, by (7L 

59 

M M 2  - - c0 5 C ( l  + M ) .  i Rcz) 
This yields a bound for M and hence the bound 

Remark. Condition (2.16) is not satisfied by f = [ u ( ~ ) ] ’ / ~  for k > 1.  

3. Effect on the Solution Surface of Conformal Mappings of Space 

When we derive bounds on the second derivatives of u at 852 we will make 
use of various barrier functions. Some are obtained by comparing the solution 
surface with its image under some conformal mapping in W n + l .  In this section we 
first compute the effect of such mappings. 

1. Infinitesimal rotation of the independent variables. Since f ( K )  is invariant 
under such a relation, it follows that for the operator x,dj - x j d j ,  i # j ,  which is 
the infinitesimal generator of a rotation, we have 

(3.1) L ( X i U j  - X p i )  = xi+j - xj+ i .  

Here L is the linearized operator of G (see (1)’ in the introduction) at u. 

2. Infinitesimal stretching. If t is close to one, then the principal curvatures 
of the surface ( x / t ,  ( l / t ) u ( x ) )  are t K ( x ) .  

Thus if we consider the stretched surface (setting y = x / t ) :  ( y , ( l / t ) u ( t y ) ) ,  
its principal curvatures at y are tK(fy) .  Hence for this surface we have (renaming 
y to be x ) ,  see (1)’ in the introduction, 

f ( t ~ ( t x ) )  = G(Du,  D2u),  

where u ( x )  = (l/t)u(tx). 
We find that, at t = 1, 

d -G(Du,  D2u) = L dt 

= L ( m ,  - u ) .  
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Here r is the polar coordinate 1x1. Furthermore, at t = 1, 

Thus 

(3.2) 

3. InJinitesimaf rotation in W"". Keeping the coordinates x' = 
(x1; - a ,  x , - ~ )  fixed let us rotate by d6 in the (x,, u )  variables. To first order in 
d6 the image of ( x ,  u(x))  under such a rotation is 

( x ' ,  X ,  - U ( X )  d6, U ( X )  + X ,  do).  

The principal curvatures do not change under such a rotation. Thus to first order 
in do, the image of 

[ x ' ,  x,  + u ( x )  d6, u(x ' ,  x,  + u ( x )  d6 ) ]  

( x ' ,  x,, u (x ' ,  x, + u ( x )  d 6 )  + x,dB). 
is 

Hence if 

u ( x )  = u ( x ' , x ,  + u ( x ) d 6 )  + x,dd + higherorderin d6, 

we have, at x ,  

G ( D u ,  D2u) .=  + ( X I ,  x, + u ( x )  do) .  

Consequently, if we compute the first-order term in dB we find 

(3.3) L ( x ,  + ~ < X > ~ , ( X > >  = 4.>+,(.). 
Next we take up the more interesting effect of 

4. Reflection in a sphere in W"+'. Consider a hypersurface S in R " + l  with 
principal curvatures K ~ , .  - a ,  K,. Let us perform a reflection (or inversion) I in a 
sphere with center at the origin and radius R ,  s' = Z(S). For convenience we 
suppose that the origin does not lie on S .  The image of X on S is 

(3.4) 
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A useful observation is the following: 

LEMMA 1. The directions of principal curvature of S map into directions of 
principal curvature of I (  S )  at the corresponding image. Furthermore, the principal 
curvature K' of I (  S )  at I (  X )  corresponding to the principal curvature K of S at X is 
given by 

(3.5) 

where v is the normal to S at X.  

Proof: Consider the surface S near X and let denote differentiation with 
respect to a parameter on some tangent curve. According to the formula of 
Rodriguez this direction of the curve is a direction of principal curvature if and 
only if i, is parallel to X as X moves on the curve. In that case, if K is the 
corresponding principal curvature, then 

i + K X = o .  

The tangent curve through X maps into a tangent curve to s" at I ( X ) .  We have 
only to establish the corresponding formula: 

(3-6) i + K " Y = O  

at I ( X ) ,  where v" is the normal on ,!?. 
Since angles are preserved, the normal Y" on ,!? is given by the direction of the 

tangent to the image (circle) at s = 0 of the line X + sv, s real. Since X + sv 
maps into 

x +  sv 
Z =  2 R 2 ,  ( X  + SVI 

and, at s = 0, 

we see that 

v" = Z,/lZSI 

X 
= v - 2 ( x *  V ) T .  

1x1 

Next we have 
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while (recall X v = 0) 

X X X f = i, - 2 ( x *  S)? - 2 ( x *  v)- + 4 ( x *  v ) ( X *  X): 1x1 1XI2 1x1 

Thus the lemma holds with K“ given by (3.5). 

new principal curvature of s’ at I( X) corresponding to K is 
More generally, if we reflect S in a sphere of radius R with center W, then the 

K 2 
R R 2  

K “ =  > / X -  w12+ -(x- W)-v(X). 

4. Bounds for Second Derivatives at the Boundary 

In this section, assuming Proposition 1 below we shall establish the estimate 
(2.1): 

PROPOSITION 1. Let u be the admissible solution of (l), (2). Given any E > 0 
there exists a number p > 0 depending on& on E ,  52 and the functions f and 4,  such 
that in a p-neighborhood of a52 we have 

where u, is the derivative of u in the interior normal direction. 

This proposition will be proved in the next section. We shall now establish 
(4.1) at any point on aQ. We may suppose that the point is the origin and that 
the x,-axis is interior normal there. We may assume that the boundary near 0 is 
represented by 

n-1 

x ,  = p ( x ’ )  = 2 c A,Xi + O(1X’l’). 
1 

Here A, > 0 are the principal curvatures of 6’52 at the origin. 
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We first establish the estimates 

For a! < n ,  let T, be the operator 

T, = a, + x , ( x , a ,  - x,a,). 

Applying 8, to #(XI, p ( x ’ ) )  = 0 we find 

u, + u,p, = 0. 

Since p = 0(1x’l2) and pa = Xux,  + O(lx’12), it follows that 

(4.4) ITa#[ C1xI2 on aP near the origin. 

Since Lu, = +, and since (3.1) holds, we find 

(4-5) JLT,uJ S C,, 

where we recall that L is the linearization of G in (1)’ at u. 

small, set 
In the following, P, will represent the small region 52 n { x, < P } .  For 6, /3 

& 
h = IW, - u - -(x, + UU,). 

( 4 4  P 

LEMMA 4.1. For suitable choice of 6 small, then P = P ( 6 )  small, and then A 
large, the function Ah satisfies in P, the following conditions: 

(4.7) L ( A h )  2 C, in Pb, 

(4.8) Ah g -C1xI2 on lower boundary of P, ( i . e . ,  on 80 there), 

(4.9) Ah g -IT,ul on upper boundary of P, ( i . e . ,  on x n  = P ) .  

Proof: First, we require P < p of Proposition 1. By that proposition we have 
in P, 

n-1  

E 2 u, = c vau, + vnun. 
1 

For P small the v, are small and v, is close to 1; hence 

(4.10) u,  s 1 E .  
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Now by (3.2) and (3.3) we have 

6 
Lh 2 co + r+r - -uICln P 

CO 2 7 - C6 if P is small, 

with C independent of P and 6-since u = 0 on 8Q. Thus 

CO Lh 2 7 if 6 and P are small. 

For A large it follows that (4.7) holds. 
On the lower boundary of Q p ,  since u = 0 there, we have Imrl 6 C21x12; also 

x,, 2 a1xI2, a > 0. Hence 

6 
P h = TU, - -x, 

4 ( c2 - pa)lx12. 6 

For 6//3 and A large we obtain (4.8). 
Finally, on x, = P we have, using (4.10) and 0 5 - u  5 CP, 

I - $&P + c p  - u 

- - < $&P + c p  + cfi + $C6& - 6 

- - < c p  + S($C& - 1) 

with (different) C independent of E, 8,6. Now choose E and P so that 

and 6//3 large as required in the preceding paragraph. Then we obtain 

6 
4 h s - -  on x , = p ,  

and so (4.9) follows for A large. The lemma is proved. 
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Using Lemma 2 and the maximum principle we see that 

h r f T,u in a,. 

It follows that at the origin, where h and Tau vanish, 

or 

(3.3) is proved. 
To complete the proof of (4.1) we have to show that Jun,(0)l 5 C. Recall that 

the principal curvatures of the solution surface at the origin are the eigenvalues of 
the matrix u,,(O) given by (12). Since ua(0) = 0 for (Y < n, one finds easily that 
aj,(0) has the block form 

w-lu, ,  

U, / (O)  = - 
W i U a B  w-lunp w-zu,, 

Now since u ( x ’ ,  p ( x ’ ) )  = 0 we have at the origin 

i.e., 

Hence from (1.8) 

b > 0. 

Thus if d ,  =< * . * =< CI,,-~ are the eigenvalues of uaB(0) we see that 

(4.11) b 4 d ,  2 C. 

Suppose that lunn(0)l can be arbitrarily large. Apply Lemma 1.2 of [3]. (It is 
only formulated for a,, a diagonal (n - 1) X (n - 1) matrix, but ours may be 
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diagonalized.) According to the lemma the eigenvalues K ~ , '  . a ,  K,  behave like 

as lunn(0)l -+ co. Since r lies in the half-space Z K ~  > 0 it follows that u,,(O) is 
arbitrarily large. But by (4.11) we see that at the origin (k,; * a ,  K,,-~, 1) lie in a 
compact subset K of r and so if K, is arbitrarily large we obtain a contradiction 
to (6)  since f ( ~ , ;  - -, K,)  q1. 

The proof of (4.1) is complete except for that of Proposition 1. 

5. Proof of Proposition 1 

Suppose as in the preceding section that the origin belongs to aS2 and that the 
x,,-axis is interior normal there. Given E we want to find a number p > 0 (which 
will work for any boundary point) such that 

Without loss of generality (after a stretching) we may suppose that the graph S of 
u over Q lies in the ball B1,2 with center at (0,O; - a ,  $, 0) in R 

From (1.8) we know that u, < 0 at the origin and so this remains true in 
some undetermined neighbourhood. Consider the family of reflections 1, de- 
pending on a parameter 6 > 0, in the boundary of the unit ball in R"+l:  
B,(es) = B', with center e, = (0,..-,0,1 + S,&), where c" > 1 is a large 
constant to be chosen. S is contained in Bo. As 6 becomes positive a portion of 
S near the origin in Rn+' lies outside B'. For very small 8 ,  the reflection 
Z,(S n %?B8) does not touch S n B8; furthermore at any point Xo E S n aB*, 
Z(S n VB') is not tangent to S .  Suppose there is a first value of 6 for which this 
statement fails, i.e., for which either 

(a) I,(  S (7 %B8)  touches S at a point I,( X ' ) ,  

or 

(b) Z ( S  n %B6)  is tangent to S at some point Xo E aB8 n S. 

We shall prove that there is a 6, (under control), with c26, j 1, such that for 
So, if a point S 5 8, both cases are impossible. It then follows that, for S 

X E S belongs to aB8, then 

( X -  e 8 )  v ( X )  < 0. 
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In particular, if we take X = (0; ' -, 0, x,, u(0, x,)), then 

( x ,  - 1 - S ) v , ( X )  + ( u  - C6),+,(X) < 0. 

Here 

Thus for x, and So small we have 1 + 8 - x ,  > 4 and so 

if x,, and so 6, are sufficiently small (under control). 
Proposition 1 would then be proved. 
Suppose case (a) first occurs for some Xo = (x, u(x ) ) .  Since case (b) has not 

occurred for smaller 6' we know that for X o  E S n WSB' there is a 6' < S such 
that X o  E aB8' and 

(5 .2)  ( X O  - e, , )  Y( x') < 0. 

A principal curvature K of S at X o  has corresponding to it a principal curvature 
I? of Z&(S) at I , ( x 0 )  given by Lemma 1 of Section 3: 

(5.3) I? = K I X O  - esI2 + 2( X O  - e s )  v( x O ) .  

Now, with A denoting various constants under control, 

5 1 + A ( 6  - 6') + AC(6 - S')X#) 

since C2S 5 1 and - u ( x )  6 Cx,. 
Since IXo - e,,l = 1 we have, for x = (x', x,), 

lx'l2 + (1 + 6' - X J 2  + ICS' - u ( x ) l 2  = 1 

Hence 

2 
(x'12 + (+ - XJ2 + 2(3 - X,)(+ + 8') + (4 + + (CS' + A x , )  2 1 
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The sum of the first two terms is at most a, and it follows that 

x , ( l  + 26') 26' + A&" + A X :  

- - < A(6'  + xn') 

(the A keeps changing). It follows that 

x ,  5 AS'. 

Inserting this in (5.4) we find 

( 5  5 )  

Using this one finds also that 

( X o  - esI2 5 1 + ~ ( 6  - 6'). 

(5 .5 ) '  1x0 - I S ( X 0 ) l  5 A ( 6  - 6' ) .  

For the last term in (5.3) we have 

2( X' - e , )  Y( X') = 2( X' - e S j )  v( x') + 2(e, ,  - e , )  v( x O )  

I - 2( e,, - e,) v( x') 
= 2v,(6' - 6 )  + 2Yn+lc"(8' - 6 )  

I - - c q s  - a'), 

by (5.2) 

with c > 0 (under control) since 

vn+l  = (1 + 1vu12)-1'2 2 a, > 0. 

Inserting (5.5) and (5.6) into (5.3) we infer that 

( 5  -7) 5 K ( 1  + A ( 6  - 8'))  - &(6 - 6'). 

Now at the point I,( X o )  of contact, the principal curvatures K" are not less 
than the principal curvatures of S at IS( X o ) .  Hence 

f ( l ; ; , * . * ,  2,) t f ( K ( & ( X O ) )  = $(J*XO)  

(5.8) 2 $ ( x )  - BlXO - 1,XOl 

r $b) - B ( a  - a'), 
by (5.5)'-for suitable constants B under control. 
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On the other hand, by (5.7), if we set 6 - 6' = T ,  

f(i) =f(i1;.-, 6,) Sf(K1(l + A T )  - C c " T , * * * ,  K , ( 1  + A T )  - CQT) 

I ~ ( K ( I  - + A T ) )  - c ~ " T C ~ , ~ ( K ( I  + A T ) ) ,  

by concavity of f. According to (9) 

f ( 4  + A 4  5 (1 + A M 4  

= (1 + A T ) + ( X )  

and so 

By (3), f ( ~ ( 1  + A T )  2 + ( x )  and hence, by (7), C f i ( ~ ( l  + AT)) 2 co. Therefore, 

(5.10) f(E) 5 (1 + A T ) + ( X )  - CoCCT. 

Combining this with (5.8) we see that 

+ ( x )  - Br 5 (1 + A T ) + ( x )  - C , C ~ T  

or 

cote 5 B + A J / ( x )  5 B + A+,. 

If now were chosen so large that this cannot hold, it follows that for our 
corresponding small 6, case (a) cannot occur. 

Turn now to case (b). For any X E (Sn%'B8), X E aB", some of the 
computations above, in particular (5.10), hold. If 2 = I , ( X )  = (2, 2,+1), then 
+ ( x )  +(Z) + A(6 - 6') so that from (5.10) we find 

f(i) 5 + ( 2 )  + ( A  - C0CQ)T  

(5.11) 

for c" sufficiently large. 

2n+l > ~(2). Setting .fn+l 6 ti(?) we see that a(.?) > u ( Z )  and 

s +@I,  

Thus the reflected surface with coordinates (2,  2,+,) lies above S, i.e., 

G(Di i ,  D2G)  4 G ( D u ,  D'u) at 2. 

The function ii - u has a minimum, namely zero, at (Xf; * ,  X,"-,) = xo. By 
the Hopf lemma the tangency there in case (b) cannot occur. Proposition 1 is 
proved and so therefore is Theorem 1. 
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